Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28236
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫(Bor-Luen Chiang)
dc.contributor.authorHui-Ping Yuanen
dc.contributor.author袁惠萍zh_TW
dc.date.accessioned2021-06-13T00:03:19Z-
dc.date.available2009-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-30
dc.identifier.citationAndrews B. S., Eisenberg R. A., Theofilopoulos A. N., Izui S., Wilson C. B., McConahey P. J., Murphy E. D., Roths J. B. and Dixon F. J. (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148, 1198-215.
Arbuckle M. R., McClain M. T., Rubertone M. V., Scofield R. H., Dennis G. J., James J. A. and Harley J. B. (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349, 1526-33.
Bai X. F., Li H. L., Shi F. D., Liu J. Q., Xiao B. G., Van der Meide P. H. and Link H. (1998) Complexities of applying nasal tolerance induction as a therapy for ongoing relapsing experimental autoimmune encephalomyelitis (EAE) in DA rats. Clin Exp Immunol 111, 205-10.
Bai X. F. and Link H. (2000) Nasal tolerance induction as a potential means of immunotherapy for autoimmune diseases: implications for clinical medicine. Clin Exp Allergy 30, 1688-96.
Barbey C., Donatelli-Dufour N., Batard P., Corradin G. and Spertini F. (2004) Intranasal treatment with ovalbumin but not the major T cell epitope ovalbumin 323-339 generates interleukin-10 secreting T cells and results in the induction of allergen systemic tolerance. Clin Exp Allergy 34, 654-62.
Battaglia M., Stabilini A., Draghici E., Gregori S., Mocchetti C., Bonifacio E. and Roncarolo M. G. (2006a) Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes 55, 40-9.
Battaglia M., Stabilini A., Draghici E., Migliavacca B., Gregori S., Bonifacio E. and Roncarolo M. G. (2006b) Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 55, 1571-80.
Battaglia M., Stabilini A., Migliavacca B., Horejs-Hoeck J., Kaupper T. and Roncarolo M. G. (2006c) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177, 8338-47.
Battaglia M., Stabilini A. and Roncarolo M. G. (2005) Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743-8.
Bechstein W. O., Dette K., Golling M. and Wullstein C. (2002) [Development of primary malignancies after liver and kidney transplantation and the treatment approach]. Kongressbd Dtsch Ges Chir Kongr 119, 398-404.
Beyersdorf N., Hanke T., Kerkau T. and Hunig T. (2006) CD28 superagonists put a break on autoimmunity by preferentially activating CD4+CD25+ regulatory T cells. Autoimmun Rev 5, 40-5.
Bienenstock J. and McDermott M. R. (2005) Bronchus- and nasal-associated lymphoid tissues. Immunol Rev 206, 22-31.
Busser B. W., Adair B. S., Erikson J. and Laufer T. M. (2003) Activation of diverse repertoires of autoreactive T cells enhances the loss of anti-dsDNA B cell tolerance. J Clin Invest 112, 1361-71.
Coenen J. J., Koenen H. J., van Rijssen E., Hilbrands L. B. and Joosten I. (2006) Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood 107, 1018-23.
Connolly K., Roubinian J. R. and Wofsy D. (1992) Development of murine lupus in CD4-depleted NZB/NZW mice. Sustained inhibition of residual CD4+ T cells is required to suppress autoimmunity. J Immunol 149, 3083-8.
Dahlberg P. E., Schartner J. M., Timmel A. and Seroogy C. M. (2007) Daily subcutaneous injections of peptide induce CD4(+) CD25(+) T regulatory cells. Clin Exp Immunol.
Davidson A. and Keiser H. D. (1997) Diagnosing and Treating the Predominantly Female Problems of Systemic Autoimmune Diseases. Medscape Womens Health 2, 6.
Dickey W. D., van Egmond J. E., Hardgrave K. L., Harley J. B. and Scofield R. H. (1993) Presence of anti-La(SS-B) is associated with binding to the 13-kD carboxyl terminus of 60-kD Ro(SS-A) in systemic lupus erythematosus. J Invest Dermatol 100, 412-6.
Emre S., Bilge I., Sirin A., Kilicaslan I., Nayir A., Oktem F. and Uysal V. (2001) Lupus nephritis in children: prognostic significance of clinicopathological findings. Nephron 87, 118-26.
Esdaile J. M., Joseph L., MacKenzie T., Kashgarian M. and Hayslett J. P. (1993) The pathogenesis and prognosis of lupus nephritis: information from repeat renal biopsy. Semin Arthritis Rheum 23, 135-48.
Evavold B. D. and Allen P. M. (1991) Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 252, 1308-10.
Faurschou M., Starklint H., Halberg P. and Jacobsen S. (2006) Prognostic factors in lupus nephritis: diagnostic and therapeutic delay increases the risk of terminal renal failure. J Rheumatol 33, 1563-9.
Fournel S., Neichel S., Dali H., Farci S., Maillere B., Briand J. P. and Muller S. (2003) CD4+ T cells from (New Zealand Black x New Zealand White)F1 lupus mice and normal mice immunized against apoptotic nucleosomes recognize similar Th cell epitopes in the C terminus of histone H3. J Immunol 171, 636-44.
Fujii T., Iida Y., Yomogida M., Ikeda K., Haga T., Jikumaru Y., Ninami M., Nishimura N., Kodera Y., Inada Y., Shirai T., Hirose S. and Nishimura H. (2006) Genetic control of the spontaneous activation of CD4+ Th cells in systemic lupus erythematosus-prone (NZB x NZW) F1 mice. Genes Immun 7, 647-54.
Fujio K., Okamoto A., Tahara H., Abe M., Jiang Y., Kitamura T., Hirose S. and Yamamoto K. (2004) Nucleosome-specific regulatory T cells engineered by triple gene transfer suppress a systemic autoimmune disease. J Immunol 173, 2118-25.
Hall A. M., Ward F. J., Vickers M. A., Stott L. M., Urbaniak S. J. and Barker R. N. (2002) Interleukin-10-mediated regulatory T-cell responses to epitopes on a human red blood cell autoantigen. Blood 100, 4529-36.
Hsieh S. C., Yu H. S., Lin W. W., Sun K. H., Tsai C. Y., Huang D. F., Tsai Y. Y. and Yu C. L. (2003) Anti-SSB/La is one of the antineutrophil autoantibodies responsible for neutropenia and functional impairment of polymorphonuclear neutrophils in patients with systemic lupus erythematosus. Clin Exp Immunol 131, 506-16.
Hsu W. T., Suen J. L. and Chiang B. L. (2006) The role of CD4CD25 T cells in autoantibody production in murine lupus. Clin Exp Immunol 145, 513-9.
Jonuleit H., Adema G. and Schmitt E. (2003) Immune regulation by regulatory T cells: implications for transplantation. Transpl Immunol 11, 267-76.
Kaliyaperumal A., Mohan C., Wu W. and Datta S. K. (1996) Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med 183, 2459-69.
Kaya Z., Dohmen K. M., Wang Y., Schlichting J., Afanasyeva M., Leuschner F. and Rose N. R. (2002) Cutting edge: a critical role for IL-10 in induction of nasal tolerance in experimental autoimmune myocarditis. J Immunol 168, 1552-6.
Kobayashi S., Kishimoto T., Kamata S., Otsuka M., Miyazaki M. and Ishikura H. (2007) Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 98, 726-33.
Lee J. H., Wang L. C., Lin Y. T., Yang Y. H., Lin D. T. and Chiang B. L. (2006) Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology 117, 280-6.
Li H. L., Liu J. Q., Bai X. F., vn der Meide P. H. and Link H. (1998) Dose-dependent mechanisms relate to nasal tolerance induction and protection against experimental autoimmune encephalomyelitis in Lewis rats. Immunology 94, 431-7.
Michaels M. A., Kang H. K., Kaliyaperumal A., Satyaraj E., Shi Y. and Datta S. K. (2005) A defect in deletion of nucleosome-specific autoimmune T cells in lupus-prone thymus: role of thymic dendritic cells. J Immunol 175, 5857-65.
Misawa A., Hosoi H., Tsuchiya K. and Sugimoto T. (2003) Rapamycin inhibits proliferation of human neuroblastoma cells without suppression of MycN. Int J Cancer 104, 233-7.
Mohan C., Yu Y., Morel L., Yang P. and Wakeland E. K. (1999) Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J Immunol 162, 6492-502.
Mok C. C. and Lau C. S. (2003) Pathogenesis of systemic lupus erythematosus. J Clin Pathol 56, 481-90.
Monneaux F., Hoebeke J., Sordet C., Nonn C., Briand J. P., Maillere B., Sibillia J. and Muller S. (2005) Selective modulation of CD4+ T cells from lupus patients by a promiscuous, protective peptide analog. J Immunol 175, 5839-47.
Mowat A. M., Parker L. A., Beacock-Sharp H., Millington O. R. and Chirdo F. (2004) Oral tolerance: overview and historical perspectives. Ann N Y Acad Sci 1029, 1-8.
Murphy K. M., Heimberger A. B. and Loh D. Y. (1990) Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. In Science, Vol. 250, p. 1720-3.
Nakamura K., Kitani A. and Strober W. (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194, 629-44.
Qu Y., Zhang B., Zhao L., Liu G., Ma H., Rao E., Zeng C. and Zhao Y. (2007) The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl Immunol 17, 153-61.
Radic M., Marion T. and Monestier M. (2004) Nucleosomes are exposed at the cell surface in apoptosis. J Immunol 172, 6692-700.
Robertson J. M., Jensen P. E. and Evavold B. D. (2000) DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323-339 epitope. J Immunol 164, 4706-12.
Rood M. J., Van Der Velde E. A., Ten Cate R., Breedveld F. C. and Huizinga T. W. (1998) Female sex hormones at the onset of systemic lupus erythematosus affect survival. Br J Rheumatol 37, 1008-10.
Scalapino K. J., Tang Q., Bluestone J. A., Bonyhadi M. L. and Daikh D. I. (2006) Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol 177, 1451-9.
Schur P. H. (1995) Genetics of systemic lupus erythematosus. Lupus 4, 425-37.
Segal R., Bermas B. L., Dayan M., Kalush F., Shearer G. M. and Mozes E. (1997) Kinetics of cytokine production in experimental systemic lupus erythematosus: involvement of T helper cell 1/T helper cell 2-type cytokines in disease. J Immunol 158, 3009-16.
Sehgal S. N. (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35, 7S-14S.
Shi F. D., Bai X. F., Li H. L., Huang Y. M., Van der Meide P. H. and Link H. (1998) Nasal tolerance in experimental autoimmune myasthenia gravis (EAMG): induction of protective tolerance in primed animals. Clin Exp Immunol 111, 506-12.
Shi F. D., Li H., Wang H., Bai X., van der Meide P. H., Link H. and Ljunggren H. G. (1999) Mechanisms of nasal tolerance induction in experimental autoimmune myasthenia gravis: identification of regulatory cells. J Immunol 162, 5757-63.
Smith D. M., Fortune-Faulkner E. M. and Spurbeck B. L. (2000) Lupus nephritis: pathophysiology, diagnosis, and collaborative management. Nephrol Nurs J 27, 199-204, 209-11.
Sobel E. S., Mohan C., Morel L., Schiffenbauer J. and Wakeland E. K. (1999) Genetic dissection of SLE pathogenesis: adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells. J Immunol 162, 2415-21.
Strauss L., Whiteside T. L., Knights A., Bergmann C., Knuth A. and Zippelius A. (2007) Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol 178, 320-9.
Strobel S. and Mowat A. M. (1998) Immune responses to dietary antigens: oral tolerance. Immunol Today 19, 173-81.
Stuve O., Youssef S., Weber M. S., Nessler S., von Budingen H. C., Hemmer B., Prod'homme T., Sobel R. A., Steinman L. and Zamvil S. S. (2006) Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 116, 1037-44.
Suen J. L., Chuang Y. H., Tsai B. Y., Yau P. M. and Chiang B. L. (2004) Treatment of murine lupus using nucleosomal T cell epitopes identified by bone marrow-derived dendritic cells. Arthritis Rheum 50, 3250-9.
Suzuki N., Sakane T. and Engleman E. G. (1990) Anti-DNA antibody production by CD5+ and CD5- B cells of patients with systemic lupus erythematosus. J Clin Invest 85, 238-47.
Takato-Kaji R., Totsuka M., Ise W., Nishikawa M., Hachimura S. and Kaminogawa S. (2005) T-cell receptor antagonist modifies cytokine secretion profile of naive CD4+ T cells and their differentiation into type-1 and type-2 helper T cells. Immunol Lett 96, 39-45.
Tan E. M., Cohen A. S., Fries J. F., Masi A. T., McShane D. J., Rothfield N. F., Schaller J. G., Talal N. and Winchester R. J. (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25, 1271-7.
Thornton A. M. (2005) T regulatory cells. Curr Biol 15, R582.
Thorstenson K. M. and Khoruts A. (2001) Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 167, 188-95.
Tzeng T. C., Suen J. L. and Chiang B. L. (2006) Dendritic cells pulsed with apoptotic cells activate self-reactive T-cells of lupus mice both in vitro and in vivo. Rheumatology (Oxford) 45, 1230-7.
Unger W. W., Jansen W., Wolvers D. A., van Halteren A. G., Kraal G. and Samsom J. N. (2003) Nasal tolerance induces antigen-specific CD4+CD25- regulatory T cells that can transfer their regulatory capacity to naive CD4+ T cells. Int Immunol 15, 731-9.
van der Veen R. C. and Stohlman S. A. (1993) Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J Neuroimmunol 48, 213-20.
Velthuis J. H., Mol W. M., Weimar W. and Baan C. C. (2006) CD4+CD25bright+ regulatory T cells can mediate donor nonreactivity in long-term immunosuppressed kidney allograft patients. Am J Transplant 6, 2955-64.
Viallard J. F., Pellegrin J. L., Ranchin V., Schaeverbeke T., Dehais J., Longy-Boursier M., Ragnaud J. M., Leng B. and Moreau J. F. (1999) Th1 (IL-2, interferon-gamma (IFN-gamma)) and Th2 (IL-10, IL-4) cytokine production by peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 115, 189-95.
Wang Y., Afanasyeva M., Hill S. L., Kaya Z. and Rose N. R. (2000) Nasal administration of cardiac myosin suppresses autoimmune myocarditis in mice. J Am Coll Cardiol 36, 1992-9.
Wing K., Suri-Payer E. and Rudin A. (2005) CD4+CD25+-regulatory T cells from mouse to man. Scand J Immunol 62, 1-15.
Winkler B., Hufnagl K., Spittler A., Ploder M., Kallay E., Vrtala S., Valenta R., Kundi M., Renz H. and Wiedermann U. (2006) The role of Foxp3+ T cells in long-term efficacy of prophylactic and therapeutic mucosal tolerance induction in mice. Allergy 61, 173-80.
Wu H. Y., Monsonego A. and Weiner H. L. (2006) The mechanism of nasal tolerance in lupus prone mice is T-cell anergy induced by immature B cells that lack B7 expression. J Autoimmun 26, 116-26.
Wu H. Y. and Staines N. A. (2004) A deficiency of CD4+CD25+ T cells permits the development of spontaneous lupus-like disease in mice, and can be reversed by induction of mucosal tolerance to histone peptide autoantigen. Lupus 13, 192-200.
Xu Z., Duan B., Croker B. P., Wakeland E. K. and Morel L. (2005) Genetic dissection of the murine lupus susceptibility locus Sle2: contributions to increased peritoneal B-1a cells and lupus nephritis map to different loci. J Immunol 175, 936-43.
Ye Y. L., Chuang Y. H. and Chiang B. L. (1996) In vitro and in vivo functional analysis of CD5+ and CD5- B cells of autoimmune NZB x NZW F1 mice. Clin Exp Immunol 106, 253-8.
Zandman-Goddard G. and Shoenfeld Y. (2003) Novel Approaches to Therapy for SLE. Clin Rev Allergy Immunol 25, 105-12.
Zhang D., Fujio K., Jiang Y., Zhao J., Tada N., Sudo K., Tsurui H., Nakamura K., Yamamoto K., Nishimura H., Shira T. and Hirose S. (2004) Dissection of the role of MHC class II A and E genes in autoimmune susceptibility in murine lupus models with intragenic recombination. Proc Natl Acad Sci U S A 101, 13838-43.
Zou L. P., Ma D. H., Levi M., Wahren B., Wei L., Mix E., van der Meide P. H., Link H. and Zhu J. (1999) Antigen-specific immunosuppression: nasal tolerance to P0 protein peptides for the prevention and treatment of experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 94, 109-21.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28236-
dc.description.abstract紅斑性狼瘡是一種系統性的自體免疫疾病,通常在體內可發現多種的抗核抗體。在先前的研究中,以皮內注射之方式將組織蛋白3 (Histone 3)的第111 至130之胜肽片段 (H3111-130)打入紅斑性狼瘡小鼠模式中(NZB × NZW F1),發現這樣的處理對於疾病小鼠具有療效。因此,我實驗的主要目的是研究有關此胜肽片段(H3111-130)之特性及生理之作用。在T 細胞增生實驗,我們發現胜肽片段(H3111-130)無法刺激T 細胞分裂增殖,但是卻可引發介白質素-4 (IL-4)的增加,代表此胜肽片段 (H3111-130)具有T細胞接受體之部份擬化劑 (partial agonist)的特性。此外,將此胜肽片段 (H3111-130)以鼻腔方式投藥至疾病小鼠,在周邊血液中發現可增加調節性T細胞的比例,這個現象與當時老鼠出現較少的自體抗體及蛋白尿情形似乎有關聯性存在,故推論此調節性T細胞在此扮演著重要的角色。在停止投藥後,保護效果無法繼續維持。為了增加調節性T細胞的數目,在TCR基因轉殖小鼠中,我們額外使用了一種免疫抑制藥物rapamycin來測試誘發調節性T細胞產生的能力。由結果發現,rapamycin 可協同卵白蛋白片段(OVA323-339)鼻腔投藥來增加卵白蛋白專一性之調節性T細胞,並且可抑制卵白蛋白專一性抗體產生。由上述結果可得知,狼瘡小鼠以鼻腔給予胜肽可以造成調節性T細胞產生,這屬於造成黏膜耐受性其中機制之一。而我們也由TCR基因轉殖小鼠中驗證rapamycin可增加專一性調節性T細胞。未來我們可以結合鼻腔給予胜肽及rapamycin來增加專一性調節性T細胞,作為將來治療狼瘡之應用。zh_TW
dc.description.abstractSystemic lupus erythematosus is a multiple-organic autoimmune disease characterized by the presence of autoantibodies against various nuclear antigens.Previous studies have suggested that intradermal injection of peptide of histone 3,H3111-130, could induce tolerance and alleviate disease in NZB × NZW F1 (BWF1)mice, which spontaneously develop SLE.In the study, we aimed to examine the role of TCR partial agonist of H3111-130 in vitro, and investigate the effects of delivery of this peptide in the nasal route, which was considered to induce tolerance more efficiently.
Using proliferation assay and ELISA, we found that H3111-130 could not stimulate proliferation of CD4+ T cells but IL-4 production. Therefore, H3111-130,as the partial agonist, would be applied in therapy. Next, nasal H3111-130 inhalation could increase Foxp3+CD4+CD25+ cells, correlated with lower titer of autoantibody and nephritis,suggesting that regulatory T cells play an important role in controlling autoimmunity.However, the therapeutic effects could not sustain after 30 weeks of mice age. In order to induce regulatory T cells, rapamycin was taken to enrich T cells with regulatory function. By intracellular staining, we found that rapamycin could synergistically augment KJ1.26+Foxp3+CD4+ cells after nasal OVA323-339 administration in OVA-TCR transgenic mice. Comparing the level of OVA-specificIgG, combination rapamycin and OVA323-339 could enhance tolerance to immunization with OVA protein.
Mucosal tolerance was induced by Treg cells in BWF1 mice after intranasal delivery of peptides. In addition, we had confirmed that rapamycin could induce antigen-specific Treg cells in TCR transgenic mice. In conclusion, combination rapamycin and H3111-130 could be the better therapy in murine lupus.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:03:19Z (GMT). No. of bitstreams: 1
ntu-96-R94449002-1.pdf: 1016046 bytes, checksum: b6b032d282c6164247a13120f59dd961 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents論文口試委員審定書
致謝…………………………………………………………………………… i
中文摘要……………………………………………………………………… iii
ABSTRACT…………………………………………………………………... iv
CONTENTS…………………………………………………………………... vi
CONTENTS OF FIGURES………………………………………………………. viii
CHAPTER I Introduction …………………………………………………......... 1
1.1 Background …………………………………………………………….......... 2
1.1.1 Systemic lupus erythematosus ………………………………………… 2
1.1.2 The lupus murine model: NZB×NZW F1 mice ………………….......... 6
1.1.3 Histone peptides in SLE ………………………………………….......... 7
1.1.4 Mucosal tolerance ………………………………………………........... 9
1.1.5 Regulatory T cells in mucosal tolerance ……………………………... 10
1.1.6 Regulatory T cells ………………………………………………….… 11 
1.1.7 The OVA-transgenic mice: DO11.10×BALB/c F1 mice ………..….... 12
1.1.8 Rapamycin………………………………………………………..….... 13
1.2 Hypothesis ……………………………………………………………..……..15
1.3 Specific aims ……………………………………………………………….15
1.4 Significance …………………………………………………………...……. 16
CHAPTER II Materials and Methods …………………………………...…….. 17
2.1 Mice ………………………………………………………………….…..…. 18
2.2 Preparation of peptides ………………………………………………………. 18
2.3 Generation of dendrite cells from bone marrow cells culture ……….…….…. 18
2.4 Proliferation assays of epitope mapping ……………………………………... 19
2.5 Cytokine secretion …………………………………………………………..... 20
2.6 Protocol of intranasal tolerance in BWF1 mice …………………………….... 20
2.7 Protocol of intranasal tolerance in DO11.10×BALB/c F1 mice …………....... 23
2.8 Real-time quantitative polymerase chain …………………………………….. 26
2.9 Statistical analysis …………………………………………………………..... 26
CHAPTER III Results ……………………………………………………............ 28
3.1 The role of partial agonist of TCR in H3111-130 ...……………………………... 29
3.2 Intranasal administration of H3111-130 in BWF1 mice ……………………… 31
3.3 Induction of tolerance in DO11.10×BALB/c F1 mice ……………………...... 34
CHAPTER IV Discussion and perspectives………………………....................... 36
Figures ……………………………………………………………………………. 45
References ……………………………………………………………………….… 63
dc.language.isoen
dc.subject胜&#32957zh_TW
dc.subject紅斑性狼瘡zh_TW
dc.subject調節性T細胞zh_TW
dc.subject胜&#32957zh_TW
dc.subject片段zh_TW
dc.subject黏膜耐受性zh_TW
dc.subjectregulatory T cellsen
dc.subjectsystemic lupus erythematosusen
dc.subjectpeptidesen
dc.subjectmucosal toleranceen
dc.subjectpeptidesen
dc.title狼瘡小鼠以鼻腔給予胜肽治療來調節免疫的機制探討zh_TW
dc.titleStudy on the mechanisms of intranasal peptide therapy for immune regulation in murine lupusen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫光蕙,繆希椿
dc.subject.keyword紅斑性狼瘡,胜&#32957,調節性T細胞,胜&#32957,片段,黏膜耐受性,zh_TW
dc.subject.keywordsystemic lupus erythematosus,peptides,regulatory T cells,mucosal tolerance,peptides,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
992.23 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved