請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28158完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | |
| dc.contributor.author | Tsung-Yao Chang | en |
| dc.contributor.author | 張宗堯 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:01:51Z | - |
| dc.date.available | 2017-12-31 | |
| dc.date.copyright | 2007-08-01 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-31 | |
| dc.identifier.citation | [1] Yuh-Shyong Yang; Ude Lu; Hu, B.C.P., ”Prescription Chips”, Circuits and Devices Magazine, IEEE Volume 18, Issue 5, Sep 2002 Page(s): 8 – 16
[2] D Armitage, “Micro spatial light modulator”, US Patent 4,698,602, 1987 [3] K Nagai, PC Appelbaum, TA Davies, LM Kelly, ”Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)”, Microelectronic Engineering, 1986 [4] A Komura, Y Sakano, K Kondo, K Kon, T Sanbei, ” Dry etch process for semiconducotr”, US patent, 5,423,941, 1995 [5] KL Drake, KD Wise, J Farraye, DJ Anderson, BeMent, S.L., “Performance of planar multisite microprobes in recordingextracellular single-unit intracortical activity”, Biomedical Engineering, IEEE Transactions, 1988 [6] AW Duggan, PJ Hope, B Jarrott, HG Schaible, “Release, spread and persistence of immunoreactive neurokinin A in the dorsal horn of the cat following noxious cutaneous stimulation. Studies with antibody microprobes.”, Neuroscience, 1990 [7] JP Smith, “Medical and biological sensors: a technical review”, Sensor Reviews, 2005 [8] J Khandurina, A Guttman, ”Bioanalysis in microfluidic devices”, - J Chromatogr A, 2002 [9] D Erickson, D Li, “Integrated microfluidic devices“ - Analytica Chimica. Acta, 2004 [10] YH Chen, SH Chen, “Analysis of DNA fragments by microchips electrophoresis fabricated on PMMA substrates using a sire-imprinting method”, Electrophoresis, 1999 [11] DC Duffy, JC McDonald, OJA Schueller, “Rapid prototyping of microfluidic systems in poly (dimethysiloxane)”, Analytical Chemistry, 1998 [12] K Hosokawa, T Fujii, I Endo, “Handling of picoliter liquid samples in a poly (dimethylsiloxane)-based microfluidic device”, Analytical Chemistry, 1999 [13] H.A. Stone, A.D. Stroock, and ¬A. Ajdari, “Engineering flows in small devices”, Annual Review of Fluid Mechanics, 2004 [14] J Zenneck, Annalen der Physik, 1907 [15] A sommerfeld, Annalen der Physik, 1909 [16] YY Teng, EA Stern, “Plasma radiation from metal grating surfaces“, Physical Review Letters, 1967 [17] A Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, Zeitshrift Physik A Hahrons and Nuclei, 1968 [18] E Kretchmann, Physics, 1971 [19] H Raether, “Radiative decay of non-radiative surface plasmons excited by light”, Springer Verlag, 1968 [20] LP Lin, LS Huang, CW Lin, CK Lee etc, Determination of binding constant of DNA-binding drug to target DNA by surface plasmon resonance biosensor technology, Current Drug Target-Immune, 2005 [21] HP Chen, CW Lin, CH Lee etc, Surface plasmon resonance resonance device with dielectric mirror for biochemical sensing, Eng, in Medicine and Biology, EMBC, 2004 [22] CW Lin, KP Chen, CN Hsiao etc, Design and fabrication of an alternating dielectric multilayer device for surface plasmon resonance, Sensors and Actuators B, 2006 [23] TY Chang, CH Lin, CN Yang, CW Lin, A hyper-step DNA computing system based on surface plasmon resonance, Proc. SPIE, 2007 [24] JM McDonell, Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition, Curr. Opin. Chem. Biol, 2001 [25] J Homola, Presnet and future of surface plasmon resonance biosensors, Anal. & Bioanal. Chem., 2003 [26] J Homola, SS Yee, G Gauglitz, “Surface plasmon resonance sensors: review”, Sensors and Actuators B, 1999 [27] B Liedberg, C Nylander, I Lundstroem, “Surface plasmon resonance for gas detection and biosensing”, Sensors and Actuators, 1983 [28] C Nylander, B Liedberg, T Lind, “Gas detection by means of surface plasmon resonance”, Sensors and Actuators, 1982 [29] Hun-Yen Lee, Lateral Propagation Surface Plasmon Wave Optimization by Symmetric Dielectric Matching Structure, NTU thesis, 2005 [30] J Homola, SS Yee and G Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B, 1999 [31] H Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, 1988 [32] M.M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces and J. Mateo, Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sensors and Actuators B, 1993 [33] K. Matsubara, S. Kawata and S. Minami, Optical chemical sensor based on surface plasmon measurement. Applied Optics, 1988 [34] B. Liedberg, I. Lundstrom and E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B, 1993 [35] L.M. Zhang and D. Uttamchandani, Optical chemical sensing employing surface plasmon resonance. Electron. Lett., 988 [36] R.C. Jorgenson and S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B, 1993 [37] P.S. Vukusic, G.P. Bryan-Brown and J.R. Sambles, Surface plasmon resonance on grating as novel means for gas sensing. Sensors and Actuators B, 1992 [38] A.A. Kruchinin and Y.G. Vlasov, Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA probe biosensor. Sensors and Actuators B, 1996 [39] S.G. Nelson, K.S. Johnston and S.S Yee, High sensitivity surface plasmon resonance sensor based on phase detection. Sensors and Actuators B,1996 [40] P.I. Nikitin, A.A. Beloglazov, A.V. Kabashin, M.V. Valeiko, V.E. Kochergin, Surface plasmon resonance interferometry for sensor applications. [41] H.E. de Bruijn, B.S.F. Altenburg, R.P.H. Kooyman and J. Greve, Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations. Applied Optics, 1992 [42] R.P.H. Kooyman, H. Kolkman, J. van Gent and J. Greve, Surface plasmon resonance immunosensors: sensitivity considerations. Anal. Chim. Acta, 1988 [43] E.M. Yeatman, Resolution and sensitivity in surface plasmon microscopy and sensing. Biosensors Bioelectron., 1996 [44] J. Homola, On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors and Actuators B, 1997 [45] J Ladd, C Boozer, Q Yu, S Chen, J Homola and S Jiang, “DNA-Directed Protein Immobilization on Mixed Self-Addressed Monolayers via a Streptwvidin Bridge”, Langmuir, 2004 [46] A.A. Kolomenskii, P.D. Gershon and H.A. Schuessler, Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appied. Optics, 1997 [47] T. Chinowsky, L.S. Jung, S.S. Yee, Optimal linear data analysis for surface plasmon resonance biosensors [48] M.G. Moharam and T.K. Gaylord, Rigorous coupled-wave analysis of metallic surface-relief gratings. J. Opt. Soc. Am. A, 1986 [49] B. Liedberg, C. Nylander, I. Lundström, Biosensing with surface plasmon resonance—how it all started, Biosensors Bioelectron., 1995 [50] P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, P. Steinrücke, Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy [51] C. Ronot-Trioli, A. Trouillet, C. Veillas and H. Gagnaire, Monochromatic excitation of surface plasmon resonance in an optical-fibre refractive-index sensor. Sensors and Actuators A, 1996 [52] RP Feynman, RB Leighton, M Sands, There is plenty of room at the bottom, In D. Gilbert, editor, Miniaturization, 1961 [53] L Adleman, Computing with DNA, Scientific American, 1998 [54] L Adleman, Molecular computation of solutions to combinatorial problems, Science, 1994 [55] RJ Lipton, DNA solution of hard computational problems, Science, 1995 [56] RJ Lipton, On the computational power of DNA, Discrete Applied Mathematics, 1996 [57] K Sakamoto, H Gouzu, K Komiya, D Kiga, Molecular computation by DNA hairpin formation, Science, 2000 [58] Q Liu, L Wang etc, DNA computing on surface, Nature, 2000 [59] RS Braich, C Johnson, etc, Solution of a satisfiability problem on a gel-based DNA computer, Revised Papers from the 6th International Workshop, 2000 [60] RS Braich, N Chelyapov, C Johnson etc, Solution of a 20-Variable 3 SAT problem on a DNA computer, Science, 2002 [61] MN Stojanovic, D Stefanovic etc, A dexoyribozyme-based molecular automaton, Nature Biotechnology, 2003 [62] D Boneh, R Lipton, Batching DNA computations, 1995 [63] D Boneh, C Dunworth, R Lipton, Breaking DES using a molecular computer, Proc. A DIMACS Workshop, 1995 [64] WH Grover, RA Mathies, An integrated microfludic processor for single nucleotide polymorphism-based DNA computing, Lab Chip, 2005 [65] Q Ouyang, PD Kaplan, SM Liu etc, DNA solution of the maximal clique problem, Science, 1997 [66] H Yoshida, A Suyma, Solution to 3-SAT by breadth first search, American Mathematical Society, 2000 [67] D Faulhammer, AR Cukras, R Lipton, LF Landweber, Molecular computation: RNA solutions to chess problems. Proc. Natl. Acad. Sci. USA, 2000 [68] T Head, G Rozenberg, RS Bladergroen, RS Breek etc, Computing with DNA by operating on plasmids, Biosystems, 2000 [69] L Wang, JG Hall, M Lu, Q Liu etc, A DNA computing readout operation based on structure-specific cleavage., Natural Biotechnology, 2001 [70] KA Schmidt, CV Rozenberg, Henkel, DNA computing using single-molecule hybridization detection, Nucleic Acids Research, 2004 [71] KP Chen, Optical admittance loci design and chip fabrication of multilayer SPR biosensor device, NTU thesis, 2005 [72] T Xia, J SantaLucia Jr, ME Burkard etc, Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs, Biochemistry, 1998 [73] N Sugmoto, S Nakano etc, Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes, Nucleic Acid Research, Oxford Univ. Press [74] K Nakatani, S Sando, I Saito, Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance, Nature Biotechnology, 2001 [75] J Homola, SS Yee, G Gauglitz, “Surface plasmon resonance sensors: review”, Sensors and Actuators B, 1999 [76] MA Nielsen, IL Chuang,”Quantum computation and quantum information”, Cambridge Press, 2000 [77] KH Brenner, A Huang, N Streibl, “Digital optical computing with symbolic substitution”, Applied Optics, 1986 [78] KY Lee, “Lateral propagation surface plasmon wave by optical symmetric dielectric matching structure”, NTU Thesis, 2005 [79] AC Pease, D Solas, EJ Sullivan, MT Cronin, “Light generated oligonucleotide arrays for rapid DNA sequence analysis”, PNAS, 1994 [80] TR Gingeras, DY Kwoh, GR Davis, “Hybridization properties of immobilized nucleic acids” - Nucleic Acids Res, 1987 [81] David G. Castner, “Chemical Modification on Surfaces”, Volume 4, Springer US, 2002 [82] J Ladd, C Boozer, Q Yu, S Chen, J Homola and S Jiang, “DNA-Directed Protein Immobilization on Mixed Self-Addressed Monolayers via a Streptwvidin Bridge”, Langmuir, 2004 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28158 | - |
| dc.description.abstract | 本研究提出一之微流道生物檢測平台,該平台以表面電漿共振為基礎之可重複使用自動定址生物檢測平台。其特點乃在生物晶片的多個微陣列表面固定化不同序列的單股寡核甘酸,利用核甘酸特有之互補辨識能力做為定址系統之基礎並以此作為探針抓取先以共價鍵結合了抗體和特定核酸序列之分子,又利用雙股寡核甘酸間氫鍵的斷裂與鍵結造成之變性與雜合反應作為重複使用的關鍵。本研究中並且業已分析了濃度10 ng/ml~200 ng/ml的抗體-寡核苷酸分子,其單次反應時間為12分鐘。於實驗中也試驗檢測平台的效率、再現性、專一性以及重覆使用性。實驗結果證明,在通入了2.5 mg/ml小牛血清蛋白後本平台的非特異性鍵結以及Amine吸收所造成之雜訊不及特異性結合分子所造成訊號變動的百分之十。在重覆使用性上,系統在流道中連續實驗十次後所造成訊號遞減的效應仍然十分有限,且縱使每次實驗過後經歷清洗、乾燥、保存的步驟後依然可以確保每片晶片能夠使用六次以上,而每次的實驗可以在數分鐘內完成。
此外,為了具有更快速、大量平行篩檢及微型化之能力,本平台加入了微流道系統之概念,並且結合了一具有八個微流道通道的微流體晶片,這項技術使得本研究所需消耗之樣本量從過300 ul以上降為20 ul即可。此晶片之發展技術乃以常見無塵室製程為基礎進行改良,以實驗室通用之載玻片鈉玻璃為基材,經過清洗、曝光、顯影、蝕刻步驟後與一蒸鍍上多陣列金膜之晶片進行接合。其中,該接合製程有鑑於傳統的玻璃接合技術之費時、高成本且過於複雜等缺點,特開發ㄧ快速接合技術使得整個過程從過去的六個小時縮短到一分鐘內完成,使得該晶片具有容易生產、快速製造及低成本等長處。 為更廣泛的延伸此一平台的應用且引入具有鑑別智能生物晶片之概念,吾人進ㄧ步將DNA運算的想法應用在實驗之中。首先於該研究中將不同表面電漿共振強度的訊號定義成布林無、真值以及假值,而後我們將晶片系統設計成具有解答SAT邏輯問題之計算晶片。目前的實驗中ㄧ個方程式的計算需要花費約一到兩小時的時間,以此已證實此一晶片概念平台之潛力。 | zh_TW |
| dc.description.abstract | We proposed a SPR-based microfluidic diagnostic platform with reusability in room temperature. The fabrication processes of this chip system are firstly to immobilize several sequence ssDNA probes on different gold spots. And then we would use the chip to collect the complementary sequence ssDNA probes that have chemically conjugated to different IgGs by Sulfo-SMPB which can links thiol group labeled on ssDNA and amine group existed on IgG.. After the DNA hybridization, we would inject various antibodies to that can react with immobilized IgGs. The repeatable and auto-addressing abilities are based on annealing and denaturing of the hydrogen bond between dsDNA. In this research, we have analyzed the IgG-ssDNA molecule from the concentration of 10 ng/ml~200 ng/ml. Besides, we also examined the efficiency, reproducibility, specificity and repeatability of this platform. We then proved that the intensity change caused by non-specific binding is about 10 percent after injecting BSA to block the non-specific absorption. Furthermore, results have shown that the fabricated platform can be reused for over 10 times.
DNA computation has shown its feasibility for mathematical and biomedical applications. It would thus allow embedded intelligence for diagnosis, single nucleotide polymorphism (SNP) detection, amplification, encryption and drug delivery etc. However, it still suffers from several practical limitations, which include time-consuming, lack of reusability and miniaturization. In order to further improve current status of DNA computation, we incorporated this platform for the detection on the DNA array chip to solve a 3-clause satisfiability (SAT) problem with 3 variables of x, y and z. Each variable is defined by a 15-nt single strand DNA (ssDNA) which is immobilized on one spot of the gold surface. We further defined SPR reflective intensity changes 0, 0.2 and 2 A.U. caused by changes of molecular weight change on surface as Boolean signals False, True and None, respectively. Moreover, False signal represents a positive hybridization reaction via the hydrogen bond that binds the complementary ssDNA-IgG. And True signal represents the hybridization reaction that binds the complementary ssDNA-IgG-Antigen which can result in a much larger intensity change so that can make sure that we are able to distinguish different Boolean signals by different intensity changes. For a SAT problem of F=(XF∪YT) ∩(XT∪ZF) ∩(YT∪ZT), there are 8 possible answers. Therefore, we established a 3-spot array as a set which is immobilized sequence of x, y and z. After one calculation, we read out the solution of this set and then regenerate it by injecting 0.05 N sodium hydroxide solution.. Comparing to previous DNA computers which required days for a calculation, our proposed computational platform has significantly improved in time efficiency, chip reusability and realtime measurement for feasibility study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:51Z (GMT). No. of bitstreams: 1 ntu-96-R94548014-1.pdf: 4099427 bytes, checksum: d5301790e17e751eadda203da0178dca (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Abstract…………………………………………………………………i Acknowledgement……………………………………………………..iv
Contents……………...…………………………………..……………..v List of Figures..………………………………………………..…….viii Abbreviation and Symbols……………………………………………xii Chapter1 Preface…………………………………………..….……….1 1.1 The Motivation………………………………………………………1 1.2 Overview of the Thesis……………………………………………..3 Chapter2 Introduction of Micro Electro-Mechanical Systems……..6 Chapter3 Surface Plasmon Resonance…………………………….10 3.1 Introduction to Surface Plasmon Resonance………………...…10 3.2 Surface Plasmon Resonance for Biosensing…………………...13 3.3 Commercial SPR Biosensors………………………………...…..14 3.4 Theory of Surface Plasmon Resonance………………….……..19 3.5 Surface Plasmon Coupling and Excitation………………………24 Chapter4 Introduction to DNA Computation…………………..……31 Chapter5 Experimental Design and Fabrication………………..….37 5.1 Procedures of Microfluidic Chip Fabrication…….………………37 5.1.1 Chip Design……………………………………………………..…37 5.1.2 Mask Fabrication………………………………………………….38 5.1.3 Chip Fabrication…………………………………………………..40 5.2 SPR System Setup……………………………………………..….46 5.2.1 Ellipsometer EP3………………………………………..………..47 5.2.2 GWC SPR Imager System……………………………..………..48 5.2.3 Complete Experimental Setup………. ………………………….51 5.3 Chemical Synthesis……………………………………………………52 5.3.1 Surface Attachment…………………………………………….…52 5.3.2 Crosslinking Reaction………………………………………….…55 5.4 Hybridization………………………………………………………..57 5.4.1 Hybridization Calculation of Reaction Time and Melting Temperature ……………………………………………………………..58 5.4.2 Specificity, Reusability and Spacer Effect………………………60 5.5 DNA Computation Procedures……………………………………64 5.6 Extensive Applications…………………………………………….66 5.6.1 Detection of SNP………………………………………………….66 Chapter6 Results and Discussion…………………………………...68 6.1 Results of Chip Fabrication and System Setup…………………68 6.2 About the SPR Curve……………………………………………...73 6.3 Results of Hybridization Evaluation ……………………………..74 6.3.1 Reaction Time……………………………………………………..74 6.3.2 Results of Specificity Evaluation………………………………...75 6.3.3 Reusability…………………………………………………………78 6.3.4 Affection of Spacers………………………………………………81 6.4 Experimental Results of Single Spot Detection…………………83 6.4.1 Angle Variation by Ellipsometer EP3……………………………83 6.4.2 Constant Angle Measurement by GWC………………………...84 6.5 Evaluation of 3-Spot/1-Set Reaction……………………………..85 6.6 Solution of 3-SAT Problem on 3-Spot Array………………….….87 6.7 Results of Other Applications about the Proposed Platform…..92 6.7.1 Detection Results of SNP………………………………………...92 Chapter7 Conclusions………………………………………………..94 Reference……………………………………………………………...96 | |
| dc.language.iso | en | |
| dc.subject | DNA電腦 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 微流體晶片 | zh_TW |
| dc.subject | 生醫檢測 | zh_TW |
| dc.subject | SPR | en |
| dc.subject | DNA computer | en |
| dc.subject | bio-detection | en |
| dc.subject | microfluidic | en |
| dc.title | 可自我定址與重覆使用之表面電漿共振感測平台及其在DNA運算上之相關應用 | zh_TW |
| dc.title | A Self-Addressing SPR Sensing Platform with Reusability and its Applications on DNA Computation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊鎣,林哲信,賴信志,蕭子健 | |
| dc.subject.keyword | 表面電漿共振,微流體晶片,生醫檢測,DNA電腦, | zh_TW |
| dc.subject.keyword | SPR,microfluidic,bio-detection,DNA computer, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
