請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28111
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴子安(Chi-An Dai) | |
dc.contributor.author | Chien-Pan Liu | en |
dc.contributor.author | 劉建邦 | zh_TW |
dc.date.accessioned | 2021-06-13T00:01:11Z | - |
dc.date.available | 2008-10-18 | |
dc.date.copyright | 2007-08-01 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-30 | |
dc.identifier.citation | CHAPTER 2 . NOVEL PROTON EXCHANGE MEMBRANE BASED ON CROSSLINKED POLY(VINYL ALCOHOL) (PVA) FOR DIRECT METHANOL FUEL CELLS (DMFCS)
1. Aramata, A.; Toyoshima, I.; Enyo, M. Electrochim Acta 1992, 37, (8), 1317-1320. 2. Sangeetha, D. Eur Polym J 2005, 41, (11), 2644-2652. 3. Elabd, Y. A.; Napadensky, E.; Sloan, J. M.; Crawford, D. M.; Walker, C. W. J Membrane Sci 2003, 217, (1-2), 227-242. 4. Yang, Y.; Mikes, F.; Koike, Y.; Okamoto, Y. Macromolecules 2004, 37, (21), 7918-7923. 5. Kopitzke, R. W.; Linkous, C. A.; Anderson, H. R.; Nelson, G. L. J Electrochem Soc 2000, 147, (5), 1677-1681. 6. Robertson, G. P.; Mikhailenko, S. D.; Wang, K. P.; Xing, P. X.; Guiver, M. D.; Kaliaguine, S. J Membrane Sci 2003, 219, (1-2), 113-121. 7. Zhao, C. J.; Li, X. F.; Wang, Z.; Dou, Z. Y.; Zhong, S. L.; Na, H. J Membrane Sci 2006, 280, (1-2), 643-650. 8. Kobayashi, T.; Rikukawa, M.; Sanui, K.; Ogata, N. Solid State Ionics 1998, 106, (3-4), 219-225. 9. Gao, Y.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Li, X.; Kaliaguine, S. Macromolecules 2004, 37, (18), 6748-6754. 10. Li, X. F.; Liu, C. P.; Lu, H.; Zhao, C. J.; Wang, Z.; Xing, W.; Na, H. J Membrane Sci 2005, 255, (1-2), 149-155. 11. Miyatake, K.; Zhou, H.; Matsuo, T.; Uchida, H.; Watanabe, M. Macromolecules 2004, 37, (13), 4961-4966. 12. Ye, X. H.; Bai, H.; Ho, W. S. W. J Membrane Sci 2006, 279, (1-2), 570-577. 13. Rahman, K.; Aiba, G.; Susan, A.; Watanabe, M. Electrochim Acta 2004, 50, (2-3), 633-638. 14. Genies, C.; Mercier, R.; Sillion, B.; Petiaud, R.; Cornet, N.; Gebel, G.; Pineri, M. Polymer 2001, 42, (12), 5097-5105. 15. Yin, Y.; Fang, J. H.; Cui, Y. F.; Tanaka, K.; Kita, H.; Okamoto, K. Polymer 2003, 44, (16), 4509-4518. 16. Staiti, P.; Lufrano, F.; Arico, A. S.; Passalacqua, E.; Antonucci, V. J Membrane Sci 2001, 188, (1), 71-78. 17. Glipa, X.; ElHaddad, M.; Jones, D. J.; Roziere, J. Solid State Ionics 1997, 97, (1-4), 323-331. 18. Deimede, V.; Voyiatzis, G. A.; Kallitsis, J. K.; Qingfeng, L.; Bjerrum, N. J. Macromolecules 2000, 33, (20), 7609-7617. 19. Mansur, H. S.; Orefice, R. L.; Mansur, A. A. P. Polymer 2004, 45, (21), 7193-7202. 20. Hassan, C. M.; Peppas, N. A. Adv Polym Sci 2000, 153, 37-65. 21. Hassan, C. M.; Peppas, N. A. Macromolecules 2000, 33, (7), 2472-2479. 22. Manea, C.; Mulder, M. J Membrane Sci 2002, 206, (1-2), 443-453. 23. Kudva, R. A.; Keskkula, H.; Paul, D. R. Polymer 1998, 39, (12), 2447-2460. 24. Qiao, J. L.; Hamaya, T.; Okada, T. Polymer 2005, 46, (24), 10809-10816. 25. Miller, D. R.; Peppas, N. A. Biomaterials 1986, 7, (5), 329-339. 26. Gohil, J. M.; Bhattacharya, A.; Ray, P. J Polym Res 2006, 13, (2), 161-169. 27. Rhim, J. W.; Yeom, C. K.; Kim, S. W. J Appl Polym Sci 1998, 68, (11), 1717-1723. 28. Katz, M. G.; Wydeven, T. J Appl Polym Sci 1982, 27, (1), 79-87. 29. Zhai, M. L.; Yoshii, F.; Kume, T.; Hashim, K. Carbohyd Polym 2002, 50, (3), 295-303. 30. Yang, W. H.; Smolen, V. F.; Peppas, N. A. J Membrane Sci 1981, 9, (1-2), 53-67. 31. Hegazy, E. S. A.; El-Salmawy, K. M.; El-Naggar, A. A. J Appl Polym Sci 2004, 94, (4), 1649-1656. 32. Miranda, T. M. R.; Goncalves, A. R.; Amorim, M. T. P. Polym Int 2001, 50, (10), 1068-1072. 33. Rafik, M.; Mas, A.; Guimon, M. F.; Guimon, C.; Elharfi, A.; Schue, F. Polym Int 2003, 52, (7), 1222-1229. 34. Chiang, W. Y.; Chen, C. L. Polymer 1998, 39, (11), 2227-2233. 35. Ruiz, J.; Mantecon, A.; Cadiz, V. J Appl Polym Sci 2001, 81, (6), 1444-1450. 36. Chiang, W. Y.; Lin, Y. H. J Appl Polym Sci 2002, 86, (11), 2854-2859. 37. Gimenez, V.; Reina, J. A.; Mantecon, A.; Cadiz, V. Polymer 1999, 40, (10), 2759-2767. 38. Chiang, W. Y.; Huang, C. C. J Appl Polym Sci 1993, 48, (2), 199-203. 39. Chiang, W. Y.; Hu, C. M. J Appl Polym Sci 1991, 43, (11), 2005-2012. 40. Kumbar, S. G.; Aminabhavi, T. M. J Appl Polym Sci 2002, 84, (3), 552-560. 41. Yeom, C. K.; Huang, R. Y. M. Angew Makromol Chem 1991, 184, 27-40. 42. Lee, C. H.; Hong, W. H. J Membrane Sci 1997, 135, (2), 187-193. 43. Lee, K. H.; Kim, H. K.; Rhim, J. W. J Appl Polym Sci 1995, 58, (10), 1707-1712. 44. Kumeta, K.; Nagashima, I.; Matsui, S.; Mizoguchi, K. J Appl Polym Sci 2003, 90, (9), 2420-2427. 45. Rhim, J. W.; Yoon, S. W.; Kim, S. W.; Lee, K. H. J Appl Polym Sci 1997, 63, (4), 521-527. 46. Hirai, T.; Okinaka, T.; Amemiya, Y.; Kobayashi, K.; Hirai, M.; Hayashi, S. Angew Makromol Chem 1996, 240, 213-219. 47. Burshe, M. C.; Netke, S. A.; Sawant, S. B.; Joshi, J. B.; Pangarkar, V. G. Separ Sci Technol 1997, 32, (8), 1335-1349. 48. Huang, R. Y. M.; Rhim, J. W. Polym Int 1993, 30, (1), 129-135. 49. Huang, R. Y. M.; Shieh, J. J. J Appl Polym Sci 1998, 70, (2), 317-327. 50. Gimenez, V.; Mantecon, A.; Cadiz, V. J Appl Polym Sci 1996, 59, (3), 425-431. 51. Zhang, Y. Z.; Zhang, K. D.; Xu, J. P. J Membrane Sci 1993, 80, (1-3), 297-308. 52. Oikawa, E.; Nozawa, K.; Kaneko, T.; Aoki, T. J Appl Polym Sci 2001, 82, (11), 2729-2738. 53. Nguyen, T. Q.; Essamri, A.; Clement, R.; Neel, J. Makromol Chem 1987, 188, (8), 1973-1984. 54. Ping, Z. H.; Nguyen, Q. T.; Neel, J. Macromol Chem Physic 1994, 195, (6), 2107-2116. 55. Gimenez, V.; Mantecon, A.; Ronda, J. C.; Cadiz, V. J Appl Polym Sci 1997, 65, (8), 1643-1651. 56. Will, B.; Lichtenthaler, R. N. J Membrane Sci 1992, 68, (1-2), 127-131. 57. Ohya, H.; Matsumoto, K.; Negishi, Y.; Hino, T.; Choi, H. S. J Membrane Sci 1992, 68, (1-2), 141-148. 58. David, M. O.; Nguyen, Q. T.; Neel, J. J Membrane Sci 1992, 73, (2-3), 129-141. 59. Huang, R. Y. M.; Yeom, C. K. J Membrane Sci 1991, 62, (1), 59-73. 60. Huang, R. Y. M.; Yeom, C. K. J Membrane Sci 1991, 58, (1), 33-47. 61. Kariduraganavar, M. Y.; Kulkarni, S. S.; Kittur, A. A. J Membrane Sci 2005, 246, (1), 83-93. 62. Krumova, M.; Lopez, D.; Benavente, R.; Mijangos, C.; Perena, J. M. Polymer 2000, 41, (26), 9265-9272. 63. Touil, S.; Tingry, S.; Palmeri, J.; Bouchtalla, S.; Deratani, A. Polymer 2005, 46, (23), 9615-9625. 64. Wang, H. H.; Shyr, T. W.; Hu, M. S. J Appl Polym Sci 1999, 74, (13), 3046-3052. 65. Wang, X. P. J Membrane Sci 2000, 170, (1), 71-79. 66. Uragami, T.; Yoshida, F.; Sugihara, M. J Appl Polym Sci 1983, 28, (4), 1361-1370. 67. Metayer, M.; MBareck, C. O. React Funct Polym 1997, 33, (2-3), 311-321. 68. Da Silva, E.; Lebrun, L.; Metayer, M. Polymer 2002, 43, (19), 5311-5320. 69. Yu, J.; Lee, C. H.; Hong, W. H. Chem Eng Process 2002, 41, (8), 693-698. 70. Durmaz-Hilmioglu, N.; Yildirim, A. E.; Sakaoglu, A. S.; Tulbentci, S. Chem Eng Process 2001, 40, (3), 263-267. 71. Kang, Y. S.; Lee, S. W.; Kim, U. Y.; Shim, J. S. J Membrane Sci 1990, 51, (1-2), 215-226. 72. Peppas, N. A.; Hansen, P. J. J Appl Polym Sci 1982, 27, (12), 4787-4797. 73. Gebben, B.; Vandenberg, H. W. A.; Bargeman, D.; Smolders, C. A. Polymer 1985, 26, (11), 1737-1740. 74. Yamasaki, A.; Mizoguchi, K. J Appl Polym Sci 1994, 51, (12), 2057-2062. 75. Nam, S. Y.; Chun, H. J.; Lee, Y. M. J Appl Polym Sci 1999, 72, (2), 241-249. 76. Xiao, S. D.; Huang, R. Y. M.; Feng, X. S. J Membrane Sci 2006, 286, (1-2), 245-254. 77. Pivovar, B. S.; Wang, Y. X.; Cussler, E. L. J Membrane Sci 1999, 154, (2), 155-162. 78. Rhim, J. W.; Park, H. B.; Lee, C. S.; Jun, J. H.; Kim, D. S.; Lee, Y. M. J Membrane Sci 2004, 238, (1-2), 143-151. 79. Kang, M. S.; Choi, Y. J.; Moon, S. H. J Membrane Sci 2002, 207, (2), 157-170. 80. Kang, M. S.; Kim, J. H.; Won, J.; Moon, S. H.; Kang, Y. S. J Membrane Sci 2005, 247, (1-2), 127-135. 81. Kim, D. S.; Guiver, M. D.; Nam, S. Y.; Il Yun, T.; Seo, M. Y.; Kim, S. J.; Hwang, H. S.; Rhim, J. W. J Membrane Sci 2006, 281, (1-2), 156-162. 82. Qiao, J. L.; Hamaya, T.; Okada, T. Chem Mater 2005, 17, (9), 2413-2421. 83. Qiao, J. L.; Hamaya, T.; Okada, T. J Mater Chem 2005, 15, (41), 4414-4423. 84. Nasef, M. M.; Zubir, N. A.; Ismail, A. F.; Khayet, M.; Dahlan, K. Z. M.; Saidi, H.; Rohani, R.; Ngah, T. I. S.; Sulaiman, N. A. J Membrane Sci 2006, 268, (1), 96-108. 85. Karlsson, L. E.; Wesslen, B.; Jannasch, P. Electrochim Acta 2002, 47, (20), 3269-3275. 86. Gardner, C. L.; Anantaraman, A. V. J Electroanal Chem 1995, 395, (1-2), 67-73. 87. Cahan, B. D.; Wainright, J. S. J Electrochem Soc 1993, 140, (12), L185-L186. 88. Yin, Y.; Suto, Y.; Sakabe, T.; Chen, S. W.; Hayashi, S.; Mishima, T.; Yamada, O.; Tanaka, K.; Kita, H.; Okamoto, K. Macromolecules 2006, 39, (3), 1189-1198. 89. Comyn, J.; Cope, B. C.; Werrett, M. R. Polym Commun 1985, 26, (10), 294-296. 90. Lobato, J.; Canizares, P.; Rodrigo, M. A.; Linares, J. J.; Manjavacas, G. J Membrane Sci 2006, 280, (1-2), 351-362. 91. Tricoli, V. J Electrochem Soc 1998, 145, (11), 3798-3801. 92. Won, J.; Park, H. H.; Kim, Y. J.; Choi, S. W.; Ha, H. Y.; Oh, I. H.; Kim, H. S.; Kang, Y. S.; Ihn, K. J. Macromolecules 2003, 36, (9), 3228-3234. 93. Svang-Ariyaskul, A.; Huang, R. Y. M.; Douglas, P. L.; Pal, R.; Feng, X.; Chen, P.; Liu, L. J Membrane Sci 2006, 280, (1-2), 815-823. 94. Almeida, E.; Balmayore, M.; Santos, T. Prog Org Coat 2002, 44, (3), 233-242. 95. Elshazly, R. M.; Bekheit, M. M.; Taha, F. I.; Tawansi, A. A. Y. Transit Metal Chem 1990, 15, (5), 337-340. 96. Panero, S.; Fiorenza, P.; Navarra, M. A.; Romanowska, J.; Scrosati, B. J Electrochem Soc 2005, 152, (12), A2400-a2405. 97. Yeom, C. K.; Lee, K. H. J Membrane Sci 1996, 109, (2), 257-265. 98. Guo, R. L.; Hu, C. L.; Li, B.; Jiang, Z. Y. J Membrane Sci 2007, 289, (1-2), 191-198. 99. Ding, J. F.; Chuy, C.; Holdcroft, S. Chem Mater 2001, 13, (7), 2231-+. 100. Kim, J. H.; Min, B. R.; Lee, K. B.; Won, J. G.; Kang, Y. S. Chem Commun 2002, (22), 2732-2733. 101. Carretta, N.; Tricoli, V.; Picchioni, F. J Membrane Sci 2000, 166, (2), 189-197. 102. Vargas, M. A.; Vargas, R. A.; Mellander, B. E. Electrochim Acta 2000, 45, (8-9), 1399-1403. 103. Kim, D. S.; Park, H. B.; Rhim, J. W.; Lee, Y. M. J Membrane Sci 2004, 240, (1-2), 37-48. 104. Higuchi, A.; Iijima, T. Polymer 1985, 26, (12), 1833-1837. 105. Higuchi, A.; Iijima, T. Polymer 1985, 26, (8), 1207-1211. 106. Lafitte, B.; Karlsson, L. E.; Jannasch, P. Macromol Rapid Comm 2002, 23, (15), 896-900. 107. Pei, H. Q.; Hong, L.; Lee, J. Y. Langmuir 2007, 23, (9), 5077-5084. 108. Siu, A.; Schmeisser, J.; Holdcroft, S. J Phys Chem B 2006, 110, (12), 6072-6080. 109. Yang, C. C.; Lin, S. J. J Appl Electrochem 2003, 33, (9), 777-784. 110. Freger, V.; Gilron, J.; Belfer, S. J Membrane Sci 2002, 209, (1), 283-292. 111. Hyder, M. N.; Huang, R. Y. M.; Chen, P. J Membrane Sci 2006, 283, (1-2), 281-290. 112. Extrand, C. W. Langmuir 2003, 19, (9), 3793-3796. 113. Extrand, C. W. Langmuir 2003, 19, (3), 646-649. 114. Rosa, M. J.; dePinho, M. N. J Membrane Sci 1997, 131, (1-2), 167-180. 115. Smitha, B.; Sridhar, S.; Khan, A. A. Macromolecules 2004, 37, (6), 2233-2239. 116. Kim, D. S.; Robertson, G. P.; Guiver, M. D.; Lee, Y. M. J Membrane Sci 2006, 281, (1-2), 111-120. 117. Kreuer, K. D. Chem Mater 1996, 8, (3), 610-641. 118. Kim, D. S.; Liu, B.; Guiver, M. D. Polymer 2006, 47, (23), 7871-7880. 119. Bosnjakovic, A.; Schlick, S. J Phys Chem B 2004, 108, (14), 4332-4337. 120. Yamaguchi, T.; Zhou, H.; Nakazawa, S.; Hara, N. Adv Mater 2007, 19, (4), 592-+. CHAPTER 3 . PROTON CONDUCTIVITY AND METHANOL PERMEABILITY OF CROSSLINKED ACRYLATED URETHANE OLIGOMER AND SULFONATED STYRENE NETWORK PREPARED USING UV-CURING METHOD FOR DIRECT METHANOL FUEL CELLS 1. Yang, C. C. Journal of Membrane Science 2007, 288, (1-2), 51-60. 2. Kim, J.; Kim, B.; Jung, B. Journal of Membrane Science 2002, 207, (1), 129-137. 3. Gurau, B.; Smotkin, E. S. Journal of Power Sources 2002, 112, (2), 339-352. 4. Aramata, A.; Toyoshima, I.; Enyo, M. Electrochimica Acta 1992, 37, (8), 1317-1320. 5. Sangeetha, D. European Polymer Journal 2005, 41, (11), 2644-2652. 6. Deluca, N. W.; Elabd, Y. A. Journal of Polymer Science Part B-Polymer Physics 2006, 44, (16), 2201-2225. 7. Elabd, Y. A.; Napadensky, E.; Sloan, J. M.; Crawford, D. M.; Walker, C. W. Journal of Membrane Science 2003, 217, (1-2), 227-242. 8. Yang, Y.; Mikes, F.; Koike, Y.; Okamoto, Y. Macromolecules 2004, 37, (21), 7918-7923. 9. Kopitzke, R. W.; Linkous, C. A.; Anderson, H. R.; Nelson, G. L. Journal of the Electrochemical Society 2000, 147, (5), 1677-1681. 10. Yamaguchi, T.; Zhou, H.; Nakazawa, S.; Hara, N. Advanced Materials 2007, 19, (4), 592-+. 11. Carretta, N.; Tricoli, V.; Picchioni, F. Journal of Membrane Science 2000, 166, (2), 189-197. 12. Weiss, R. A.; Lundberg, R. D.; Turner, S. R. Journal of Polymer Science Part a-Polymer Chemistry 1985, 23, (2), 549-568. 13. Weiss, R. A.; Turner, S. R.; Lundberg, R. D. Journal of Polymer Science Part a-Polymer Chemistry 1985, 23, (2), 525-533. 14. Turner, S. R.; Weiss, R. A.; Lundberg, R. D. Journal of Polymer Science Part a-Polymer Chemistry 1985, 23, (2), 535-548. 15. Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Chemical Reviews 2004, 104, (10), 4587-4611. 16. Scott, D. S.; Hafele, W. International Journal of Hydrogen Energy 1990, 15, (10), 727-737. 17. Lee, B. H.; Kim, H. J. Polymer Degradation and Stability 2006, 91, (5), 1025-1035. 18. Suh, D.; Choi, S. J.; Lee, H. H. Advanced Materials 2005, 17, (12), 1554-1560. 19. Lee, B. H.; Choi, J. H.; Kim, H. J. Jct Research 2006, 3, (3), 221-229. 20. Dzunuzovic, E.; Tasic, S.; Bozic, B.; Jeremic, K.; Dunjic, B. Reactive & Functional Polymers 2006, 66, (10), 1097-1105. 21. Asha, S. K.; Thirumal, M.; Kavitha, A.; Pillai, C. K. S. European Polymer Journal 2005, 41, (1), 23-33. 22. Sugimoto, H.; Nakanishi, E.; Daimatsu, K.; Takatsu, R.; Yasumura, T.; Inomata, K. Polymer Bulletin 2006, 57, (6), 975-982. 23. Ding, J. F.; Chuy, C.; Holdcroft, S. Chemistry of Materials 2001, 13, (7), 2231-+. 24. Ding, J. F.; Chuy, C.; Holdcroft, S. Macromolecules 2002, 35, (4), 1348-1355. 25. Ding, J. F.; Chuy, C.; Holdcroft, S. Advanced Functional Materials 2002, 12, (5), 389-394. 26. Nasef, M. M.; Zubir, N. A.; Ismail, A. F.; Khayet, M.; Dahlan, K. Z. M.; Saidi, H.; Rohani, R.; Ngah, T. I. S.; Sulaiman, N. A. Journal of Membrane Science 2006, 268, (1), 96-108. 27. Karlsson, L. E.; Wesslen, B.; Jannasch, P. Electrochimica Acta 2002, 47, (20), 3269-3275. 28. Pivovar, B. S.; Wang, Y. X.; Cussler, E. L. Journal of Membrane Science 1999, 154, (2), 155-162. 29. Gardner, C. L.; Anantaraman, A. V. Journal of Electroanalytical Chemistry 1995, 395, (1-2), 67-73. 30. Cahan, B. D.; Wainright, J. S. Journal of the Electrochemical Society 1993, 140, (12), L185-L186. 31. Comyn, J.; Cope, B. C.; Werrett, M. R. Polymer Communications 1985, 26, (10), 294-296. 32. Lobato, J.; Canizares, P.; Rodrigo, M. A.; Linares, J. J.; Manjavacas, G. Journal of Membrane Science 2006, 280, (1-2), 351-362. 33. Tricoli, V. Journal of the Electrochemical Society 1998, 145, (11), 3798-3801. 34. Gao, Y.; Robertson, G. P.; Guiver, M. D.; Ean, X. G.; Mikhailenko, S. D.; Wang, K. P.; Kaliaguine, S. Journal of Membrane Science 2003, 227, (1-2), 39-50. 35. Kim, D. S.; Park, H. B.; Rhim, J. W.; Lee, Y. M. Journal of Membrane Science 2004, 240, (1-2), 37-48. 36. Higuchi, A.; Iijima, T. Polymer 1985, 26, (12), 1833-1837. 37. Higuchi, A.; Iijima, T. Polymer 1985, 26, (8), 1207-1211. 38. Lafitte, B.; Karlsson, L. E.; Jannasch, P. Macromolecular Rapid Communications 2002, 23, (15), 896-900. 39. Pei, H. Q.; Hong, L.; Lee, J. Y. Langmuir 2007, 23, (9), 5077-5084. 40. Siu, A.; Schmeisser, J.; Holdcroft, S. Journal of Physical Chemistry B 2006, 110, (12), 6072-6080. 41. Smitha, B.; Sridhar, S.; Khan, A. A. Macromolecules 2004, 37, (6), 2233-2239. 42. Kim, D. S.; Robertson, G. P.; Guiver, M. D.; Lee, Y. M. Journal of Membrane Science 2006, 281, (1-2), 111-120. 43. Kreuer, K. D. Chemistry of Materials 1996, 8, (3), 610-641. 44. Kim, D. S.; Liu, B.; Guiver, M. D. Polymer 2006, 47, (23), 7871-7880. 45. Hickner, M. A.; Fujimoto, C. H.; Cornelius, C. J. Polymer 2006, 47, (11), 4238-4244. 46. Bosnjakovic, A.; Schlick, S. Journal of Physical Chemistry B 2004, 108, (14), 4332-4337. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28111 | - |
dc.description.abstract | 直接甲醇燃料電池(DMFC)是一種具有前瞻性的新能源來源,並應用在車輛及其他運載工具和可攜式設備上。開發質子傳導膜在甲醇燃料電池,其同時具備所需質子導電度和低甲醇穿透度是一極重要的挑戰。質子傳導膜目前用在甲醇燃料電池主要是用全氟性高分子,例如像Nafion,雖然此膜展示出良好性能和長期穩定性,然而它的高額製造成本及嚴重的甲醇穿透現象,導致燃料使用率偏低且不實用在大規模的生產。
此研究主要在討論兩種類型的質子交換膜。其中之一種是兼具物理和化學交聯的聚乙烯醇(PVA)和六氟戊二酸(HFA)的混參物理交聯膜,之後加上BASANa (Benzenesulfonic acid sodium salt)和GA (Glutaraldehyde)為其附化學交聯反應。GA和BASANa皆接在聚乙烯醇鏈上產生acetalization反應,並分別當做交聯劑和提供磺酸根基(-SO3H)的親水基。此外,六氟戊二酸(HFA)因具有雙石炭酸,不但可以當作熱交聯劑,且可提升膜的韌性和化學穩定性。另一種膜主要是合成具有雙親性的共聚高分子在交聯的丙烯酸之氨基鉀酸酯寡聚高分子(acrylated urethane oligomer),並利用紫外光交聯反應使兩者結合在一起。此雙親性共聚高分子乃利用TEMPO之方式進行活性聚合,將磺酸鈉鹽聚苯乙烯單體轉換成疏水性單體,第二鏈段選擇DVB (divinyl benzene)作為具備交聯之單體。此方法之優點在於可在相同疏水性溶液進行反應,可避免異相反應之缺點。之後,膜的製備乃將合成之共聚高分子(PSSTBADVB)或單體(SSTBA)與acrylated urethane oligomer (AUO)、交聯劑TAIC、最後加入光起始劑並進行紫外光聚合反應。製備出的質子交換膜(包含交聯的PVA/HFA或是交聯的acrylated urethane oligomer with sulfonated styrene)具有良好的物理化學特性。這些特性可以用傅立葉轉換紅外線光譜儀(FT-IR/ATR spectroscopy), 場發射表面掃描式電子顯微鏡 (FE-SEM)、熱重量損失分析儀 (TGA)、微差掃描式熱分析儀 (DSC)、廣角X光繞射儀 (WAXD)、小角X光散射儀 (SAXS)、原子力顯微鏡 (AFM)、接觸角測試, 溶液吸收研究、機械測試和交流阻抗分析(AC impedance)方式。這兩種膜的質子導電度和甲醇穿透度分別落在10-4至10-2 S/cm和10-8至10-7 cm2/s的範圍內,但需視其交聯密度狀況而定。另外,跟Nafion®-117比較起來也可展現出良好的selectivity (Φ)。因此利用此質子交換膜在甲傳燃料電池上是可被考慮並具有其可行性的潛力。 | zh_TW |
dc.description.abstract | Direct Methanol Fuel Cells (DMFCs) are promising new power sources for vehicles and protable devices. It’s significant challenge to develop proton exchange membranes (PEMs) possing both desired proton conductivity and low methanol permeability for the DMFCs. PEMs currently used in DMFC are perfluorinated polymers such as Nafion®. Even though such membranes have demonstrated good performances and long-term stability, their high cost and methanol crossover makes them unpractical for large-scale production. In this research, I describe two kinds of membranes and discuss respectively. The one is a novel physically and chemically PVA/HFA (PVA/hexafluoroglutaric acid) blending membranes with BASANa (Benzenesulfonic acid sodium salt) and GA (Glutaraldehyde) as binary reaction agents. GA and BASANa were used as cross-linkers and a donor of hydrophilic groups (-SO3H), which they both crosslinked to PVA chains for the acetalization reaction. Besides, HFA with dicarboxylic acid not only as the thermal cross-linking agent but also enhanced the flexibility and chemical stability. The other is to synthesize ampliplilic block copolymers on crosslinked acrylated urethane oligomer using UV-curing method. The amphiphilic block copolymers are synthesized using TEMPO controlled polymerization method with tertrabutylammonium styrenesulfonate (SSTBA) and divinyl benzene (DVB) as monomers for each block. This method has advantage synthesize the copolymer in one organic phase. Crosslinking of membranes of the copolymer are made by adding photo-initiators and subsequently being initiated by using UV light. By mixing acrylated urethane oligomer (AUO) with SSTBA monomer or PSSTBA-b-DVB copolymer and then add the crosslinker TAIC for third component. We can prepare PEM with excellent physicomechanical properties. These properties of the cross-linked PVA/HFA proton-conducting membranes or cross-linked acrylated urethane oligomer with sulfonated styrene membranes are examined by FT-IR/ATR spectroscopy, field emission scanning surface microscopy (FE-SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), contact angle instrument, sorption studies, tensile test and AC impedance method. The feasibility of preparing films for DMFC application is investigated in this study. The proton conductivities and the methanol permeabilities of all two kinds of the membranes are in the range of 10-4 to 10-2 S/cm and 10-8 to 10-7 cm2/s, respectively, depending on its crosslinking density, and it shows great selectivity (Φ) compared with those of Nafion®-117. The possibility of using these PEMs for DMFC device is suggested. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:11Z (GMT). No. of bitstreams: 1 ntu-96-R94524045-1.pdf: 5630915 bytes, checksum: 8e1bd2c54013a5f6352d96107cb91db1 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | CATALOG
ACKNOWLEDGMENTS VII ABSTRAT IN CHINESE VIIVIIVII ABSTRAT V CATALOG VIIVII LIST OF TABLES ΧVII LIST OF FIGURES VII CHAPTER 1 . INTRODUCTION 1 1-1. Fuel cell basics 1 1-2. History of fuel cells 3 1-3. Fuel cell types 9 1-3-1. Proton Exchage Membrane Fuel Cell (PEMFC) 10 1-3-2. Direct Methanol Fuel Cell (DMFC) 11 1-3-3. Alkaline Fuel Cell (AFC) 12 1-3-4. Phosphoric Acid Fuel Cell (PAFC) 13 1-3-5. Molten Carbonate Fuel Cell (MCFC) 14 1-3-6. Solid Oxide Fuel Cell (SOFC) 15 1-4. Methanol Crossover 18 1-4-1. Methanol crossover in DMFCs 18 1-4-2. Methanol crossover in Nafion® membranes 18 1-5. Reference 20 CHAPTER 2 . NOVEL PROTON EXCHANGE MEMBRANE BASED ON CROSSLINKED POLY(VINYL ALCOHOL) (PVA) FOR DIRECT METHANOL FUEL CELLS (DMFCS) 21 2-1. Introduction 23 2-2. Experimental 29 2-2-1. Materials 29 2-2-2. Membrane preparation 29 2-2-3. Thickness measurements 31 2-2-4. FT-IR/ATR and field emission scanning electro microscopy(FE-SEM) 31 2-2-5. Thermal analysis 32 2-2-6. The swelling properties of the membranes 33 2-2-7. Ion exchange capacity 34 2-2-8. The state of water 35 2-2-9. Wide-angle X-ray diffraction (WAXD) measurement 35 2-2-10. Small-angle X-ray scattering (SAXS) measurement 36 2-2-11. Atomic force microscopy (AFM) and contact angle measurement 36 2-2-12. Proton conductivity 37 2-2-13. Mechanical property 39 2-2-14. Methanol permeability 41 2-2-15. Hydrolytic stability and oxidative stability 43 2-3. Results and discussion 44 2-3-1. Membrane preparation and cross-linking 44 2-3-2. FT-IR/ATR spectra characterization 45 2-3-3. FE-SEM morphological analysis 48 2-3-4. TGA thermal analysis and degradation 49 2-3-5. Differential scanning calorimetry 51 2-3-6. The swelling properties of the membranes and Ion exchange capacity (IEC) 52 2-3-7. The state of water in the membranes 55 2-3-8. Wide-angle X-ray diffraction (WAXD) measurement 58 2-3-9. SAXS analysis 59 2-3-10. Microscopy results 61 2-3-11. Contact angle measurement 62 2-3-12. Proton conductivity 63 2-3-13. Mechanical property 66 2-3-14. Methanol permeability and Selectivity (Φ) 67 2-3-15. Hydrolytic stability and oxidative stability 69 2-4. Conclusions 72 2-5. Reference 73 CHAPTER 3 . PROTON CONDUCTIVITY AND METHANOL PERMEABILITY OF CROSSLINKED ACRYLATED URETHANE OLIGOMER AND SULFONATED STYRENE NETWORK PREPARED USING UV-CURING METHOD FOR DIRECT METHANOL FUEL CELLS 106 3-1. Introduction 108 3-2. Experimental 113 3-2-1. Materials 113 3-2-2. Synthesis of Tertrabutylammonium Styrenesulfonate (SSTBA) from SSNa 113 3-2-3. Synthesis of block copolymer of Tertrabutylammonium Styrenesulfonate and Divinylbenzene (PSSTBA-b-DVB). 114 3-2-4. Membrane preparation 115 3-2-5. FT-IR/ATR and Thickness measurements 116 3-2-6. Thermal analysis and field emission scanning electro microscopy (FE-SEM) 116 3-2-7. The swelling properties of the membranes 117 3-2-8. Ion exchange capacity 118 3-2-9. The state of water 119 3-2-10. Proton conductivity 119 3-2-11. Methanol permeability 121 3-2-12. Oxidative stability 123 3-3. Results and discussion 124 3-3-1. The main UV crosslinking mechanism 124 3-3-2. FT-IR/ATR spectra characterization and FE-SEM morphological analysis 124 3-3-3. TGA thermal analysis and degradation 125 3-3-4. The swelling properties (water uptake, swelling ratio), ion exchange capacity (IEC) and proton conductivity of the membranes 126 3-3-5. The state of water in the membranes 130 3-3-6. Temperature dependence of proton conductivity 133 3-3-7. Methanol permeability and Selectivity (Φ) 136 3-3-8. Oxidative stability 138 3-4. Conclusions 140 3-5. Reference 141 | |
dc.language.iso | en | |
dc.title | 新穎性交聯聚乙烯醇質子交換膜在甲醇燃料電池上之應用 | zh_TW |
dc.title | Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) (PVA) for direct methanol fuel cells (DMFCs) | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 趙基揚,程耀毅,邱文英,郭昭輝 | |
dc.subject.keyword | DMFC,質子交換膜,質子導電度,甲醇穿透度,交聯之聚乙烯醇,紫外光交聯,Acrylated urethane oligomer, | zh_TW |
dc.subject.keyword | DMFC,Proton exchange membranes (PEMs),Proton conductivity,Methanol permeability,Crosslinked PVA,UV-curing,Acrylated urethane oligomer, | en |
dc.relation.page | 143 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。