Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28112
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張明富
dc.contributor.authorLi-Hsin Changen
dc.contributor.author張立欣zh_TW
dc.date.accessioned2021-06-13T00:01:12Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation參 考 文 獻
1. J. S. M. Peiris, Y. Guan and K. Y. Yuen. Severe acute respiratory syndrome. Nature Medicine supplement. Vol.10, s88-97 (2004)
2. N. Lee, D. Hui, A. Wu, P. Chan, P. Cameron, G. M. Joynt, A. Ahuja, M. Y. Yung, C. B. Leung, K. F. To, S. F. Lui, C. C. Szeto, S. Chung and J. J. Sung, A Major Outbreak of Severe Acute Respiratory Syndrome in Hongkong. The New England Journal of Medicine. Vol. 348, 1986-1994 (2003)
3. M. Marra, S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, R. L. Roper. and S. J. M. Jones, The Genome Sequence of the SARS-Associated Coronavirus. Science. Vol. 300, 1399-1404 (2003)
4. J. S. Peiris, S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, V. C. Cheng, K. H. Chan, D. N. Tsang, R. W. Yung, T. K. Ng, and K. Y. Yuen. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. Vol. 361, 1319-1325 (2003)
5. T. Kuiken, R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim , A. E. Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris and A. D. Osterhaus. Newly Discovered Coronavirus as the Primary Cause of Severe Acute Respiratory Syndrome. Lancet. Vol. 362, 263-270 (2003)
6. S. R. Weiss, S. Navas-Martin. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiology and Molecular Biology Reviews. Vol. 69, 635-664 (2005)
7. C. Drosten,, S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine. Vol. 348, 1967-1976 (2003)
8. T. G. Ksiazek, D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin, S. F. Dowell, A. E. Ling, C. D. Humphrey, W. J. Shieh, J. Guarner, C. D. Paddock, P. Rota, B. Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J. Bellini, and L. J. Anderson. A novel coronavirus associated with severe acute respiratory syndrome. The New England Journal of Medicine. Vol.348, 1953-1966 (2003)
9. Y. Guan, , B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, C. L. Cheung, S. W. Luo, P. H. Li, L. J. Zhang, Y. J. Guan, K. M. Butt, K. L. Wong, K. W. Chan, W. Lim, K. F. Shortridge, K. Y. Yuen, J. S. Peiris, and L. L. Poon. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. Vol. 302, 276-278 (2003)
10. S. K. Lau, P. C. Woo, K. S. Li, Y. Huang, H. W. Tsoi, B. H. Wong, S. S. Wong, S. Y. Leung, K. H. Chan, and K. Y. Yuen. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Science of USA. Vol. 102, 14040-14045 (2005)
11. P. A. Rota, M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle, S. Penaranda, B. Bankamp, K. Maher, M. H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J. L. DeRisi, Q. Chen, D. Wang, D. D. Erdman, T. C. T. Peret, C. Burns, T. G. Ksiazek, P. E. Rollon, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Gunther, A. D. M. E. Osterhaus, C. Drosten, M. A. Pallansch, L. J. Anderson and W. J. Bellini, Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. Science. Vol. 300, 1394-1399 (2003)
12. W. K. Leung, K. F. To, P. K. Chan, H. L. Chan, A. K. Wu, N. Lee, K. Y. Yuen, and J. J. Sung. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. Vol. 125, 1011-1017 (2003)
13. K. Stadler, V. Masignani, M. Eickmann, S. Becker, S. Abrignani, H. D. Klenk, and R. Rappuoli. SARS--beginning to understand a new virus. Nature Review Microbiology. Vol. 1, 209-218 (2003)
14. Ziebuhr, J. Molecular biology of severe acute respiratory syndrome coronavirus. Current Opinion in Microbiology. Vol. 7, 412-9 (2004)
15. V. Thiel, K.A Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr, Mechanisms and Enzymes Involved in SARS Coronavirus Genome Expression. Journal of General Virology. Vol.84, 2395-2315 (2003)
16. W. Li , M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. Vol. 426, 450-454 (2003)
17. S. A. Jeffers, S. M. Tusell, L. Gillim-Ross, E. M. Hemmila, J. E. Achenbach, G. J. Babcock, W. D. Thomas, Jr., L. B. Thackray, M. D. Young, R. J. Mason, D. M. Ambrosino, D. E. Wentworth, J. C. Demartini, and K. V. Holmes. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Science of USA. Vol. 101, 15748-15753 (2004)
18. W. Li, C. Zhang, J. Sui, J. H. Kuhn, M. J. Moore, S. Luo, S. K. Wong, I. C. Huang, K. Xu, N. Vasilieva, A. Murakami, Y. He, W. A. Marasco, Y. Guan, H. Choe, and M. Farzan. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. The EMBO Journal. Vol. 24, 1634-1643 (2005)
19. S. K. Wong, W. H. Li, M. J. Moore, H. Choe and M. Farzan, A193-Amino Acid Fragment of the SARS Coronavirus S Protein Efficiently Binds Angiotensin-converting Enzyme 2. The Journal of Biological Chemistry. Vol. 279, 3197-3201 (2004)
20. G. J. Babcock, D. J. Esshaki, W. D. Thomas Jr. and D. M. Ambrosino, Amino Acids 270 to 512 of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Are Required for Interaction with Receptor. Journal of Virology, Vol. 78, 4552-4560 (2004)
21. P. G. Wang, J. Chen, A. H. Zheng, Y. C. Nie, X. L. Shi, W. Wang, G. G. Wang, M. Luo, H. J. Liu, L. Tan, X. J. Song, Z. Wang, X. L. Yin, X. X. Qu, X. J. Wang, T. T. Qing, M. X. Ding and H. K. Deng, Expression Cloning of Functional Receptor used by SARS Coronavirus. Biochemical and Biophysical Research Communications, Vol. 315, 439-444 (2004)
22. J. H. Sui, W. Li, A. Murakami, A. Tamin, L. J.Matthews, S. K. Wong, M. J. Moore, A. S. Tallarico, M. Olurinde, H. Choe, L. J. Anderson, W. J. Bellini, M. Farzan and W. A. Marasco, Potent Neutralization of Severe Acute Respiratory Syndrome (SARS) Coronavirus by a Human mAb to S1 Protein that Blocks Receptor Association. Proceedings of the National Academy of Science of USA, Vol. 101, 2536-2541 (2004)
23. Z. Y. Yang, W. P. Kong, Y. Huang, A. Roberts, B. R. Murphy, K. Subbarao, and G. J. Nabel. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature Vol. 428, 561-564 (2004)
24. W. T. Ying, Y. W. Hao, Y. J. Zhang, W. M. Peng, E. Qin, Y. Cai, K. H. Wei, J. W. Wang, G. H. Chang, W. Sun, S. J. Dai, X. H. Li, Y. P. Zhu, J. Q. Li, S. F. Wu, L. H. Guo, J. Q. Dai, J. L. Wang, P. Wan, T. G. Chen, C. J. Du, D. Li, J. Wan, X. Z. Kuai, W. H. Li, R. Shi, H. D. Wei, C. Cao, M. Yu, H. Liu, F. T. Dong, D. G. Wang, X. M. Zhang, X. H. Qian, Q. Y. Zhu and F. C. He, Proteomic Analysis on Structural Proteins of Severe Acute Respiratory Syndrome Coronavirus. Proteomics, Vol. 4, 492-504 (2004)
25. S. An, C. J. Chen, X. Yu, J. L. Leibowitz, and S. Makino. Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. Journal of Virology, Vol. 73, 7853-7859 (1999)
26. E. Mortola, P. Roy, Efficient assembly and release of SARS Coronavirus-like particles by a heterologous epression system. FEBS Letters, Vol. 576, 174-178 (2004)
27. R. He, A. Leeson, M. Ballantine, A. Andonov, L. Baker, F. Dobie, Y. Li, N. Bastien, H. Feldmann, U. Strocher, S. Theriault, T. Cutts, J. Cao, T. F. Booth, F. A. Plummer, S. Tyler, and X. Li. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Research, Vol. 105, 121-125 (2004)
28. P. K. Hsieh, S. C. Chang, C. C. Huang, T. T. Lee, C. W. Hsiao, Y. H. Kou, I. Y. Chen, C. K. Chang, T. H. Huang, and M. F. Chang. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. Journal of Virology, Vol. 79, 13848-13855 (2005)
29. M. Surjit, B. Liu, S. Jameel, V. T. Chow, and S. K. Lal. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochemical Journal, Vol. 383, 13-8 (2004)
30. R. He, A. Leeson, A. Andonov, Y. Li, N. Bastien, J. Cao, C. Osiowy, F. Dobie, T. Cutts, M. Ballantine, and X. Li. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, Vol. 311, 870-876 (2003)
31. C. Luo, H. Luo, S. Zheng, C. Gui, L. Yue, C. Yu, T. Sun, P. He, J. Chen, J. Shen, X. Luo, Y. Li, H. Liu, D. Bai, J. Shen, Y. Yang, F. Li, J. Zuo, R. Hilgenfeld, G. Pei, K. Chen, X. Shen, and H. Jiang. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochemical and Biophysical Research Communications, Vol. 321, 557-565 (2004)
32. M. Surjit, B. Liu, V. T. Chow, and S. K. Lal. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. The Journal of Biological Chemistry. Vol. 281, 10669-10681 (2006)
33. B. Yount, R. S. Roberts, A. C. Sims, D. Deming, M. B. Frieman, J. Sparks, M. R. Denison, N. Davis, and R. S. Baric. Severe Acute Respiratory Syndrome Coronavirus Group-Specific Open Reading Frames Encode Nonessential Functions for Replication in Cell Cultures and Mice. Journal of Virology, Vol. 79, 14909-14922 (2005)
34. C. J. Yu, Y. C. Chen, C. H. Hsiao, T. C. Kuo, S. C. Chang, C. Y. Lu, W. C. Wei, C. H. Lee, L. M. Huang, M. F. Chang, H. N. Ho, F. J. and F. J. S. Lee, Identification of a Novel Protein 3a from Severe Acute Respiratory Syndrome Coronavirus. Federation of European Biochemical Societies, Vol. 565, 111-116 (2004)
35. Y. J. Tan, E. Teng, S. Shen, T. H. P. Tan, P. Y. Goh, B. C. Fielding, E. E. Ooi, H. C. Tan, S. G. Lim, and W. Hong, A novel SARS Coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. Journal of Virology, Vol. 78, 6723-6734 (2004)
36. R. Zeng, R. F. Yang, M. D. Shi, M. R. Jiang, Y. H. Xie, H. Q. Ruan, X. S. Jiang, L. Shi, H. Zhou, L. Zhang, X. D. Wu, Y. Lin, Y. Y. Ji, L. Xiong, Y. Jin, E. H. Dai, X. Y. Wang, S. B. Yi, J. Wang, H. X. Wang, C. E. Wang, Y. H. Gan, Y. C. Li, J. T. Cao, J. P. Zuo, S. F. Shan, E. Xie, S. H. Chen, Z. Q. Jiang, X. Zhang, Y. Wang, G. Pei, B. Sun, and J. R. Wu. Characterization of 3a protein of SARS-associated Coronavirus in infected Vero E6 cells and SARS patients. Journal of Molecular Biology, Vol. 341, 271-279 (2004)
37. S. Shen, P. S. Lin, Y. C. Chao, A. Zhang, X. Yang, S. G. Lim, W. Hong, and Y. J. Tan. The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochemical and Biophysical Research Communications, Vol. 330, 286-292 (2005)
38. P. T. W. Law, C. H. Wong, T. C. C. Au, C. P. Chuck, S. K. Kong, P. K. S. Chan, K. F. To, A. W. I. Lo, J. Y. W. Chan, Y. K. Suen, H. Y. E. Chan, K. P. Fung, M. M. Y. Waye, J. J. Y. Sung, Y. M. D. Lo, and S. K. W. Tsui, The 3a protein of severe acute respiratory syndrome-associated Coronavirus induces apoptosis in Vero E6 cells. Journal of General Virology, Vol. 86, 1921-1930 (2005)
39. B. C. Fielding, Y. J. Tan, S. Shuo, T. H. Tan, E. E. Ooi, S. G. Lim, W. Hong, and P. Y. Goh. Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. Journal of Virology, Vol. 78, 7311-7318 (2004)
40. W. Lu, B. J. Zheng, K. Xu, W. Schwarz, C. K. Wong, J. Chen, S. Duan, V. Deubel, B. Sun. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proceedings of the National Academy of Science of USA, Vol. 103, 12540-12545 (2006)
41. B. C. Fielding, V. Gunalan, T. H. P. Tan, C. F. Chou, S. Shen, S. Khan, S. G. Lim, W Hong, and Y. J. Tan. Severe acute respiratory syndrome Coronavirus protein 7a interacts with hSGT. Biochemical and Biophysical Research Communications, Vol. 343, 1201-1208 (2006)
42. C. Huang, N. Ito, C. T. K. Tseng, and S Makino. Severe acute respiratory syndrome Coronavirus 7a accessory protein is a viral structural protein. Journal of Virology, Vol. 80, 7287-7294 (2006)
43. Y. J. Tan, B. C. Fielding, P. Y. Goh, S. Shen, T. H. Tan, S. G. Lim, and W. Hong. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. Journal of Virology, Vol. 78, 14043-14047 (2004)
44. C. T. Kemg, Y. W. Choi, M. R. A. Welkers, D. Z. L. Chan, S. Shen, S. G. Lim, W Hong, and Y. J. Tan. The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV ad down-regulates the expression of the envelope protein in infected cells. Virology, Vol. 354, 132-142 (2006)
45. P. Y. P. Law, Y. M. Liu, H. Geng, K. H. Kwan, M M. Y. Waye, and Y. Y. Ho. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Letters, Vol. 590, 3643-3648 (2006)
46. C. M. Jonassen, T. O. Jonassen, and B. Grinde. A common RNA motif in the 3' end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. Journal of General Virology, Vol. 79 ( Pt 4), 715-718 (1998)
47. Z. Qinfen, C. Jinming, H. Xiaojun, Z. Huanying, H. Jicheng, F. Ling, L. Kunpeng, and Z. Jingqiang. The life cycle of SARS coronavirus in Vero E6 cells. Journal of Medical Virology, Vol. 73, 332-337 (2004)
48. C. A. Nelson, A. Pekosz, C. A. Lee, M. S. Diamond, and D. H. Fremont. Structure and intracellular targeting of the SARS-Coronavirus Orf7a accessory protein. Structure. Vol. 13, 75-85 (2005)
49. S. A. K. Bromberg, L. M. Sobrido, and P. Palese. 7a protein of severe acute respiratory syndrome coronavirus inhibiys cellular protein synthesis and activates p38 mitogen-activated protein kinase. Journal of Virology, Vol. 80, 785-793 (2006)
50. X. Yuan, J. Wu, Y. Shan, Z. Yao, B. Dong, B. Chen, Z. Zhao, S. Wang, J. Chen, and Y. Cong. SARS coronavirus 7a protein blocks cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology, Vol. 346, 74-85 (2006)
51. Y. X. Tan, T. H. P. Tan, M. J. R. Lee, P. Y. Tham, V. Gunalan, J. Druce, C. Birch, M. Catton, N. Y. Fu, V. C. Yu, and Y. J. Tan. The induction of apoptosis by the severe acute respiratory syndrome (SARS)-coronavirus 7a protein is dependent on its interaction with the BcL-XL protein. Journal of Virology, Vol. 81, 6346-6355 (2006)
52. N. Kanzawa, K. anishigaki, T. Hayashi, Y. Ishii, S. Furukawa, A. Niiro, F. Yasui, M. Kohara, K. Morita, K. Matsushima, M. Q. Le, T. Masuda, M. Kannagi. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-κB activation. FEBS Letters, Vol. 580, 6807-6812 (2006)
53. S. F. Ryter, J. Alam, and A. M. K. Choi. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews. Vol. 86, 583-650 (2006)
54. R. Tenhunen , H. S. Marver, and R. Schmid. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proceedings of the National Academy of Science of USA, Vol. 61, 748–755 (1968)
55. R. Tenhunen, H. Marver, and R. Schmid. Microsomal heme oxygenase, characterization of the enzyme. The Journal of Biological Chemistry. Vol. 244: 6388–6394 (1969)
56. L. Lad, D.J. Schuller, H. Shimizu, J. Friedman, H. Li, P. R. Ortiz de Montellano, and T. L. Poulos. Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. The Journal of Biological Chemistry. Vol. 278, 7834–7843 (2003)
57. S. Shibahara, R. M. Muller, H. Taguchi, and T. Yoshida. Cloning
and expression of cDNA for rat heme oxygenase. Proceedings of the National Academy of Science of USA, Vol. 82, 7865–7869 (1985)
58. H. P. Kim, X. Wang, F. Galbiati, S. W. Ryter, and A. M. K. Choi. Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB Journal, Vol, 18, 1080–1089 (2004)
59. S. Immenschuh and G. Ramadori. Gene regulation of heme oxygenase-1 as a therapeutic target. Biochemical Pharmacology, Vol. 60, 1121–1128 (2000)
60. F. A. D. T. G. Wagener, H. D. Volk, D. Willis, N. G. Abraham, M. P. Soares, G. J. Adema, and C. G. Figdor. Different faces of the heme-heme oxygenase system in inflammation. Pharmacological Reviews, Vol. 55, 551-571 (2003)
61. R. S. Eisenstein, D. Garcia-Mayol, W. Pettingell, and H. N. Munro. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts
by different forms of iron. Proceedings of the National Academy of Science of USA, Vol. 88, 688–692 (1991)
62. G. Balla, H. S. Jacob, J. Balla, M. Rosenberg, K. Nath, F. Apple,
J. W. Eaton, and G. M. Vercellotti. Ferritin: a cytoprotective stratagem of endothelium. The Journal of Biological Chemistry. Vol. 267, 18148–18153 (1992)
63. J. Kapitulnik. Bilirubin: an endogenous product of heme degradation
with both cytotoxic and cytoprotective properties. Molecular Pharmacology, Vol. 66, 773–779 (2004)
64. R. Stocker, Y. Yamamoto, A. McDonagh, A. Glazer, and B. N. Ames. Bilirubin is an antioxidant of possible physiological importance.
Science Vol. 235, 1043–1045 (1987)
65. R. Stocker and E. Peterhans. Antioxidant properties of conjugated
bilirubin and biliverdin: biologically relevant scavenging of
hypochlorous acid. Free Radical Research Communication, Vol. 6, 57–66 (1989)
66. T. Morita, M. A. Perrella, M. E. Lee, and S. Kourembanas. Smooth
muscle cell-derived carbon monoxide is a regulator of vascular
cGMP. Proceedings of the National Academy of Science of USA, Vol. 92, 1475–1479 (1995)
67. R. F. Furchgott and D. Jothianandan. Endothelium-dependent and
-independent vasodilation involving cyclic GMP: relaxation induced
by nitric oxide, carbon monoxide and light. Blood Vessels, Vol. 28,
52–61 (1991)
68. S. Ryter and L. Otterbein. Carbon monoxide in biology and medicine. Bioessays, Vol. 26, 270–280 (2004)
69. S. Brouard, L. E. Otterbein, J. Anrather, E. Tobiasch, F. H. Bach,
A. M. Choi, and M. P. Soares. Carbon monoxide generated by heme
oxygenase-1 suppresses endothelial cell apoptosis. Journal of Experimental Medicine, Vol. 192, 1015–1026 (2000)
70. T. Morita, S. A. Mitsialis, H. Koike, Y. Liu, and S. Kourembanas.
Carbon monoxide controls the proliferation of hypoxic vascular
smooth muscle cells. The Journal of Biological Chemistry. Vol. 272, 32804–32809 (1997)
71. L. E. Otterbein, F. H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R. J. Davis, R. A. Flavell, and A. M. Choi. Carbon monoxide has
anti-inflammatory effects involving the mitogen-activated protein
kinase pathway. Nature Medicine, Vol. 6, 422–428 (2000)
72. D. Morse, S. E. Pischke, Z. Zhou, R. J. Davis, R. A. Flavell, T. Loop, S. L. Otterbein, L. E. Otterbein, and A. M. Choi. Suppression of
inflammatory cytokine production by carbon monoxide involves
the JNK pathway and AP-1. The Journal of Biological Chemistry. Vol. 278, 36993–36998 (2003)
73. C. Taille, J. El-Benna, S. lanone, J. Boczkowski, and R. Motterlini. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. The Journal of Biological Chemistry. Vol. 27, 25350–25360 (2005)
74. N. G. Abraham, G. Scapagnini, and A. Kappas. Human heme oxygenase: cell cycle-dependent expression and DNA microarray identification of multipke gene responses after transduction of endothelial cells. Journal of Cellular Biochemistry, Vol. 90, 1098-1111 (2003)
75. T. Mizutani, S. Fukushi, M. Saijo, I. Kurane, and S. Morikawa. Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochemical and Biophysical Research Communications Vol. 319, 1228-1234 (2004)
76. X. Zhang, P. Shan, J. Alam, X. Y. Fu, and P, J, Lee. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. The Journal of Biological Chemistry. Vol. 280, 8714-8721 (2005)
77. P. K. Datta, E. J. Gross, and A. Lianos. Interactions between inducible nitric oxide synthase and heme oxygenase-1 in glomerulonephritis. Kidney International, Vol. 61, 846-850 (2002)
78. M. Takahashi, S. Dore, C. D. Ferris, T. Tomita, A. Sawa, H. Wolosker, D. R. Borchelt, T. Iwatsubo, S. H. Kim, G. Thinakaran, Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. Neuron Vol.28, 461–473 (2000)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28112-
dc.description.abstract嚴重急性呼吸道症候群相關之冠狀病毒 (severe acute respiratory syndrome associated coronavirus,SARS-CoV) 被證實與引起 SARS 之非典型肺炎有關,其致死率約為 10%。SARS-CoV 為一含有套膜之新型冠狀病毒,基因體為一正向的 RNA,長約 30,000 個核苷酸,具有 14 個 ORFs,其中包含8個組別特異性蛋白質(group-specific proteins),包括ORF 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b,這些蛋白質在不同組別的冠狀病毒中具有顯著的序列差異性,一般認為在致病機轉中扮演重要的角色。本實驗的研究對象是 SARS-CoV 7a 蛋白質,探討其與宿主細胞蛋白質的交互作用及其功能。
本實驗室欲探討 7a 致病的分子機制,利用高效率酵母菌功能性基因模組從 200 個跟細胞凋亡相關之蛋白質篩選出一個細胞因子heme oxygenase-1 (HO-1),其會與 7a 和 8a 產生交互作用。Heme oxygenase-1會催化 heme 代謝的速率決定步驟,最終產物為鐵離子、一氧化碳 (CO) 、以及膽紅素 (bilirubin) 。目前研究指出, HO-1在細胞當中主要是透過其產物 CO 扮演具有細胞保護的角色。為進一步確認 7a 和 8a 與 HO-1 的交互作用,首先利用免疫共沉澱的方式證明,在哺乳類動物細胞中 7a 的確會與 HO-1有交互作用,並利用雷射掃描共軛焦顯微鏡觀察到7a與HO-1在細胞中有colocalization的情形。此外,文獻指出7a會阻礙細胞週期的進行,使其停留在G0/G1階段,並且是透過抑制cyclin D3的表現而造成;為探討 7a 與 HO-1 的交互作用之生理意義,我們進行cyclin D3的 luciferase reporter assay,發現受到 HO-1 活化的 cyclin D3 promoter 的活性可以被 SARS-7a 所抑制。
經由 SARS-CoV 7a 與 8a 的序列比對發現,7a 與 8a 的 21-35胺基酸序列具有高度相似性,因此推測7a和8a可能是透過這段序列與 HO-1 結合。未來的工作將會釐清 7a、8a 對於 HO-1 酵素活性的影響。
zh_TW
dc.description.abstractSevere acute respiratory syndrome (SARS) is an atypical pneumonia caused by SARS-coronavirus (SARS-CoV). The overall mortality rate was about 10 %. SARS-CoV is an enveloped, positive single-stranded RNA virus with an RNA genome about 30,000 nucleotides in length, which encodes 14 open reading frames (ORFs). The genome contains eight group-specific open reading frames (ORFs):ORF 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b, which encode group-specific proteins with no known homologues. These accessory proteins are highly associated with the virulence and pathogenesis of SARS-CoV.
The specific aim of this study is to understand the function and pathogenesis of SARS-CoV 7a. By performing high throughput yeast functional array analysis, our laboratory has identified heme oxygenase-1 (HO-1) as a SARS-CoV 7a-, and 8a-interacting protein. HO-1 is an enzyme which can catalyze heme metabolism and generally acts as a cytoprotective protein through its by-products, CO, Fe2+, and bilirubin. The interaction between SARS-CoV 7a and HO-1 protein was confirmed by co-immunoprecipitation. In addition, confocal microscopy demonstrated the colocalization of SARS-CoV 7a and HO-1. Furthermore, it is reported that SARS-CoV 7a blocks cell cycle at G0/G1 phase by inhibiting the expression of cyclin D3. In this study, luciferase reporter assay demonstrated that SARS-CoV 7a inhibited the up-regulation of cyclin D3 promoter activity mediated by HO-1.
Alignment of SARS-CoV 7a and 8a amino acid sequences showed that the N-terminal 21-35 amino acid resideus of 7a and 8a have high similarity. Thus, it is possible that 7a and 8a interact with HO-1 through amino acid residues 21-35.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:01:12Z (GMT). No. of bitstreams: 1
ntu-96-R94442022-1.pdf: 2952922 bytes, checksum: 70f8afab673735725ed1831ea0a09081 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 ………………………………………………… I
英文摘要 ………………………………………………… II
縮寫表 …………………………………………………… III
緒論 ……………………………………………………… 1
材料來源 …………………………………………………16
實驗方法 …………………………………………………21
實驗結果 …………………………………………………34
討論 ………………………………………………………39
圖表 ………………………………………………………43
參考文獻 …………………………………………………55
dc.language.isozh-TW
dc.subject細胞週期zh_TW
dc.subject急性嚴重呼吸道症候群zh_TW
dc.subject7a蛋白質zh_TW
dc.subject血紅素氧化&#37238zh_TW
dc.subjectSARSen
dc.subjectcyclin D3en
dc.subjectcell cycleen
dc.subjectheme oxygenase-1en
dc.subjectSARS-CoV 7aen
dc.subjectSARS-CoVen
dc.title嚴重急性呼吸道症候群冠狀病毒7a蛋白質與血紅素氧化酶結合參與病毒之致病機轉zh_TW
dc.titleInteraction between SARS-CoV 7a protein and heme oxygenase-1 involves in the viral pathogenesisen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智芬,林淑華
dc.subject.keyword急性嚴重呼吸道症候群,7a蛋白質,血紅素氧化&#37238,細胞週期,zh_TW
dc.subject.keywordSARS,SARS-CoV,SARS-CoV 7a,heme oxygenase-1,cell cycle,cyclin D3,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved