請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28245
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張富雄(Fu-Hsiuan Chang) | |
dc.contributor.author | Hsin-Hung Chen | en |
dc.contributor.author | 陳信宏 | zh_TW |
dc.date.accessioned | 2021-06-13T00:03:29Z | - |
dc.date.available | 2007-08-08 | |
dc.date.copyright | 2007-08-08 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-30 | |
dc.identifier.citation | 1. Downward, J. (2004) Use of RNA interference libraries to investigate oncogenic signalling in mammalian cells. Oncogene, 23, 8376-8383.
2. Gao, X., Kim, K.S. and Liu, D. (2007) Nonviral gene delivery: what we know and what is next. Aaps J, 9, E92-104. 3. Check, E. (2003) Harmful potential of viral vectors fuels doubts over gene therapy. Nature, 423, 573-574. 4. Felgner, P.L. and Ringold, G.M. (1989) Cationic liposome-mediated transfection. Nature, 337, 387-388. 5. Shea, L.D., Smiley, E., Bonadio, J. and Mooney, D.J. (1999) DNA delivery from polymer matrices for tissue engineering. Nature biotechnology, 17, 551-554. 6. Bielinska, A.U., Yen, A., Wu, H.L., Zahos, K.M., Sun, R., Weiner, N.D., Baker, J.R., Jr. and Roessler, B.J. (2000) Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo. Biomaterials, 21, 877-887. 7. Zheng, J., Manuel, W.S. and Hornsby, P.J. (2000) Transfection of cells mediated by biodegradable polymer materials with surface-bound polyethyleneimine. Biotechnol Prog, 16, 254-257. 8. Chang, F.H., Lee, C.H., Chen, M.T., Kuo, C.C., Chiang, Y.L., Hang, C.Y. and Roffler, S. (2004) Surfection: a new platform for transfected cell arrays. Nucleic acids research, 32, e33. 9. Yaroslavov, A.A., Sukhishvili, S.A., Obolsky, O.L., Yaroslavova, E.G., Kabanov, A.V. and Kabanov, V.A. (1996) DNA affinity to biological membranes is enhanced due to complexation with hydrophobized polycation. FEBS Lett, 384, 177-180. 10. Segura, T., Volk, M.J. and Shea, L.D. (2003) Substrate-mediated DNA delivery: role of the cationic polymer structure and extent of modification. J Control Release, 93, 69-84. 11. Pedroso de Lima, M.C., Simoes, S., Pires, P., Faneca, H. and Duzgunes, N. (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev, 47, 277-294. 12. Hirko, A., Tang, F. and Hughes, J.A. (2003) Cationic lipid vectors for plasmid DNA delivery. Curr Med Chem, 10, 1185-1193. 13. Ewert, K., Slack, N.L., Ahmad, A., Evans, H.M., Lin, A.J., Samuel, C.E. and Safinya, C.R. (2004) Cationic lipid-DNA complexes for gene therapy: understanding the relationship between complex structure and gene delivery pathways at the molecular level. Curr Med Chem, 11, 133-149. 14. Decastro, M., Saijoh, Y. and Schoenwolf, G.C. (2006) Optimized cationic lipid-based gene delivery reagents for use in developing vertebrate embryos. Dev Dyn, 235, 2210-2219. 15. Dufes, C., Uchegbu, I.F. and Schatzlein, A.G. (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev, 57, 2177-2202. 16. Azzam, T., Eliyahu, H., Shapira, L., Linial, M., Barenholz, Y. and Domb, A.J. (2002) Polysaccharide-oligoamine based conjugates for gene delivery. J Med Chem, 45, 1817-1824. 17. Eliyahu, H., Makovitzki, A., Azzam, T., Zlotkin, A., Joseph, A., Gazit, D., Barenholz, Y. and Domb, A.J. (2005) Novel dextran-spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene Ther, 12, 494-503. 18. Nagasaki, T., Hojo, M., Uno, A., Satoh, T., Koumoto, K., Mizu, M., Sakurai, K. and Shinkai, S. (2004) Long-term expression with a cationic polymer derived from a natural polysaccharide: schizophyllan. Bioconjug Chem, 15, 249-259. 19. Loretz, B. and Bernkop-Schnurch, A. (2006) In vitro evaluation of chitosan-EDTA conjugate polyplexes as a nanoparticulate gene delivery system. Aaps J, 8, E756-764. 20. Jeon, O., Lim, H.W., Lee, M., Song, S.J. and Kim, B.S. (2007) Poly(l-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. J Drug Target, 15, 190-198. 21. Brissault, B., Kichler, A., Leborgne, C., Danos, O., Cheradame, H., Gau, J., Auvray, L. and Guis, C. (2006) Synthesis, characterization, and gene transfer application of poly(ethylene glycol-b-ethylenimine) with high molar mass polyamine block. Biomacromolecules, 7, 2863-2870. 22. Jang, J.H., Houchin, T.L. and Shea, L.D. (2004) Gene delivery from polymer scaffolds for tissue engineering. Expert review of medical devices, 1, 127-138. 23. Jang, J.H. and Shea, L.D. (2003) Controllable delivery of non-viral DNA from porous scaffolds. J Control Release, 86, 157-168. 24. Segura, T., Chung, P.H. and Shea, L.D. (2005) DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials, 26, 1575-1584. 25. Niidome, T. and Huang, L. (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther, 9, 1647-1652. 26. Li, S. and Huang, L. (1997) In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther, 4, 891-900. 27. Crook, K., Stevenson, B.J., Dubouchet, M. and Porteous, D.J. (1998) Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther, 5, 137-143. 28. McLachlan, G., Stevenson, B.J., Davidson, D.J. and Porteous, D.J. (2000) Bacterial DNA is implicated in the inflammatory response to delivery of DNA/DOTAP to mouse lungs. Gene Ther, 7, 384-392. 29. Dauty, E., Remy, J.S., Blessing, T. and Behr, J.P. (2001) Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc, 123, 9227-9234. 30. Kim, H.S., Song, I.H., Kim, J.C., Kim, E.J., Jang, D.O. and Park, Y.S. (2006) In vitro and in vivo gene-transferring characteristics of novel cationic lipids, DMKD (O,O'-dimyristyl-N-lysyl aspartate) and DMKE (O,O'-dimyristyl-N-lysyl glutamate). J Control Release, 115, 234-241. 31. Wu, G.Y. and Wu, C.H. (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 262, 4429-4432. 32. Zatloukal, K., Wagner, E., Cotten, M., Phillips, S., Plank, C., Steinlein, P., Curiel, D.T. and Birnstiel, M.L. (1992) Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells. Ann N Y Acad Sci, 660, 136-153. 33. Cotten, M., Wagner, E. and Birnstiel, M.L. (1993) Receptor-mediated transport of DNA into eukaryotic cells. Methods Enzymol, 217, 618-644. 34. Haensler, J. and Szoka, F.C., Jr. (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem, 4, 372-379. 35. Tang, M.X., Redemann, C.T. and Szoka, F.C., Jr. (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem, 7, 703-714. 36. Boussif, O., Lezoualc'h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B. and Behr, J.P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A, 92, 7297-7301. 37. MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill, I., Hinchcliffe, M. and Rolland, A.P. (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release, 56, 259-272. 38. Hsu, Y.Y., Hao, T. and Hedley, M.L. (1999) Comparison of process parameters for microencapsulation of plasmid DNA in poly(D,L-lactic-co-glycolic) acid microspheres. J Drug Target, 7, 313-323. 39. Scherer, F., Schillinger, U., Putz, U., Stemberger, A. and Plank, C. (2002) Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J Gene Med, 4, 634-643. 40. Fang, J., Zhu, Y.Y., Smiley, E., Bonadio, J., Rouleau, J.P., Goldstein, S.A., McCauley, L.K., Davidson, B.L. and Roessler, B.J. (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A, 93, 5753-5758. 41. Niyibizi, C., Baltzer, A., Lattermann, C., Oyama, M., Whalen, J.D., Robbins, P.D. and Evans, C.H. (1998) Potential role for gene therapy in the enhancement of fracture healing. Clin Orthop Relat Res, S148-153. 42. Bonadio, J., Smiley, E., Patil, P. and Goldstein, S. (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med, 5, 753-759. 43. Chandler, L.A., Gu, D.L., Ma, C., Gonzalez, A.M., Doukas, J., Nguyen, T., Pierce, G.F. and Phillips, M.L. (2000) Matrix-enabled gene transfer for cutaneous wound repair. Wound Repair Regen, 8, 473-479. 44. Pakkanen, T.M., Laitinen, M., Hippelainen, M., Hiltunen, M.O., Alhava, E. and Yla-Herttuala, S. (2000) Periadventitial lacZ gene transfer to pig carotid arteries using a biodegradable collagen collar or a wrap of collagen sheet with adenoviruses and plasmid-liposome complexes. J Gene Med, 2, 52-60. 45. Tyrone, J.W., Mogford, J.E., Chandler, L.A., Ma, C., Xia, Y., Pierce, G.F. and Mustoe, T.A. (2000) Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model. J Surg Res, 93, 230-236. 46. Doukas, J., Chandler, L.A., Gonzalez, A.M., Gu, D., Hoganson, D.K., Ma, C., Nguyen, T., Printz, M.A., Nesbit, M., Herlyn, M. et al. (2001) Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors. Hum Gene Ther, 12, 783-798. 47. Kyriakides, T.R., Hartzel, T., Huynh, G. and Bornstein, P. (2001) Regulation of angiogenesis and matrix remodeling by localized, matrix-mediated antisense gene delivery. Mol Ther, 3, 842-849. 48. Huang, Y.C., Connell, M., Park, Y., Mooney, D.J. and Rice, K.G. (2003) Fabrication and in vitro testing of polymeric delivery system for condensed DNA. Journal of biomedical materials research, 67, 1384-1392. 49. Segura, T. and Shea, L.D. (2002) Surface-tethered DNA complexes for enhanced gene delivery. Bioconjug Chem, 13, 621-629. 50. Maruyama, A., Ishihara, T., Kim, J.S., Kim, S.W. and Akaike, T. (1997) Nanoparticle DNA carrier with poly(L-lysine) grafted polysaccharide copolymer and poly(D,L-lactic acid). Bioconjug Chem, 8, 735-742. 51. Demeneix, B., Behr, J., Boussif, O., Zanta, M.A., Abdallah, B. and Remy, J. (1998) Gene transfer with lipospermines and polyethylenimines. Adv Drug Deliv Rev, 30, 85-95. 52. Ziauddin, J. and Sabatini, D.M. (2001) Microarrays of cells expressing defined cDNAs. Nature, 411, 107-110. 53. Rakotoarivelo, C., Petite, D., de Weille, J., Lumbroso, S., Privat, A., Sultan, C. and Mersel, M. (2007) Mild surfection of neural cells, especially motoneurons, in primary culture and cell lines. Experimental neurology, 204, 118-130. 54. Papapetrou, E.P., Zoumbos, N.C. and Athanassiadou, A. (2005) Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther, 12 Suppl 1, S118-130. 55. http://www.atcc.org. 56. Gutierrez-Ruiz, M.C. and Gomez-Quiroz, L.E. (2007) Liver fibrosis: searching for cell model answers. Liver Int, 27, 434-439. 57. Vogel, S., Piantedosi, R., Frank, J., Lalazar, A., Rockey, D.C., Friedman, S.L. and Blaner, W.S. (2000) An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res, 41, 882-893. 58. Hsu, Y.C., Chiu, Y.T., Cheng, C.C., Wu, C.F., Lin, Y.L. and Huang, Y.T. (2007) Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. J Gastroenterol Hepatol, 22, 99-111. 59. Gunther, T. (2006) Concentration, compartmentation and metabolic function of intracellular free Mg2+. Magnes Res, 19, 225-236. 60. Igamberdiev, A.U. and Kleczkowski, L.A. (2006) Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. J Exp Bot, 57, 2133-2141. 61. Buchachenko, A.L. and Kuznetsov, D.A. (2006) [Magnesium magnetic isotope effect: a key towards mechanochemistry of phosphorylating enzymes as molecular machines]. Mol Biol (Mosk), 40, 12-19. 62. Mansilla-Olivares, A. (2005) [Signal transduction, pillar of the neurobiological integration of memory. An alternative view to the cholinergic hypothesis]. Gac Med Mex, 141, 513-526. 63. Cherny, D.I. and Jovin, T.M. (2001) Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol, 313, 295-307. 64. Gabrielska, J., Soczynska-Kordala, M. and Przestalski, S. (2005) Antioxidative effect of kaempferol and its equimolar mixture with phenyltin compounds on UV-irradiated liposome membranes. J Agric Food Chem, 53, 76-83. 65. Piskur, J. and Rupprecht, A. (1995) Aggregated DNA in ethanol solution. FEBS Lett, 375, 174-178. 66. Kircheis, R., Kichler, A., Wallner, G., Kursa, M., Ogris, M., Felzmann, T., Buchberger, M. and Wagner, E. (1997) Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther, 4, 409-418. 67. Huang, S.W., Satue-Gracia, M.T., Frankel, E.N. and German, J.B. (1999) Effect of lactoferrin on oxidative stability of corn oil emulsions and liposomes. J Agric Food Chem, 47, 1356-1361. 68. Gabrielska, J. and Oszmianski, J. (2005) Antioxidant activity of anthocyanin glycoside derivatives evaluated by the inhibition of liposome oxidation. Z Naturforsch [C], 60, 399-407. 69. Gabrielska, J., Soczynska-Kordala, M., Hladyszowski, J., Zylka, R., Miskiewicz, J. and Przestalski, S. (2006) Antioxidative effect of quercetin and its equimolar mixtures with phenyltin compounds on liposome membranes. J Agric Food Chem, 54, 7735-7746. 70. Chong, K.W., Lee, A.Y., Koay, E.S., Seet, S.J. and Cheung, N.S. (2006) pH dependent high transfection efficiency of mouse neuroblastomas using TransFectin. J Neurosci Methods, 158, 56-63. 71. Kilk, K., El-Andaloussi, S., Jarver, P., Meikas, A., Valkna, A., Bartfai, T., Kogerman, P., Metsis, M. and Langel, U. (2005) Evaluation of transportan 10 in PEI mediated plasmid delivery assay. J Control Release, 103, 511-523. 72. Choi, J.S., Nam, K., Park, J.Y., Kim, J.B., Lee, J.K. and Park, J.S. (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release, 99, 445-456. 73. Gao, R., McCormick, C.J., Arthur, M.J., Ruddell, R., Oakley, F., Smart, D.E., Murphy, F.R., Harris, M.P. and Mann, D.A. (2002) High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. Liver, 22, 15-22. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28245 | - |
dc.description.abstract | 基因轉殖為研究基因之功能的方法之一,能否高效率轉殖基因且不對細胞造成毒害性,是目前基因轉殖所面臨之挑戰,利用本實驗室研發之界面基因轉殖法 ( surfection ),可有效解決細胞毒性問題,而且,界面基因轉殖能有效遞送三種基因,實驗之操作程序較傳統基因轉殖技術簡單且快速。
本實驗利用正價脂質進行界面基因轉殖之分析研究,實驗操作方法係利用正價脂質塗附之界面,與正價離子與 pEGFP 綠色螢光質體基因之溶液進行混合,並利用 COS-7 細胞進行基因轉殖效率之分析,經一系列不同之正價離子實驗分析發現,濃度 100 mM 之氯化鈉、 10 mM 之氯化鎂與濃度 0.3 mM 之硫酸鋅溶液,利用 2.5×105 數量之 COS-7 細胞,於脂質界面基因轉殖時,具有較高之基因遞送效率,且不產生細胞毒性。此外,本實驗亦設立基因轉殖材料之最佳使用時間,例如:脂質塗附之界面為 2 星期、質體基因與氯化鎂混合溶液為 1 星期、混合溶液界面為 1星期,更進一步,本實驗利用牛血清白蛋白 ( BSA ) ,成功保存乾燥後界面之基因轉殖效力,完成脂質界面基因轉殖快速化之目標。而在脂質界面基因轉殖之應用上,也有諸多突破,本實驗利用脂質界面基因轉殖法,已成功對老鼠骨髓幹細胞、神經細胞與肝臟星狀細胞,進行高效率之基因轉殖。 綜合以上,本實驗成功建立脂質界面基因轉殖之標準操作程序,並依此操作程序對較難轉殖之細胞(例如:幹細胞、神經細胞與肝臟星狀細胞),進行高效率之基因遞送;另一方面,實驗批次材料之最佳使用時間、界面基因轉殖效力之保存方法,本實驗也都建立了系統性的管理,未來可望以脂質界面基因轉殖法為平檯,對細胞進行多功能性基因之遞送,以利訊息傳遞領堿之拓展研究。 | zh_TW |
dc.description.abstract | Transfection is one way to study functions of genes. Current transfection methods are in the face of overcoming challenges to have high transfection efficiency and low cell cytotoxicity. Using surfection can solve the problem of cell cytotoxicty. Besides, surfection protocol is faster and easier than traditional transfection which can deliver three genes effectively in the meanwhile.
We took cationic lipids, DOTAP, for surfection analysis. Lipid surfection protocol is seeding COS-7 cell number 2.5×105/ well onto lipid coating surface soaking with cation and plasmid DNA mixture solution. After serial analysis by lipid surfection with different cation solutions, we found that cation solutions in specific concentration, which is 100 mM NaCl, 10 mM MgCl2 and 0.3 mM ZnSO4, will give better transfection efficiency and low cell cytotoxicity. Besides, we setup preservation deadlines of surfection materials, such as lipid coating surface, mixture solutions, and lipid coating surface with mixture solutions. Their suggested deadlines are 2 week, 1 week and 1 week, respectively. Moreover, we developed instant lipid surfection protocol. Adding 1% BSA solution onto surfection surface will preserve transfection efficacy. There are lots of breakthroughs in lipid surfection application, too. For example, high-efficiency transfection of genes to rat bone marrow stem cells ( rBMSC ) neuron cells, and hepatic stellate cells ( HSC ) is achieved by lipid surfection. In conclusion, we setup the standard operation protocols of lipid surfection ( SOP ). Next, we delivered genes to rBMSC, neuron cells and HSC in a high-efficiency manner by lipid surfection SOP. Furthermore, we established systemic management for deadlines of batch materials and preservation protocols of surfection efficacy. In the future, we may use lipid surfection as a platform to transfect multi-functional genes to cells for signal transduction advanced study. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:03:29Z (GMT). No. of bitstreams: 1 ntu-96-R94442018-1.pdf: 2398421 bytes, checksum: 7735c3ac65e0c68ddc8dcd027ee11ef1 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………i
誌謝……………………………………………………………………ii 中文摘要………………………………………………………………iv 英文摘要………………………………………………………………v 英文縮寫表……………………………………………………………vi 第一章 緒論…………………………………………………………1 第一節 基因之功能研究發展與應用………………………………1 1.1 基因遞送之方式…………………………………………………1 1.2 非病型基因轉殖…………………………………………………2 1.3 物質輔助基因轉殖方法之發展…………………………………3 1.3.1 起源……………………………………………………………3 1.3.2 物質輔助基因轉殖……………………………………………3 1.3.3 聚合物輔助基因轉殖…………………………………………3 1.3.4 附著型聚合物輔助基因轉殖…………………………………5 1.3.5 固著型輔助基因轉殖…………………………………………6 1.4 界面基因轉殖……………………………………………………7 第二節 研究動機與目的……………………………………………8 第二章 實驗材料與方法……………………………………………10 第一節 實驗材料……………………………………………………10 1.1 質體基因…………………………………………………………10 1.2 藥品與材料………………………………………………………10 1.3 細胞株……………………………………………………………11 第二節 實驗方法……………………………………………………12 2.1 細胞培養材料製備………………………………………………12 2.2 細胞培養…………………………………………………………13 2.3 脂質製備…………………………………………………………14 2.4 脂質界面基因轉殖法……………………………………………15 2.5 界面基因轉殖效力分析…………………………………………16 第三章 結果…………………………………………………………17 第一節 脂質界面基因轉殖標準操作程序之建立…………………17 1.1 脂質界面基因轉殖搭配正價離子之最佳使用絛件分析………17 1.2 基因轉殖效率與細胞稠密度之關係分析………………………18 第二節 脂質界面基因轉殖之效力分析……………………………19 2.1 脂質塗佈界面之保存時效分析…………………………………19 2.2 質體基因與氯化鎂混合溶液之效力分析………………………19 2.3 界面脂質與混合溶液之保存時效分析…………………………20 2.4 乾燥後界面之基因轉殖效力分析………………………………20 第三節 脂質界面基因轉殖之應用…………………………………21 3.1 幹細胞之基因轉殖………………………………………………21 3.2 神經細胞之基因轉殖……………………………………………21 3.3 肝臟星狀細胞之基因轉殖………………………………………22 第四章 討論…………………………………………………………23 第一節 脂質界面基因轉殖離子使用量之探討……………………23 第二節 脂質界面基因轉殖之效力探討……………………………27 第三節 脂質界面基因轉殖之應用…………………………………30 第五章 參考文獻……………………………………………………32 第六章 圖表…………………………………………………………38 | |
dc.language.iso | zh-TW | |
dc.title | 脂質界面基因轉殖法之效力分析與應用 | zh_TW |
dc.title | Efficacy analysis and application of lipid surfection | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊榮輝(Rong-Huay Juang),許金玉(Jin-Yu Shiu) | |
dc.subject.keyword | 脂質,界面基因轉殖,轉助基因轉殖,基因轉殖效率,穩定細胞系,氯化鈉,氯化鎂,硫酸鋅,肝臟星狀細胞,神經細胞,幹細胞, | zh_TW |
dc.subject.keyword | lipid,surfection,substrate-mediated transfection,transfection efficiency,stable cell line,sodium chloride,magnesium chloride,zinc sulfate,hepatic stellate cells (HSC),neuron cells,stem cells, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-31 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。