Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28165
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賈景山(Jean-San Chia)
dc.contributor.authorShih-Yi Chenen
dc.contributor.author陳詩薏zh_TW
dc.date.accessioned2021-06-13T00:01:58Z-
dc.date.available2017-07-27
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citationAjdic, D., McShan, W. M., McLaughlin, R. E. & other authors (2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci 99, 14434-14439.
Aoki, H., Shiroza, T., Hayakawa, M., Sato, S. & Kuramitsu, H. K. (1986). Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun 53, 587-594.
Baddour, L. M., Christensen, G. D., Lowrance, J. H. & Simpson, W. A. (1989). Pathogenesis of experimental endocarditis. Rev Infect Dis 11, 452-263.
Bancsi, M. J., Veltrop, M. H., Bertina, R. M. & Thompson, J. (1996). Role of phagocytosis in activation of the coagulation system in Streptococcus sanguis endocarditis. Infect Immun 64, 5166-5170.
Barreiro, O., Yanez-Mo, M., Serrador, J. M., Montoya, M. C., Vicente-Manzanares, M., Tejedor, R., Furthmayr, H. & Sanchez-Madrid, F. (2002). Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157, 1233-1245.
Benga, L., Goethe, R., Rohde, M. & Valentin-Weigand, P. (2004). Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol 6, 867-881.
Berman, K. S., Gibbons, R. J. & Nalbandian, J. (1976). Localization of intracellular polysaccharide granules in Streptococcus mitis. Arch Oral Biol 12, 1133-1138.
Berman, K. S. & Gibbons, R. J. (1996). Iodophilic polysaccharide synthesis by human and rodent oral flora. Arch Oral Biol 11, 533-542.
Brown, D. A. & London, E. (1998). Functions of lipid rafts in biological membranes. Ann Rev Cell Dev Biol 14, 111-136.
Carman, C. V. & Springer, T. A. (2004). A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167, 377-388.
Chen, K. & Keaney, J. (2004). Reactive oxygen species-mediated signal transduction in the endothelium. Endothelium 11, 109-121.
Chen, K. C., Zhou, Y., Zhang, W. & Lou, M. F. (2007). Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells. Mol Vis 13, 374-387.
Chia, J. S., Lien, H. T., Hsueh, P. R., Chen, P. M., Sun, A. & Chen, J. Y. (2002). Induction of cytokines by glucosyltransferases of Streptococcus mutans. Clin Diagn Lab Immunol 9, 892-897.
Chomczynski, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156-159.
Clarke, J. K. (1924). On the bacterial factor in the aetiology of dental caries. Br J Exp Pathol 5, 141-149.
Conner, S. D. & Schmid, S. L. (2003). Regulated portals of entry into the cell. Nature 422, 37-44.
Conrad, P. A., Smart, E. J., Ying, Y. S., Anderson, R. G. & Bloom, G. S. (1995). Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J Cell Biol 131, 1421-1433.
Cuschleri, J., Gourlay, D., Garcia, I., Jelacic, S. & Maier, R. V. (2003). Endotoxin-induced endothelial cell proinflammatory phenotypic differentiation requires stress fiber polymerization. Shock 19, 433-439.
Dajani, A. S., Taubert, K. A., Wilson, W. & other authors (1997). Prevention of bacterial endocarditis. Recommendations by the American Heart Association. JAMA 277, 1794-1801.
Dall, L. H. & Herndon, B. L. (1990). Association of cell-adherent glycocalyx and endocarditis production by viridans group streptococci. J Clin Microbiol 28, 1698-1700.
Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. (1995). Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 131, 69-80.
Daneo-Moore, L., Terleckyj, B. & Shockman, G. D. (1975). Analysis of growth rate in sucrose-supplemented cultures of Streptococcus mutans. Infect Immun 12, 1195-1205.
Demuth, D. R., Lammey, M. S., Huck, M., Lally, E. T. & Malamud, D. (1990). Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin. Micro Pathog 9, 199-211.
Drab, M., Verkade, P., Elger, M. & other authors (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449-2452.
Dziewanowska, K., Patti, J. M., Deobald, C. F., Bayles, K. W., Trumble, W. R. & Bohach, G. A. (1999). Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun 67, 4673-4678.
Eugène, E., Hoffmann, I., Pujol, C., Couraud, P. O., Bourdoulous, S. & Nassif, X. (2002). Microvilli-like structures are associated with the internalization of virulent capsulated Neisseria meningitidis into vascular endothelial cells. J Cell Sci 115, 1231-1241.
Faden, H. S. (1974). Letter: Dental procedures and bacteremia. Ann Intern Med 81, 274.
Falnes, P. O. & Sandvig, K. (2000). Penetration of protein toxins into cells. Curr Opin Cell Biol 12, 407-413.
Foster, T. J. & Höök, M. (1998). Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6, 484-488.
Fowler, T., Wann, E. R., Joh, D., Johansson, S., Foster, T. J. & Hook, M. (2000). Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. Eur J Cell Biol 79, 672-679.
Fujiwara, T., Tamesada, M., Bian, Z., Kawabata, S., Kimura, S. & Hamada, S. (1996). Deletion and reintroduction of glucosyltransferase genes of Streptococcus mutans and role of their gene products in sucrose dependent cellular adherence. Micro Pathog 20, 225-233.
Gertzberg, N., Neumann, P., Rizzo, V. & Johnson, A. (2004). NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol 286, L37-L48.
Gold, O. G., Jordan, H. V. & Van Houte, J. (1973). A selective medium for Streptococcus mutans. Arch Oral Biol 18, 1357-1364.
Grassmé, H. U., Ireland, R. M. & van Putten, J. P. (1996). Gonococcal opacity protein promotes bacterial entry-associated rearrangements of the epithelial cell actin cytoskeleton. Infect Immun 64, 1621-1630.
Hamada, S., Mizuno, J., Murayama, Y., Ooshima, Y. & Masuda, N. (1975). Effect of dextranase on the extracellular polysaccharide synthesis of Streptococcus mutans; chemical and scanning electron microscopy studies. Infect Immun 12, 1415-1425.
Hamada, S., Slade, H.D. (1980). Biology, Immunology, and Cariogenicity of Streptococcus mutans. Microbiol Rev 44, 331-384.
Hanada, N. & Kuramitsu, H. K. (1988). Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun 56, 1999-2005.
Hanada, N. & Kuramitsu, H. K. (1989). Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun 57, 2079-2085.
Harvey, H. A., Jennings, M. P., Campbell, C. A., Williams, R. & Apicella, M. A. (2001). Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol Microbiol 42, 659-672.
Henderson, B., Poole, S. & Wilson, M. (1996). Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Micro rev 60, 316-341.
Herzberg, M. C. (1996). Platelet-streptococcal interactions in endocarditis. Crit Rev Oral Biol Med 7, 222-236.
Ito, H. O. (2006). Infective endocarditis and dental procedures: evidence, pathogenesis, and prevention. J Med Invest 53, 189-198.
Jaffe, E. A., Nachman, R. L., Becker, C. G. & Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-2756.
Kitada, K., Inoue, M. & Kitano, M. (1997). Experimental endocarditis induction and platelet aggregation by Streptococcus anginosus, Streptococcus constellatus and Streptococcus intermedius. FEMS Immuno Med Microbiol 19, 25-32.
Kohler, B., Birkhed, D. & Olsson, S. (1995). Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus. Caries Res 29, 402-406.
Lamaze, C., Dujeancourt, A., Baba, T., Lo, C. G., Benmerah, A. & Dautry-Varsat, A. (2001). Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 7, 661-671.
Lamont, R. J., Demuth, D. R., Davis, C. A., Malamud, D. & Rosan, B. (1991). Salivary-agglutinin-mediated adherence of Streptococcus mutans to early plaque bacteria.
Lencer, W. I., Hirst, T. R. & Holmes, R. K. (1999). Membrane traffic and the cellular uptake of cholera toxin. Biochim Biophys Acta 1450, 177-190.
Li, Q., Harraz, M. M., Zhou, W. & other authors (2006). Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol Cell Biol 26, 140-154.
Lisanti, M. P., Scherer, P. E., Tang, Z. & Sargiacomo, M. (1994). Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4, 231-235.
Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353-380.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.
McCormick, J. K., Tripp, T. J., Dunny, G. M. & Schlievert, P. M. (2002). Formation of vegetations during infective endocarditis excludes binding of bacterial-specific host antibodies to Enterococcus faecalis. J Infect Dis 185, 994-997.
McLaughlin, J. O., Coulter, W. A., Coffey, A. & Burden, D. J. (1996). The incidence of bacteremia after orthodontic banding. Am J Orthod Dentofacial Orthop 109, 639-644.
Molinari, G., Rohde, M., Guzmán, C. A. & Chhatwal, G. S. (2000). Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells. Cell Microbiol 2, 145-154.
Moreillon, P. (1999). Endocarditis and endarteritis.Infectious diseases. Harcourt Publishers,London, 2.50.51-52.50.59.
Moreillon, P., Que, Y. A. & Bayer, A. S. (2002). Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am 16, 297-318.
Moreillon, P. & Que, Y. A. (2004). Infective endocarditis. Lancet 363, 139-149.
Muenzner, P., Rohde, M., Kneitz, S. & Hauck, C. R. (2005). CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. J Cell Biol 170, 825-836.
Munro, C. L. & Macrina, F. L. (1993). Sucrose-derived exopolysaccharides of Streptococcus mutans V403 contribute to infectivity in endocarditis. Mol Microbiol 8, 133-142.
Mylonakis, E. & Calderwood, S. B. (2001). Infective endocarditis in adults. N Engl J Med 345, 1318-1330.
Nakano, K., Nomura, R., Nakagawa, I., Hamada, S. & Ooshima, T. (2004). Demonstration of Streptococcus mutans with a cell wall polysaccharide specific to a new serotype, k, in the human oral cavity. J Clin Microbiol 42, 198-202.
Patti, J. M., Allen, B. L., McGavin, M. J. & Höök, M. (1994). MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48, 585-617.
Pelkmans, L., Kartenbeck, J. & Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3, 473-483.
Pelkmans, L. & Helenius, A. (2002). Endocytosis via caveolae. Traffic 3, 311-320.
Pizarro-Cerdá, J. & Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell 124, 715-727.
Porat, N., Apicella, M. A. & Blake, M. S. (1995). Neisseria gonorrhoeae utilizes and enhances the biosynthesis of the asialoglycoprotein receptor expressed on the surface of the hepatic HepG2 cell line. Infect Immun 63, 1498-1506.
Pulliam, L., Dall, L., Inokuchi, S., Wilson, W., Hadley, W. K. & J., M. (1985). Effects of exopolysaccharide production by viridans streptococci on penicillin therapy of experimental endocarditis. J Infect Dis 151, 153-156.
Roberts, G. J., Simmons, N. B., Longhurst, P. & Hewitt, P. B. (1998). Bacteraemia following local anaesthetic injections in children. Br Dent J 185, 295-298.
Rohde, M., Müller, E., Chhatwal, G. S. & Talay, S. R. (2003). Host cell caveolae act as an entry-port for group A streptococci. Cell Microbiol 5, 323-342.
Roy, C. R. & van der Goot, F. G. (2003). Eukaryotic cells and microbial pathogens: a familiar couple take centre stage. Nat Cell Biol 5, 16-19.
Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J. F. & Parton, R. G. (1999). Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1, 98-105.
Russell, M. W. & Lehner, T. (1978). Characterization of antigens extracted from cell and culture fluids of Streptococcus mutans serotype c. Arch Oral Biol 23, 7-15.
Sandvig, K. & van Deurs, B. (1996). Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev 76, 949-966.
Schachtele, C. F., Germaine, G. R. & Harlander, S. K. (1975). Production of elevated levels of dextransucrase by a mutant of Streptococcus mutans. Infect Immun 12, 934-937.
Simons, K. & Ikonen, E. (2000). How cells handle cholesterol. Science 290, 1721-1726.
Singer, S. J. & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720-731.
Sinha, B., Francois, P., Que, Y. A. & other authors (2000). Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun 68, 6871-6878.
Smith, D. J. (2002). Dental caries vaccines:prospects and concerns. Crit Rev Oral Biol Med 13, 335-349.
Takahashi, N., Abbe, K., Takahashi-Abbe, S. & Yamada, T. (1987). Oxygen sensitivity of sugar metabolism and interconversion of pyruvate formate-lyase in intact cells of Streptococcus mutans and Streptococcus sanguis. Infect Immun 55, 652-656.
Takei, K. & Haucke. (2001). Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11, 385-391.
Tart, R. C. & van de Rijn, I. (1991). Analysis of adherence of Streptococcus defectivus and endocarditis-associated streptococci to extracellular matrix. Infect Immun 59, 857-862.
Teneberg, S., Lönnroth, I., Torres López, J. F., Galili, U., Halvarsson, M. O., Angström, J. & Karlsson, K. A. (1996). Molecular mimicry in the recognition of glycosphingolipids by Gal alpha 3 Gal beta 4 GlcNAc beta-binding Clostridium difficile toxin A, human natural anti alpha-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor. Glycobiology 6, 599-609.
Timmerman, M. M., Shao, J. Q. & Apicella, M. A. (2005). Ultrastructural analysis of the pathogenesis of Neisseria gonorrhoeae endometrial infection. Clin Microbiol 7, 627-636.
Trepels, T., Zeiher, A. M. & Fichtlscherer, S. (2006). The endothelium and inflammation. Endothelium 13, 423-429.
Tsumori, H. & Kuramitsu, H. (1997). The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol Immunol 12, 274-280.
Uotsu, N., Nishikawa, A., Watanabe, T., Ohyama, T., Tonozuka, T., Sakano, Y. & Oguma, K. (2006). Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells. Biochim Biophys Acta 1763, 120-128.
Usatyuk, P. V., Romer, L. H., He, D. & other authors (2007). Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin. J Biol Chem [Epub ahead od print].
Ushio-Fukai, M. (2006). Localizing NADPH oxidase-derived ROS. Sci STKE 349, re8.
van Houte, J. (1994). Role of micro-organisms in caries etiology. J Dent Res 73, 672-681.
Veiga, E. & Cossart, P. (2006). The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol 16, 499-504.
Vejrazka, M., Mícek, R. & Stípek, S. (2005). Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim Biophys Acta 1722, 143-147.
Veltrop, M. H., Bancsi, M. J., Bertina, R. M. & Thompson, J. (2000). Role of monocytes in experimental Staphylococcus aureus endocarditis. Infect Immun 68, 4818-4821.
Vignes, S., Fantin, B., Elbim, C., Walker, F., Gougerot-Pocidalo, M. A. & Carbon, C. (1995). Critical influence of timing of administration of granulocyte colony-stimulating factor on antibacterial effect in experimental endocarditis due to Pseudomonas aeruginosa. Antimicrob Agents Chemother 39, 2702-2707.
von Eichel-Streiber, C., Boquet, P., Sauerborn, M. & Thelestam, M. (1996). Large clostridial cytotoxins--a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 4, 375-382.
Whittaker, C. J., Klier, C. M. & Kolenbrander, P. E. (1996). Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50, 513-552.
Wren, B. W., Russell, R. R. & Tabaqchali, S. (1991). Antigenic cross-reactivity and functional inhibition by antibodies to Clostridium difficile toxin A, Streptococcus mutans glucan-binding protein, and a synthetic peptide. Infect Immun 59, 3151-3155.
Wu, T., Yeaman, M. R. & Bayer, A. S. (1994). In vitro resistance to platelet microbicidal protein correlates with endocarditis source among bacteremic staphylococcal and streptococcal isolates. Antimicrob Agents Chemother 3, 729-732.
Yamashita, Y., Bowen, W. H., Burne, R. A. & Kuramitsu, H. K. (1993). Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61, 3811-3817.
Zinner, D. D., Jablon, J. M., Aran, A. P. & Saslaw, M. S. (1965). Experimental caries induced in animals by streptococci of human origin. Proc Soc Exp Biol Med 118, 766-770.
吳淑惠. (2005). 篩選篩選體內表現基因載體的建立與心內膜炎免疫反應之特徵 碩士 國立臺灣大學醫學院口腔生物科學研究所碩士論文.
葉秋月 (2006). 草綠色鏈球菌葡萄糖傳遞酶與內皮細胞的交互作用參與感染性心內膜炎的免疫致病機制. 博士 國立台灣大學醫學院微生物學研究所.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28165-
dc.description.abstract感染性心內膜炎為細菌引起的心血管疾病。草綠色鏈球菌為主要致病菌,其中又以轉糖鏈球菌最常見,且基因已於2002年被完整定序,故本實驗室以轉糖鏈球菌研究心內膜炎的致病機轉。轉糖鏈球菌表面上的葡萄糖傳遞酶GTFC可以引起內皮細胞產生細胞激素IL-6。若以細胞骨架抑制劑cytochalasinD先與內皮細胞培養後,則會降低GTFC刺激內皮細胞產生IL-6。顯示GTFC須進入內皮細胞後才能引起發炎反應。此外,近年研究中指出,內皮細胞能產生較低濃度的活性氧分子造成發炎反應。因此我們假設GTFC必須經由內吞作用進入細胞,活化內皮細胞產生活性氧分子,分泌細胞激素。內吞作用包含Caveolae和Clathrin依賴型路徑,分別使用caveolae抑制劑MbetaCD以及Clathrin抑制劑MDC於內皮細胞刺激實驗中,發現MbetaCD不會使GTFC刺激的IL-6表現量下降,MDC則有部份抑制。螢光染色結果顯示GTFC不會與caveolin-1在同一位置;GTFC 與Clathrin則有重疊聚集的現象,故GTFC進入細胞的方式極有可能是藉由Clathrin依賴型路徑,而非經由caveolae的方式。GTFC和早期內小體標的蛋白EEA1有共同聚集現象,證實GTFC的確能進入內皮細胞內。活性氧分子的產生主要經由NADPH oxidase和eNOS的路徑,分別使用NADPH oxidase抑制劑apocynin及eNOS抑制劑L-NMMA,apocynin會使IL-6的產生下降,但L-NMMA則不會影響。以H2DCFDA螢光試劑偵測活性氧分子強度,證實GTFC會刺激內皮細胞產生活性氧分子,顯示GTFC利用內吞機制進入細胞,活化NADPH oxidase產生活性氧分子。參與GTFC活化內皮細胞產生活性氧分子的訊息路徑可待進一步探討。zh_TW
dc.description.abstractInfective endocarditis is a cardiovascular pathology that is often caused by bacteria.Viridans streptococci are major pathogens and Streptococcus mutans is the only member with its whole genomic sequence completed. Therefore, we focused on the investigation of virulence factors in S. mutans. We have identified previously that S. mutans, glucosyltransferase GTFC, induces endothelial cells activation to produce IL-6 and the activation could be blocked by pre-treatment of endothelial cells with cytochalasinD, a cellular skeleton inhibitor. This finding led us to hypothesize that GTFC may be internalized by endothelial cells to trigger an inflammatory responses through reactive oxygen species. Because, recent studies suggested that low concentrations of ROS in endothelial cells could induce inflammatory responses.Different inhibitors of endocytosis were tested to define whether caveolae- or clathrin-dependent pathway is associated with the internalization of GTFC. A clathrin-dependent inhibitor, MDC inhibited parally the production of IL-6, whereas the caveolae-related inhibitor, MβCD, failed to inhibit the GTFC induced cellular activation. Protein co-localization analysis by immunostaining indicated that GTFC could associate with clathrin but not caveolin-1, a finding correlated with that of inhibition analysis. GTFC could also co-localize with an early endosomal marker EEA1, further suggesting that clathrin-mediated endocytosis might be involved in GTFC internalization. Moreover, intracellular production of ROS, detected by H2DCFDA, was enhanced shortly after GTFC stimulation and ROS production could be inhibited by a NADPH oxidase inhibitor, apocynin, but not by an eNOS inhibitor, L-NMMA. Cellular signaling pathways involved in the GTFC-stimulated ROS production and subsequent activation were discussed.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:01:58Z (GMT). No. of bitstreams: 1
ntu-96-R94450016-1.pdf: 6226506 bytes, checksum: bca2b6ee8e9a489528ec53b1eba1d394 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要---------------------------------------------------------------------------------------------I
英文摘要--------------------------------------------------------------------------------------------II
目錄-------------------------------------------------------------------------------------------------III
圖目錄----------------------------------------------------------------------------------------------VI
附圖目錄------------------------------------------------------------------------------------------VII
第一章 緒論-----------------------------------------------------------------------------------------1
一、人類齟齒致病菌—轉糖鏈球菌(Streptococcus mutans)------------------------------1
二、轉糖鏈球菌造成齟齒之致病機轉-------------------------------------------------------2
三、感染性心內膜炎(Infective Endocarditis, IE)的致病機轉-----------------------------3
1. 定義與分類--------------------------------------------------------------------------3
2. 牙科治療(Dental procedure)與感染性心內膜炎之關係---------------------4
3. 致病機轉(Pathogenesis) ----------------------------------------------------------5
四、轉糖鏈球菌之主要致病因子-葡萄糖傳遞酶----------------------------------------7
五、宿主的防禦機制(Host Defences)--------------------------------------------------------9
六、細菌-宿主的交互關係-----------------------------------------------------------------10
1. 細胞表面的黏附因子------------------------------------------------------------10
2. 細菌黏附造成宿主細胞產生細胞激素---------------------------------------12
3. 細菌內吞作用(Internalization)--------------------------------------------------12
七、活性氧分子(Reactive Oxygen Species, ROS)的產生-------------------------------16
第二章 實驗方法與材料------------------------------------------------------------------------18
1. 葡萄糖傳遞酶(Glucosyltransferase, GTFC)蛋白純化----------------------18
2. 蛋白質濃度測定------------------------------------------------------------------19
3. 人類臍帶靜脈內皮細胞(Human umbilical vein endothelial cell, HUVEC)分離方法--------------------------------------------------------------------------------20
4. 流式細胞儀(Flow Cytometry)分析人類臍帶內皮細胞分離之純度-----21
5. 聚丙烯胺膠體電泳法(SDS-PAGE)--------------------------------------------21
6. 西方點墨法(Western blot) ------------------------------------------------------22
7. 銀染色法(Silver stain) -----------------------------------------------------------22
8. 細胞刺激方法---------------------------------------------------------------------23
9. 酵素連結免疫吸附法(Enzyme linked immuno-absorbed assay, ELISA)23
10. 細胞螢光染色及顯微鏡觀察---------------------------------------------------24
11. 細胞質核分離---------------------------------------------------------------------25
12. 活性氧分子(Reactive Oxygen species, ROS)測定---------------------------25
13. 核糖核酸(RNA)萃取-------------------------------------------------------------26
14. 反轉錄聚合酶連鎖反應(RT-PCR)與聚合酶連鎖反應(PCR)-------------27
第三章 結果---------------------------------------------------------------------------------------29
一、重組蛋白質葡萄糖傳遞酶的純化與人類臍帶靜脈內皮細胞的分析------------29
二、葡萄糖傳遞酶黏附到內皮細胞的能力------------------------------------------------29
三、葡萄糖傳遞酶影響內皮細胞的骨架排列---------------------------------------------30
四、 偵測葡萄糖傳遞酶在內皮細胞中的位置--------------------------------------------31
五、葡萄糖傳遞酶進入細胞的內吞路徑-----------------------------------------------------32
六、葡萄糖傳遞酶刺激內皮細胞產生活性氧分子-----------------------------------------33
第四章 討論---------------------------------------------------------------------------------------36
一、葡萄糖傳遞酶能進入內皮細胞內活化產生IL-6-------------------------------------36
二、葡萄糖傳遞酶趨向以Clathrin依賴型內吞路徑進入細胞--------------------------38
三、葡萄糖傳遞酶可刺激內皮細胞活化產生活性氧分子------------------------------40
第五章 參考文獻---------------------------------------------------------------------------------42

圖目錄
圖一、重組蛋白質葡萄糖傳遞酶純化與人類臍帶靜脈內皮細胞之分析--------------53
圖二、葡萄糖傳遞酶對內皮細胞的黏附作用-----------------------------------------------54
圖三、抑制劑處理對葡萄糖傳遞酶刺激內皮細胞產生IL-6的影響---------------------55
圖四、葡萄糖傳遞酶影響內皮細胞之細胞骨架的排列-----------------------------------56
圖五、偵測葡萄糖傳遞酶在內皮細胞中的位置--------------------------------------------57
圖六、Caveolae標的蛋白caveolin-1之免疫螢光染色分析--------------------------------58
圖七、葡萄糖傳遞酶進入細胞的內吞路徑--------------------------------------------------59
圖八、早期內小體標的蛋白EEA1免疫螢光染色分析-------------------------------------60
圖九、 內吞作用抑制劑對葡萄糖傳遞酶刺激內皮細胞產生細胞激素的影響--------61
圖十、活性氧分子阻斷劑對葡萄糖傳遞酶活化內皮細胞的影響-----------------------62
圖十一、螢光及時影像偵測內皮細胞中活性氧分子的產生-----------------------------63
圖十二、葡萄糖傳遞酶刺激內皮細胞產生活性氧分子之強度--------------------------64
圖十三、抑制劑對葡萄糖傳遞酶刺激內皮細胞產生活性氧分子之結果--------------65

附圖目錄
附圖一、細胞的內吞作用包含吞噬作用(phagocytosis)和胞飲作用(pinocytosis) ----66
附圖二、Clathrin依賴型內吞路徑--------------------------------------------------------------67
附圖三、Caveolin依賴型內吞路徑------------------------------------------------------------68
附圖四、細菌經由宿主細胞的內吞機制進入細胞-----------------------------------------69
附圖五、血小板生長因子(platelet-derived growth factor, PDGF)誘導上皮細胞的活性氧分子生成----------------------------------------------------------------------------------------70
附圖六、內小體中的NADPH oxidase引起活性氧分子生成------------------------------71
dc.language.isozh-TW
dc.title轉糖鏈球菌葡萄糖傳遞酶活化人類臍帶靜脈內皮細胞之機制zh_TW
dc.titleMechanisms of Activation of Human Umbilical Vein
Endothelial Cells by Viridans Streptococcal Glucosyltransferase
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭彥彬,張百恩
dc.subject.keyword轉糖鏈球菌,葡萄糖傳遞&#37238,內皮細胞,內吞作用,活性氧分子,zh_TW
dc.subject.keywordS. mutans,glucosyltransferase,endothelial cells,endocytosis,ROS,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
6.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved