請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28205完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文(Chung-wen Lan) | |
| dc.contributor.author | Yu-Cheng Liu | en |
| dc.contributor.author | 劉有晟 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:02:42Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-29 | |
| dc.identifier.citation | [1] J.C.Brice, Crystal Growth Process, Jone Wiley & Sons, Newyork (1986)
[2] E. Monberg, Bridgman and related growth techeniques, In Handbook of Crystal Growth 2a: Basic Techniques;, Hurle, D.T.J. Eds.; North-Holland: Amsterdam, p. 51 (1994) [3] W.A. Tiller, K.A. Jackson, J.W. Rutter and B. Chalmers, The Redistribution of Solute Atoms During the Solidification of Metals, Acta Metall. 1 (1953) 428-437 [4] H.J. Scheel, Accelerated Crucible Rotation: A Novel Stirring Technique in High-temperature Solution Growth, J. Cryst. Growth 13/14 (1972) 560-565 [5] P. Capper, The Role of Accelerated Crucible Rotation in the Growth of Hg1 –xCd xTe and CdTe/CdZnTe, Prog. Cryst. Growth Charact. Mater. 28 (1994) 1-55 [6] P. Capper, J.E. Harris, E. O’Keefe, C.L. Jones, C.K. Ard, P.Mackett and D. Dutton, Bridgman Growth and Assessment of CdTe and CdZnTe Using the Accelerated Crucible Rotation Technique, Mater. Sci. Eng. B 16 (1993) 29-39 [7] A. Horowitz D. Gazit, and J. Makovsky, Bridgman Growth of Rb2MnCl4 VIA Accelerated Crucible Rotation Technique, J. Cryst. Growth 61 (1983) 323-328 [8] P. Capper, J.J.G. Gosney, and C.L. Jones, Application of the Accelerated Crucible Rotation Technique to the Bridgman Growth of CdxHg1− xTe: Simulations and Crystal Growth, J. Cryst. Growth 70 (1984) 356-364 [9] P. Capper, I. G. Gale, F. Grainger, J. A. Roberts, C. L. Jones, J. J. G. Gosney, I. Kenworthy, C. K. Ard and W. G. Coates, Impurity Segregation in CdxHg1-xTe Crystals Grown Using ACRT, J. Cryst. Growth 92 (1988) 1-7 [10] D.H. Kim and R.A. Brown, Models for Convection and Segregation in the Growth of HgCdTe by the Vertical Bridgman Method, J. Cryst. Growth 96 (1989) 609-627 [11] D.H. Kim and R.A. Brown, Modelling of the Dynamics of HgCdTe Growth by the Vertical Bridgman Method, J. Cryst. Growth 114 (1991) 411-434 [12] P.S. Dutta and A.G. Ostrogorsky, Suppression of Cracks in InxGa1−xSb Crystals Through Forced Convection in the Melt, J. Cryst. Growth 194 (1998) 1-7 [13] R.S. Feigelson and E.V. Zharikov, Investigation of the Crystal Growth of Dielectric Materials by the Bridgman Technique Using Vibrational Control, NASA Final Technical Report for # NAG8-1457-06 (2002) [14] W.-S. Liu, M.F. Wolf, D. Elwell, R.S. Feigelson, A New Method for Rapidly Mixing Solutions and Melts During Growth, J. Cryst. Growth 82 (1987) 589-597 [15] Y.-C. Lu, J.-J. Shiau, and R.S. Feigelson, Effect of Vibrational Stirring on the Quality of Bridgman-grown CdTe, J. Cryst. Growth 102 (1990) 807-813 [16] R.C. DeMattei and R.S Feigelson, The Effect of Forced Convection on the Melt Gradient and Growth Rate During the Bridgman and Gradient Freeze Crystal Growth of Silver-doped Lead Bromide, J. Cryst. Growth 128 (1993) 1062-1068 [17] K.T. Zawilski, M. Claudia, C. Custodio, R.C. Demattei, and R.S. Feigelson, Vibroconvective Mixing Applied to Vertical Bridgman Growth, J. Cryst. Growth 258 (2003) 211-222 [18] J. Friedrich, J. Baumgartl, H.-J. Leister, and G. Müller, Experimental and Theoretical Analysis of Convection and Segregation in Vertical Bridgman Growth Under High Gravity on a Centrifuge, J. Cryst. Growth 167 (1996) 45-63 [19] C.W. Lan and C.Y. Tu, Three-dimensional Analysis of Heat Flow, Segregation, and Interface Shape of Gradient-freeze Crystal Growth in a Centrifuge, J. Cryst. Growth 226 (2001) 406-418 [20] D.H. Kim, P.M. Adornato, and R.A. Brown, Effect of Vertical Magnetic Field on Convection and Segregation in Vertical Bridgman Crystal Growth, J. Cryst. Growth 89 (1988) 339-356 [21] M. Yao, A. Chait, A.L. Fripp, and W.J. Debarn, Magnetically Damped Convection and Segregation in Bridgman Growth of PbSnTe, J. Cryst. Growth 173 (1997) 467-480 [22] C.W. Lan, I.F. Lee, and B.C. Yeh, Three-dimensional Analysis of Flow and Segregation in Vertical Bridgman Crystal Growth Under Axial and Transversal Magnetic Fields, J. Cryst. Growth 254 (2003) 503-515 [23] H.J. Scheel, E.O. Schulz-Dubois, Flux Growth of Large Crystals by Accelerated Crucible-rotation Technique, J. Cryst. Growth 8 (1971) 304-306 [24] P. Capper, J.C. Brice, C.L. Jones, W.G. Coates, J.J. G. Gosney, C.K. Ard., I. Kenworthy, Interfaces and Flow Regimes in ACRT Grown CdxHg1−xTe Crystals, J. Cryst. Growth 89 (1988) 171-176 [25] W.G. Coates, P. Capper, C.L. Jones, J.J.G. Gosney, C.K. Ard., I. Kenworthy, A. Clark, Effect of ACRT Rotation Parameters on Bridgman Grown CdxHg1-xTe Crystals, J. Cryst. Growth 94 (1989) 959-966 [26] P. Capper and J.J. Gosney, Method of Growing Crystalline Cadmium Mercury Telluride and Crystalline Cadmium Mercury Telluride Grown by the Method, UK Patent 2098879A (1982) [27] A. Yeckel, J.J. Derby, Effect of Accelerated Crucible Rotation on Melt Composition in High-pressure Vertical Bridgman Growth of Cadmium Zinc Telluride, J. Cryst. Growth 209 (2000) 734-750 [28] A. Yeckel, J.J. Derby, J. Cryst. Buoyancy and Rotation in Small-scale Vertical Bridgman Growth of Cadmium Zinc Telluride Using Accelerated Crucible Rotation, J. Cryst. Growth 233 (2001) 599-608 [29] P. Capper, C. Maxey, C. Butler, M. Grist, J. Price, Bulk growth of cadmium mercury telluride (CMT) using the Bridgman/accelerated crucible rotation technique (ACRT), J. Cryst. Growth 275 (2005) 259-275 [30] X. Liu, W. Jie, Y. Zhou, Numerical Analysis of Cd1−xZnxTe Crystal Growth by the Vvertical Bridgman Mmethod Using the Accelerated Crucible Rotation Technique, J. Cryst. Growth 219 (2000) 22-31 [31] X. Liu, W. Jie, Y. Zhou, Numerical Aanalysis on Hg1−xCdxTe Growth by ACRT-VBM, J. Cryst. Growth 209 (2000) 751-762 [32] C.W. Lan, Flow and Segregation Control by Accelerated Rotation for Vertical Bridgman Growth of Cadmium Zinc Telluride: ACRT versus Vibration, J. Cryst. Growth 274 (2005) 379-386 [33] W.C. Yu, Z.B. Chen, W.T. Hue, B. Roux, T.P. Lyubimova, and C.W. Lan, Reversing Radial Segregation and Suppressing Morphological Instability during Bridgman Crystal Growth by Angular Vvibration, J. Cryst. Growth 271 (2004) 474-480 [34] Y.W. Lee, R. Anauth, and W.N. Gill, Preparation of Ultra-pure Succinonitrile by Countercurrent Distillation for Crystal Growth, Chem. Eng. Comm. 152-153 (1996) 41-52 [35] Y.W. Yang, Observation of morphological instability during directional solidification in a rotational field, Master Thesis, National Taiwan University (2001) [36] W.T. Hsu, Visualization of morphological instability and structure dependent in directional solidification alloy, Master Thesis, National Taiwan University (2003) [37] C.W. Lan and M.C. Liang, Modeling of Dopant Segregation in Vertical Zone-melting Crystal Growth, J. Cryst. Growth 186 (1998) 203-213 [38] W.C. Yu, Z.B. Chen, W.T. Hsu, B. Roux, T.P. Lyubimova, C.W. Lan, Effects of Angular Vibration on the Flow, Segregation, and Interface Morphology in Vertical Bridgman Crystal Growth, Int. J. Heat Mass Transfer 50 (2007) 58-66 [39] R.F. Sekerka, in: P. Hartman (Ed.), Crystal Growth, North-Holland, Amsterdam, (1973) 403. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28205 | - |
| dc.description.abstract | 使用垂直布氏法生長晶體時,晶體中添加物濃度的均勻性相當重要,然而在固化過程中自然對流造成局部偏析嚴重影響晶體添加物的濃度,此為難以避免的情況。加速坩堝旋轉技術 (Accelerated Crucible Rotation Technique, ACRT) 以及角振動技術 (Angular Vibration Technique, AVT) 皆同樣是以加速坩堝旋轉的方式改變垂直布氏法熔湯的流動。在許多文獻當中,對於ACRT同一週期中加速及減速的熔湯流動機制並沒有深入的探討,而AVT 是本實驗室這兩年提出的新方法,並沒有太多的文獻。故本論文中不但會討論琥珀腈(succinonitrile) 在添加輕溶質丙酮(acetone)及重溶質柳酸苯酯(salol)時,垂直固化的界面形態差異,更進一步討論到不同強度的ACRT以及AVT對界面形態的影響。藉由電腦數值模擬的結果來分析比較,不論是界面形狀、熔湯流動方向、濃度分布皆合理地與實驗結果相符。同樣就改善偏析的目的來看,使用ACRT 會增進軸向及徑向熔湯的混合,也造成界面較大的變形,而使用AVT則能夠局部增進徑向溶質的混合,也能得到較平整的界面,在晶體生長的觀點上AVT的優點略多於ACRT。 | zh_TW |
| dc.description.abstract | In vertical Bridgman (VB) crystal growth process, the solute uniformity of obtained crystal is very important but however segregation due to buoyancy force during binary solidification which affects dopant concentration severely is always inevitable. Accelerated crucible rotation technique (ACRT) and angular vibration technique (AVT) are both kind of accelerated crucible rotation, and the purpose of them is to vary melt flow field in during VB crystal growth. In several studies, the mechanism of ACRT in detail is not very clearly addressed, especially the interplay of spin-up and spin-down flow in one ACRT cycle. AVT is a novel method which was proposed and demonstrated by our group in these two years, so there are rare literatures concerning this subject. In this study, both of lighter (acetone) and heavier (salol) solute are added in succinonitrile (SCN) sample to observe how different dopant affects interface morphology during directional solidification. The effect of different intensity ACRT and AVT on interface morphology is also investigated for these two samples. By the implement of numerical simulation, interface morphology, flow intensity and direction, and concentration field give very good agreement with experimental observation. To modify the condition of segregation, ACRT enhances radial and global mixing of solute in the meanwhile and compensates with larger concavity of interface. AVT enhances only radial mixing of solute, and more planar interface can be obtained. In view of crystal growth, comparison of ACRT and AVT results establishes AVT to be superior scheme for VB crystal growth in terms of segregation control and interface morphology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:02:42Z (GMT). No. of bitstreams: 1 ntu-96-R94524077-1.pdf: 37890315 bytes, checksum: 104e1410cbf855a068358bdbb5a4d30f (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Acknowledgement I
Abstract II 中文摘要 III Table of Contents IV Nomenclature VI List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Exordium 1 1.2 Paper review 2 1.2.1 Morphological instability analysis of directional solidification 2 1.2.2 Vertical Bridgman crystal growth with applying external force 4 1.2.3 Accelerated crucible rotation 7 1.3 Motivation 10 Chapter 2 Experimental Setup and procedures 12 2.1 Purification of SCN and associated setups 12 2.1.1 Distillation 12 2.1.2 Zone refining process 14 2.2 Transparent vertical Bridgman system 15 2.3 Experimental procedures 28 Chapter 3 Numerical simulation 19 3.1 Governing equations 19 3.2 Boundary conditions and boundary layer approximation 22 3.2.1 General boundary conditions 22 3.2.2 Simulation of ACRT and AVT 24 Chapter 4 Results and discussion 26 4.1 Effect of solutal convection on interface morphology and segregation 26 4.1.1 Experimental observations 26 4.1.2 Comparison with numerical simulation 28 4.2 Effect of ACRT on interface morphology and segregation 32 4.2.1 Experimental observations 32 4.2.2 Comparison with numerical simulation 34 4.3 Effect of AVT on interface morphology and segregation 44 4.3.1 Experimental observations 44 4.3.2 Comparison with numerical simulation 45 Chapter 5 Conclusion 50 References 52 | |
| dc.language.iso | en | |
| dc.subject | 加速坩堝旋轉 | zh_TW |
| dc.subject | 垂直布氏法 | zh_TW |
| dc.subject | 偏析 | zh_TW |
| dc.subject | 界面 | zh_TW |
| dc.subject | interface morphology | en |
| dc.subject | vertical Bridgman | en |
| dc.subject | segregation | en |
| dc.subject | accelerated crucible rotation | en |
| dc.title | 加速坩堝旋轉對垂直布氏法晶體生長偏析及界面的影響: 可視化實驗及數值模擬 | zh_TW |
| dc.title | Effect of accelerated crucible rotation on segregation and interface morphology for vertical Bridgman crystal growth: visualization and simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張正陽(Jeng-yang Chang),陳志臣(Jyh-chen Chen),高振宏(Chen-hung Kao) | |
| dc.subject.keyword | 垂直布氏法,偏析,加速坩堝旋轉,界面, | zh_TW |
| dc.subject.keyword | vertical Bridgman,segregation,accelerated crucible rotation,interface morphology, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
