請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28164完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賈景山 | |
| dc.contributor.author | Pei-Lin Chen | en |
| dc.contributor.author | 陳珮琳 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:01:57Z | - |
| dc.date.available | 2017-07-27 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-31 | |
| dc.identifier.citation | Armstrong, M.E., Lavelle, E.C., Loscher, C.E., Lynch, M.A. and Mills, K.H. (2005) Proinflammatory responses in the murine brain after intranasal delivery of cholera toxin: implications for the use of AB toxins as adjuvants in intranasal vaccines. J Infect Dis. 192: 1628-1633.
Arnau, J., Hjerl-Hansen, E. and Israelsen, H. (1997) Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl Microbiol Biotechnol. 48: 331-338. Audouy, S.A., van Roosmalen, M.L., Neef, J., Kanninga, R., Post, E., van Deemter, M., et al (2006) Lactococcus lactis GEM particles displaying pneumococcal antigens induce local and systemic immune responses following intranasal immunization. Vaccine. 24: 5434-5441. Audouy, S.A., van Selm, S., van Roosmalen, M.L., Post, E., Kanninga, R., Neef, J., et al (2007) Development of lactococcal GEM-based pneumococcal vaccines. Vaccine. 25: 2497-2506. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. and Gordon, J.I. (2005) Host-bacterial mutualism in the human intestine. Science. 307: 1915-1920. Banas, J.A. and Vickerman, M.M. (2003) Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med. 14: 89-99. Bateman, A. and Bycroft, M. (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol. 299: 1113-1119. Beagley, K.W., Eldridge, J.H., Kiyono, H., Everson, M.P., Koopman, W.J., Honjo, T. and McGhee, J.R. (1988) Recombinant murine IL-5 induces high rate IgA synthesis in cycling IgA-positive Peyer's patch B cells. J Immunol. 141: 2035-2042. Beagley, K.W., Eldridge, J.H., Lee, F., Kiyono, H., Everson, M.P., Koopman, W.J., et al (1989) Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J Exp Med. 169: 2133-2148. Bermudez-Humaran, L.G., Cortes-Perez, N.G., Le Loir, Y., Alcocer-Gonzalez, J.M., Tamez-Guerra, R.S., de Oca-Luna, R.M. and Langella, P. (2004) An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol. 53: 427-433. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., et al (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731-753. Bosma, T., Kanninga, R., Neef, J., Audouy, S.A., van Roosmalen, M.L., Steen, A., et al (2006) Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl Environ Microbiol. 72: 880-889. Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O.P., Sahl, H. and de Kruijff, B. (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science. 286: 2361-2364. Briere, F., Bridon, J.M., Chevet, D., Souillet, G., Bienvenu, F., Guret, C., et al (1994) Interleukin 10 induces B lymphocytes from IgA-deficient patients to secrete IgA. J Clin Invest. 94: 97-104. Buist, G., Kok, J., Leenhouts, K.J., Dabrowska, M., Venema, G. and Haandrikman, A.J. (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol. 177: 1554-1563. Chatel, J.M., Langella, P., Adel-Patient, K., Commissaire, J., Wal, J.M. and Corthier, G. (2001) Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin Diagn Lab Immunol. 8: 545-551. Chia, J.S., Chang, W.C., Yang, C.S. and Chen, J.Y. (2000) Salivary and serum antibody response to Streptococcus mutans antigens in humans. Oral Microbiol Immunol. 15: 131-138. Chia, J.S., Lee, Y.Y., Huang, P.T. and Chen, J.Y. (2001a) Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR. Infect Immun. 69: 2493-2501. Chia, J.S., Chang, L.Y., Shun, C.T., Chang, Y.Y., Tsay, Y.G. and Chen, J.Y. (2001b) A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans. Infect Immun. 69: 6987-6998. Coffman, R.L., Lebman, D.A. and Shrader, B. (1989) Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J Exp Med. 170: 1039-1044. Davis, S.S. (2001) Nasal vaccines. Adv Drug Deliv Rev. 51: 21-42. de Ruyter, P.G., Kuipers, O.P. and de Vos, W.M. (1996a) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol. 62: 3662-3667. de Ruyter, P.G., Kuipers, O.P., Beerthuyzen, M.M., van Alen-Boerrigter, I. and de Vos, W.M. (1996b) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol. 178: 3434-3439. de Vos, W.M., Kuipers, O.P., van der Meer, J.R. and Siezen, R.J. (1995) Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol. 17: 427-437. Delves-Broughton, J., Blackburn, P., Evans, R.J. and Hugenholtz, J. (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek. 69: 193-202. Dietrich, G., Hess, J., Gentschev, I., Knapp, B., Kaufmann, S.H. and Goebel, W. (2001) From evil to good: a cytolysin in vaccine development. Trends Microbiol. 9: 23-28. Dieye, Y., Usai, S., Clier, F., Gruss, A. and Piard, J.C. (2001) Design of a protein-targeting system for lactic acid bacteria. J Bacteriol. 183: 4157-4166. Dieye, Y., Hoekman, A.J., Clier, F., Juillard, V., Boot, H.J. and Piard, J.C. (2003) Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol. 69: 7281-7288. Drouault, S., Corthier, G., Ehrlich, S.D. and Renault, P. (2000) Expression of the Staphylococcus hyicus lipase in Lactococcus lactis. Appl Environ Microbiol. 66: 588-598. Eko, F.O., Witte, A., Huter, V., Kuen, B., Furst-Ladani, S., Haslberger, A., et al (1999) New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine. 17: 1643-1649. Eldridge, J.H., Staas, J.K., Meulbroek, J.A., Tice, T.R. and Gilley, R.M. (1991) Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun. 59: 2978-2986. Finkelman, F.D., Katona, I.M., Urban, J.F., Jr., Holmes, J., Ohara, J., Tung, A.S., et al (1988) IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 141: 2335-2341. Fuller, R. (1989) Probiotics in man and animals. J Appl Bacteriol. 66: 365-378. Gilbert, C., Robinson, K., Le Page, R.W. and Wells, J.M. (2000) Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect Immun. 68: 3251-3260. Grangette, C., Muller-Alouf, H., Hols, P., Goudercourt, D., Delcour, J., Turneer, M. and Mercenier, A. (2004) Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect Immun. 72: 2731-2737. Hajishengallis, G., Nikolova, E. and Russell, M.W. (1992) Inhibition of Streptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (S-IgA) antibodies to cell surface protein antigen I/II: reversal by IgA1 protease cleavage. Infect Immun. 60: 5057-5064. Hamada, S., Koga, T. and Ooshima, T. (1984) Virulence factors of Streptococcus mutans and dental caries prevention. J Dent Res. 63: 407-411. Hessle, C.C., Andersson, B. and Wold, A.E. (2005) Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine. 30: 311-318. Holmgren, J. and Czerkinsky, C. (2005) Mucosal immunity and vaccines. Nat Med. 11: S45-53. Hutchings, A.B., Helander, A., Silvey, K.J., Chandran, K., Lucas, W.T., Nibert, M.L. and Neutra, M.R. (2004) Secretory immunoglobulin A antibodies against the sigma 1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer's patches. J Virol. 78: 947-957. Izadpanah, A., Dwinell, M.B., Eckmann, L., Varki, N.M. and Kagnoff, M.F. (2001) Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol. 280: G710-719. Kaetzel, C.S., Robinson, J.K., Chintalacharuvu, K.R., Vaerman, J.P. and Lamm, M.E. (1991) The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc Natl Acad Sci U S A. 88: 8796-8800. Kagnoff, M.F. and Eckmann, L. (1997) Epithelial cells as sensors for microbial infection. J Clin Invest. 100: 6-10. Kleerebezem, M., Beerthuyzen, M.M., Vaughan, E.E., de Vos, W.M. and Kuipers, O.P. (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol. 63: 4581-4584. Klijn, N., Weerkamp, A.H. and de Vos, W.M. (1995) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol. 61: 2771-2774. Kozlowski, P.A., Cuuvin, S., Neutra, M.R. and Flanigan, T.P. (1997) Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun. 65: 1387-1394. Kozlowski, P.A., Williams, S.B., Lynch, R.M., Flanigan, T.P., Patterson, R.R., Cu-Uvin, S. and Neutra, M.R. (2002) Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: Influence of the menstrual cycle. J Immunol. 169: 566-574. Kuipers, O.P., de Ruyter, P.G.G.A., Kleerebezem, M. and de Vos, W.M. (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol. 64: 15-21. Kuipers, O.P., Beerthuyzen, M.M., de Ruyter, P.G., Luesink, E.J. and de Vos, W.M. (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem. 270: 27299-27304. Kunisawa, J., Fukuyama, S. and Kiyono, H. (2005) Mucosa-associated lymphoid tissues in the aerodigestive tract: their shared and divergent traits and their importance to the orchestration of the mucosal immune system. Curr Mol Med. 5: 557-572. Kunkel, E.J. and Butcher, E.C. (2003) Plasma-cell homing. Nat Rev Immunol. 3: 822-829. Kurono, Y., Yamamoto, M., Fujihashi, K., Kodama, S., Suzuki, M., Mogi, G., et al (1999) Nasal immunization induces Haemophilus influenzae-specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity. J Infect Dis. 180: 122-132. Lamm, M.E. (1997) Interaction of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol. 51: 311-340. Le Loir, Y., Nouaille, S., Commissaire, J., Bretigny, L., Gruss, A. and Langella, P. (2001) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol. 67: 4119-4127. Lee, M.H., Roussel, Y., Wilks, M. and Tabaqchali, S. (2001) Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine. 19: 3927-3935. Lee, S.Y., Choi, J.H. and Xu, Z. (2003) Microbial cell-surface display. Trends Biotechnol. 21: 45-52. Leenhouts, K., Venema, G. and Kok, J. (1998) A lactococcal pWV01-based integration toolbox for bacteria. Methods Cell Sci. 20: 35-50. Loesche, W.J. (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev. 50: 353-380. Lubitz, W., Witte, A., Eko, F.O., Kamal, M., Jechlinger, W., Brand, E., et al (1999) Extended recombinant bacterial ghost system. J Biotechnol. 73: 261-273. Macdonald, T.T. and Monteleone, G. (2005) Immunity, inflammation, and allergy in the gut. Science. 307: 1920-1925. Mader, H.J., Szostak, M.P., Hensel, A., Lubitz, W. and Haslberger, A.G. (1997) Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine. 15: 195-202. Maguin, E., Prevost, H., Ehrlich, S.D. and Gruss, A. (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol. 178: 931-935. Mannam, P., Jones, K.F. and Geller, B.L. (2004) Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun. 72: 3444-3450. Marcotte, H. and Lavoie, M.C. (1998) Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 62: 71-109. Mattos-Graner, R.O., Jin, S., King, W.F., Chen, T., Smith, D.J. and Duncan, M.J. (2001) Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun. 69: 6931-6941. McIntyre, T.M., Kehry, M.R. and Snapper, C.M. (1995) Novel in vitro model for high-rate IgA class switching. J Immunol. 154: 3156-3161. McNabb, P.C. and Tomasi, T.B. (1981) Host defense mechanisms at mucosal surfaces. Annu Rev Microbiol. 35: 477-496. Medina, E. and Guzman, C.A. (2001) Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine. 19: 1573-1580. Men, Y., Audran, R., Thomasin, C., Eberl, G., Demotz, S., Merkle, H.P., et al (1999) MHC class I- and class II-restricted processing and presentation of microencapsulated antigens. Vaccine. 17: 1047-1056. Mestecky, J. (1987) The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol. 7: 265-276. Mestecky, J. and McGhee, J.R. (1987) Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol. 40: 153-245. Michetti, P., Mahan, M.J., Slauch, J.M., Mekalanos, J.J. and Neutra, M.R. (1992) Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect Immun. 60: 1786-1792. Miettinen, M., Vuopio-Varkila, J. and Varkila, K. (1996) Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect Immun. 64: 5403-5405. Mital, B.K. and Garg, S.K. (1995) Anticarcinogenic, hypocholesterolemic, and antagonistic activities of Lactobacillus acidophilus. Crit Rev Microbiol. 21: 175-214. Miyoshi, A., Poquet, I., Azevedo, V., Commissaire, J., Bermudez-Humaran, L., Domakova, E., et al (2002) Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol. 68: 3141-3146. Mora, J.R., Bono, M.R., Manjunath, N., Weninger, W., Cavanagh, L.L., Rosemblatt, M. and Von Andrian, U.H. (2003) Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature. 424: 88-93. Neutra, M.R. and Kozlowski, P.A. (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 6: 148-158. Neutra, M.R., Mantis, N.J. and Kraehenbuhl, J.P. (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2: 1004-1009. Ng, W.L., Robertson, G.T., Kazmierczak, K.M., Zhao, J., Gilmour, R. and Winkler, M.E. (2003) Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol. 50: 1647-1663. Norton, P.M., Wells, J.M., Brown, H.W., Macpherson, A.M. and Le Page, R.W. (1997) Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C. Vaccine. 15: 616-619. Norton, P.M., Brown, H.W., Wells, J.M., Macpherson, A.M., Wilson, P.W. and Le Page, R.W. (1996) Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol Med Microbiol. 14: 167-177. Pinto, L.H. and Lamb, R.A. (2006) Influenza virus proton channels. Photochem Photobiol Sci. 5: 629-632. Pontes, D.S., Dorella, F.A., Ribeiro, L.A., Miyoshi, A., Le Loir, Y., Gruss, A., et al (2003) Induction of partial protection in mice after oral administration of Lactococcus lactis producing Brucella abortus L7/L12 antigen. J Drug Target. 11: 489-493. Poquet, I., Ehrlich, S.D. and Gruss, A. (1998) An export-specific reporter designed for gram-positive bacteria: application to Lactococcus lactis. J Bacteriol. 180: 1904-1912. Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A. and Gruss, A. (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol. 35: 1042-1051. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. and Medzhitov, R. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 118: 229-241. Randall, L.L. and Hardy, S.J. (1986) Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell. 46: 921-928. Ravn, P., Arnau, J., Madsen, S.M., Vrang, A. and Israelsen, H. (2000) The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis. Gene. 242: 347-356. Reinscheid, D.J., Gottschalk, B., Schubert, A., Eikmanns, B.J. and Chhatwal, G.S. (2001) Identification and molecular analysis of PcsB, a protein required for cell wall separation of group B streptococcus. J Bacteriol. 183: 1175-1183. Renegar, K.B. and Small, P.A., Jr. (1991) Passive transfer of local immunity to influenza virus infection by IgA antibody. J Immunol. 146: 1972-1978. Ribeiro, L.A., Azevedo, V., Le Loir, Y., Oliveira, S.C., Dieye, Y., Piard, J.C., et al (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol. 68: 910-916. Rigden, D.J., Jedrzejas, M.J. and Galperin, M.Y. (2003) Amidase domains from bacterial and phage autolysins define a family of gamma-D,L-glutamate-specific amidohydrolases. Trends Biochem Sci. 28: 230-234. Robinson, K., Chamberlain, L.M., Schofield, K.M., Wells, J.M. and Le Page, R.W. (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol. 15: 653-657. Rousset, F., Garcia, E. and Banchereau, J. (1991) Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J Exp Med. 173: 705-710. Sanders, M.E. (1993) Summary of conclusions from a consensus panel of experts on health attributes of lactic cultures: significance to fluid milk products containing cultures. J Dairy Sci. 76: 1819-1828. Shata, M.T., Stevceva, L., Agwale, S., Lewis, G.K. and Hone, D.M. (2000) Recent advances with recombinant bacterial vaccine vectors. Mol Med Today. 6: 66-71. Shih, S.R., Li, Y.S., Chiou, C.C., Suen, P.C., Lin, T.Y., Chang, L.Y., et al (2000) Expression of capsid [correction of caspid] protein VP1 for use as antigen for the diagnosis of enterovirus 71 infection. J Med Virol. 61: 228-234. Siddons, R.C. and Coates, M.E. (1972) The influence of the intestinal microflora on disaccharidase activities in the chick. Br J Nutr. 27: 101-112. Smith, D.J. and Taubman, M.A. (1996) Experimental immunization of rats with a Streptococcus mutans 59-kilodalton glucan-binding protein protects against dental caries. Infect Immun. 64: 3069-3073. Smith, D.J., King, W.F. and Godiska, R. (2001) Passive transfer of immunoglobulin Y antibody to Streptococcus mutans glucan binding protein B can confer protection against experimental dental caries. Infect Immun. 69: 3135-3142. Smith, D.J., Akita, H., King, W.F. and Taubman, M.A. (1994) Purification and antigenicity of a novel glucan-binding protein of Streptococcus mutans. Infect Immun. 62: 2545-2552. Smith, D.J., King, W.F., Barnes, L.A., Peacock, Z. and Taubman, M.A. (2003) Immunogenicity and protective immunity induced by synthetic peptides associated with putative immunodominant regions of Streptococcus mutans glucan-binding protein B. Infect Immun. 71: 1179-1184. Snapper, C.M. and Paul, W.E. (1987) Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 236: 944-947. Snapper, C.M., McIntyre, T.M., Mandler, R., Pecanha, L.M., Finkelman, F.D., Lees, A. and Mond, J.J. (1992) Induction of IgG3 secretion by interferon gamma: a model for T cell-independent class switching in response to T cell-independent type 2 antigens. J Exp Med. 175: 1367-1371. Staat, R.H., Langley, S.D. and Doyle, R.J. (1980) Streptococcus mutans adherence: presumptive evidence for protein-mediated attachment followed by glucan-dependent cellular accumulation. Infect Immun. 27: 675-681. Steen, A., Buist, G., Leenhouts, K.J., El Khattabi, M., Grijpstra, F., Zomer, A.L., et al (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem. 278: 23874-23881. Steidler, L., Robinson, K., Chamberlain, L., Schofield, K.M., Remaut, E., Le Page, R.W. and Wells, J.M. (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun. 66: 3183-3189. Stevens, T.L., Bossie, A., Sanders, V.M., Fernandez-Botran, R., Coffman, R.L., Mosmann, T.R. and Vitetta, E.S. (1988) Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature. 334: 255-258. van Asseldonk, M., de Vos, W.M. and Simons, G. (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol Gen Genet. 240: 428-434. van der Meer, J.R., Polman, J., Beerthuyzen, M.M., Siezen, R.J., Kuipers, O.P. and De Vos, W.M. (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol. 175: 2578-2588. van Egmond, M., Damen, C.A., van Spriel, A.B., Vidarsson, G., van Garderen, E. and van de Winkel, J.G.J. (2001) IgA and the IgA Fc receptor. Trends Immunol. 22: 205-211. Vos, W.M.d. (1999) Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. International Dairy Journal. 9: 3-10. Wells, J.M., Wilson, P.W., Norton, P.M., Gasson, M.J. and Le Page, R.W. (1993) Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol. 8: 1155-1162. Xin, K.Q., Hoshino, Y., Toda, Y., Igimi, S., Kojima, Y., Jounai, N., et al (2003) Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood. 102: 223-228. Yamashita, Y., Bowen, W.H., Burne, R.A. and Kuramitsu, H.K. (1993) Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun. 61: 3811-3817. Yanagita, M., Hiroi, T., Kitagaki, N., Hamada, S., Ito, H.O., Shimauchi, H., et al (1999) Nasopharyngeal-associated lymphoreticular tissue (NALT) immunity: fimbriae-specific Th1 and Th2 cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production. J Immunol. 162: 3559-3565. Yuki, Y. and Kiyono, H. (2003) New generation of mucosal adjuvants for the induction of protective immunity. Rev Med Virol. 13: 293-310. Zeuthen, L.H., Christensen, H.R. and Frokiaer, H. (2006) Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria. Clin Vaccine Immunol. 13: 365-375. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28164 | - |
| dc.description.abstract | 黏膜免疫系統是身體對抗大多數外來病原體的第一道防線,主要是利用分
泌性的IgA 來防止微生物的附著,也可藉由中和細菌外毒素的作用避免黏膜組織 遭受破壞。藉由黏膜途徑接種能夠引發良好的黏膜及全身性的免疫反應,但是可 溶性抗原本身所能引起的免疫性較弱,因此我們使用一非基因改造且屬GRAS (generally regarded as safe)級的乳酸球菌(Lactococcus lactis),藉由其低免疫原性 及佐劑功能當作抗原攜帶系統,增強局部的免疫反應。首先我們將抗原建構在帶 有nisA 啟動子和訊息胜肽Usp45 的載體中,經由乳酸鏈球菌素的誘導後產生分 泌型的蛋白質,這些分泌型的蛋白藉由羧基端具有與細胞壁胜肽聚醣結合能力的 protein anchor domain 結合到用酸和加熱處裡過的Lactococcus lactis Gram-positive enhancer matrix (GEM) particles 上。實驗中成功的將轉糖鏈球菌 (Streptococcus mutans)的Immunodominant glycoprotein 60 (IDG-60)建構到上述載 體中,分別使用抗IDG-60、protein anchor 和6×His 的抗體執行西方墨點法,發 現不管是細菌體內或是培養液中的IDG-60 重組蛋白質,都可以被這三種抗體辨 認到。進一步,將培養液中的IDG-60 重組蛋白質或純化出的IDG-60 與GEM particles 混合後發現,兩者都可以黏附到GEM particles 上。採用以鼻腔內免疫途 徑給予純化出的IDG-60 或IDG-60 與GEM particles 的混合物的方式接種BALB/c 小鼠,探討其調節小鼠黏膜及全身特異性免疫反應之影響,接種三次後,發現 GEM particles 可增加小鼠鼻咽相關淋巴組織、頸部淋巴結、脾臟與腸繫膜淋巴 結中對IDG-60 特異性分泌細胞激素IL-2、IL-4、IL-10 及IFN-γ的細胞數,特別 是在鼻咽相關淋巴組織的部位,並可顯著提升小鼠專一性抗IDG-60 唾液及糞便 分泌型IgA 及血清IgG 的產量。 | zh_TW |
| dc.description.abstract | Mucosal immune system is the first line of defense against foreign pathogens that prevents adherence of microorganisms and neutralizes bacterial toxins through secretory IgA to maintain the integrity of the mucosal lining. Mucosal immunization can induce both mucosal and systemic immunity. To improve the immunogenecity of soluble antigens, we used generally regarded as safe (GRAS) bacteria, Lactococcus lactis to generate gram-positive enhancer matrix (GEM) particles with adjuvant properties as antigen display and delivery system. Firstly, we successfully constructed the expression system for immunodominant glycoprotein 60 (IDG-60) of Streptococcus mutans, under the control of a nisin-inducible promoter, with the lactococcal Usp45 signal sequence to drive secretion, and a protein anchor to direct surface localization on the GEM particles. Recombinant IDG-60 could be detected in cell lysates or cell-free culture supernatant and secreted IDG-60 could bind to GEM particles. To investigate the adjuvant effect of GEM particles for mucosal and systemic immune responses, mice were immunized intra-nasally with IDG-60 in soluble or GEM-bound form three times at weekly intervals. GEM particles enhanced IDG-60 specific serum antibody responses, including IgG1, IgG2a, IgG2b and IgG3. GEM particles also increased IDG-60 specific IgA levels in saliva and fecal samples. Although IDG-60 specific Th1- and Th2-type cytokine producing cells could be detected in different lymphoid tissues such as NALT, CLN, spleen or MLN, the incorporation of GEM enhanced significantly an increase in the numbers of cytokine producing cells preferentially in NALT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:57Z (GMT). No. of bitstreams: 1 ntu-96-R94445126-1.pdf: 1141012 bytes, checksum: 4cb6c74f31fd7853d75a899a4605fda4 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要............................................... i
英文摘要................................................ii 圖目錄..................................................iii 第一章前言............................................. 1 1 黏膜免疫(Mucosal Immunization) ................................................... 1 2 乳酸球菌黏膜免疫抗原表現及遞送系統(The Antigen Display and Delivery System of L. lactis for Mucosal Immunization)....................................................... 4 2.1 乳酸鏈球菌素調控基因表現系統(Nisin-Controlled Gene Expression System, NICE System) ..................................................................................... 6 2.2 Protein Anchor (PA) ............................................................7 3 免疫優勢蛋白(Immunodominant Glycoprotein-60, IDG-60) .............................. 9 4 實驗目的............................................................................ 10 第二章材料及方法......................................................................11 1 建構IDG-60 表現載體.................................................................11 2 鏈球菌Streptococcus gordonii DL1 轉形法..............................................11 3 鏈球菌質體抽取.......................................................................11 4 L. lactis 勝任細胞之製備............................................................ 12 5 L. lactis 電穿孔法.................................................................. 13 6 L. lactis 質體抽取.................................................................. 13 7 表現IDG-60 重組蛋白質................................................................ 13 8 聚丙烯醯胺膠體電泳法(SDS-PAGE)....................................................... 14 9 西方墨點法(Western blot) ............................................................ 15 10 GEM particles 製備.................................................................. 15 11 IDG-60 重組蛋白質與GEM particles 黏附試驗.......................................... 16 12 IDG-60 蛋白質的純化................................................................ 16 13 純化的IDG-60 蛋白質與GEM particles 黏附試驗....................................... 17 14 動物免疫計畫..................................................................... 18 15 檢體與組織收集.................................................................... 18 16 以ELISA 偵測IDG-60 特異性抗體...................................................... 18 17 以ELISPOT 偵測淋巴組織中IDG-60 特異性分泌細胞激素IL-2、IL-4、IL-10 與IFN-γ 的細胞數...................................................................... 19 第三章實驗結果.................................................................... 21 2 表現分泌型IDG-60 重組蛋白質..................................................... 22 3 分泌型IDG-60 重組蛋白質與GEM particles 黏附試驗.................................. 22 4 純化的IDG-60 蛋白質與GEM particles 黏附試驗...................................... 23 5 鼻腔內途徑免疫小鼠後黏膜及全身性免疫反應........................................... 23 5.1 GEM particles 誘導黏膜抗體反應.................................................... 24 5.2 GEM particles 誘導血清抗體反應.................................................... 24 5.3 淋巴組織中對IDG-60 特異性細胞激素分泌細胞分析.................................... 25 第四章討論............................................................................. 27 1 分泌型重組蛋白質的表現.............................................................. 27 2 純化的IDG-60 蛋白質與GEM particles 黏附試驗.................................... 30 3 鼻腔內途徑免疫小鼠後黏膜及全身性免疫反應......................................... 30 第五章參考文獻.................................................................... 34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分泌型IgA | zh_TW |
| dc.subject | 黏膜免疫 | zh_TW |
| dc.subject | 佐劑 | zh_TW |
| dc.subject | GEM particles | zh_TW |
| dc.subject | 鼻腔內免疫 | zh_TW |
| dc.subject | mucosal immune | en |
| dc.subject | secretory IgA | en |
| dc.subject | intralnasal immunization | en |
| dc.subject | GEM particles | en |
| dc.subject | adjuvant | en |
| dc.title | 以Lactococcus lactis GEM particles作為鼻腔免疫黏膜佐劑之效果 | zh_TW |
| dc.title | Effects of Lactococcus lactis GEM Particles as Mucosal Adjuvant for Intranasal Immunization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 繆希椿,李建國 | |
| dc.subject.keyword | 黏膜免疫,佐劑,GEM particles,鼻腔內免疫,分泌型IgA, | zh_TW |
| dc.subject.keyword | mucosal immune,adjuvant,GEM particles,intralnasal immunization,secretory IgA, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
