Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28105
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佩玲
dc.contributor.authorChih-Chie Changen
dc.contributor.author張智奇zh_TW
dc.date.accessioned2021-06-13T00:01:07Z-
dc.date.available2008-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation[1] C.-A.L.a.C.-C.c. Wen-Hwa Wu, 'A novel multiple random decrement method for modal parameter identification of cable-stayed bridge cables'. Proceeding of the 2nd International Operational Model Analysis Conference, Copenhagen, Denmark, May (2007) 1-2.
[2] Y.B. Lin, Lin, T.K., Chen, J.C., Chiu, J.C. and Chang, K.C., 'On-line health monitoring and safety evaluating of the relocation of a research reactor using fiber Bragg grating sensors'. Smart Materials & Structures, 15 (2006) 1421-1428.
[3] Y.B. Lin, Chen, J.C., Chang, K.C., Chern, J.C. and Lai, J.S., 'Real-time monitoring of local scour by using fiber Bragg grating sensors'. Smart Materials & Structures, 14 (2005) 664-670.
[4] K.-C.C. Zheng-Kuan Lee. Yung-bin Lin, Cin-Hsiung Loh and Chien-Chou Chen, 'An innovative optic-fiber health monitoring system on the cables of a cable-stayed bridge'. Proceeding of the 18th KKCNN, Kaohsiung, Taiwan, Dec. (2005) 21-22.
[5] Y.B. Lin, Chen, J.C., Chang, K.C., Chan, Y.W. and Wang, L.A., 'The utilization of fiber Bragg grating sensors to monitor high performance concrete at elevated temperature'. Smart Materials & Structures, 13 (2004) 784-790.
[6] E. Udd, 'Fiber optic smart structures and skins'. Proc. SPIE, 986. SPIE, Bellingham, WA (1989).
[7] E. Udd, 'Fiber optic smart structures and skins II'. Proc. SPIE, 1170. SPIE, Bellingham, WA (1990).
[8] E. Udd and R.O.Claus, 'Fiber optic smart structures and skins III'. Proc. SPIE, 1370. SPIE, Bellingham, WA (1991).
[9] R.O.C.a.E. Udd, 'Fiber optic smart structures and skins IV'. Proc. SPIE, 1588. SPIE. Bellingham, WA (1992).
[10] G. J. Knowles, 'Active materials and adaptive strucures'. Proceedings of the ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures. IOP Publishing, Blacksbury, VA (1991).
[11] P.T.G. B.Culshaw, and A.McDonach,, 'First European conference on smart structures and materials'. SPIE, 1777. SPIE, Bellingham, WA, May (1992).
[12] R.O.Claus and R.S.Rogowski, 'Fiber optic smart structures and skins V'. Proc. SPIE, 1798. SPIE, Bellingham, WA (1993).
[13] E. Udd, 'Embedded sensors make structures smart'. Laser Focus, May (1998) 138.
[14] R. M. Measures, 'Smart structures in nerves of glass'. Prog. Aerosp. Sci. 26, 289 (1989).
[15] T.V. R.D.Turner, W.D.Hogg,and R.M.Measures, 'Fiber optic strain sensors for 'Smart' strucures'. J. Intell. Mater. Syst. Struct. 1 (1990) 26-49.
[16] J.P. Dakin, 'Distributed optical fiber sensor systems' In Optical Fiber Sensors: System and Applications (B. Culshaw and J. Dakin, eds). Artech House, Boston, 2 (1989) 575-598.
[17] K. A., 'Optical fiber sensor' In:Rastogi PK(ed). Optical, measurement techniques and applications. Boston, MA:Aryech House, (1997) 217-254.
[18] A.B. Vohra ST, Johnson G, Vurpillot S & Inaudi D., 'Quasistatic strain monitoring during the 'push' phase of a box-girder bridge using fiber Bragg grating sensors'. European Workshop on Optical Fiber Sensors, Peebls Hydro, Scotland, July (1998).
[19] E.A. Inaudi D, Pflug L, Gisin N, Breguet J&Vurpillot S., 'Low-coherence deformation sensors for the monitoring of civil-engineering structures.' Sensor and Actuators A, 44 (1994) 125-130.
[20] I. D., 'Field testing and application of fiber optic displacement sensors in civil structures.' 12th International Conference on OFS' 97eOptical Fiber Sensors, Williamsbourg. OSA Technical Digest Series, 16 (1997) 596-599.
[21] C.N. Inaudi D, Kronenberg P, Marazzi S& Vupillot S., 'Embedded and surface mounted fiber optic sensors for civil structural monitoring.' Smart Structures and Materials Conference, San Diego, SPIE, 3044 (1997) 236-243.
[22] F.L.P. O., 'Structural metal coating for distributed fiber sensors'. Optical Fiber Sensors Conference Proceedings, (1992) 254.
[23] D. JP, 'Distributed optical fiber Raman temperature sensor using a semiconductor light sourse and detector.' Proceedings of the IEE Colloqium on Distributed Optical Fiber Sensors (1986).
[24] T.v.L.R.P. Nikle's M, 'Brillouin gain spectrum characterrization in singal-model optical fibers'. Journal of Lightwave Technology, 15(10) (1997) 1842-1851.
[25] T.K. T. Horiguchi, and M. Tateda, 'Tensile strain dependence of Brillouin frequency shift in silica optical fibers.' IEEE Photon. Technol. Lett., 1, 107 (1989).
[26] K.H. T. Horiguchi, T. Kurashima, M. Tateda, Y. Koyamada, 'Development of a distributed sensing technique using Brillouin scattering'. J. Lightwave Technol., 13 (1995) 1296-1303.
[27] T.H. T. Kurashima, N. Yoshizawa, H. Tada, and M.Tateda, 'Measurement of distributed strain due to layong and recovery of submarine optical fiber cable.' Appl. Opt., 30, 334 (1991).
[28] K.H. T. Kurashima, S. Matsuhashi, T. Horiguchi, Y. Koyamada, Y. Wakui, and H. Hirano, 'Measurement of distributed strain in frozen cables and its potential for use in predicting cable failure.' International Wire & Cable Symposium Proceedings, (1994) 593-602.
[29] W.W.M. G. Meltz, and W. H. Glenn, 'Formation of Bragg gratings in optical fibers by a transverse holographic method.' Opt. Lett., 14, 823 (1989).
[30] T.U. T. Kurashima, K. Tanaka, A. Nobiki, M. Sato, and K. Nakai, 'Application of fiber optic distributed sensor for strain measurment in civil engineering' in Far East and Pacific Rim Symposium on Smart Materials, Structures, and MEMS SPIE 3241 (1997) 247-258.
[31] H. Naruse, 'Distributed fiber optic sensors using Brillouin scattering and their application.' in 5th Optical Fiber Measurement Conference (1999) 100-105.
[32] H.N. N. Yasue, J. Masuda, H. Kino, T. Nakamura, and T. Yamaura, 'Concrete pipe strain measurment using optical fiber sensor'. IEICE Trans. Electron., E83-C (2000) 468.
[33] K.K. H. Murayama, A. Shimada, and H. Naruse, 'Structural health monitoring of IACC yachts using fiber optic distributed strain sensors: A technical challenge for America's Cup 2000,' in 7th Annual International Symposium on Smart Structures and Materials. SPIE, 3896 (2000).
[34] H.N. A. Shimada, K. Uzawa, H. Murayama, and K. Kageyama, 'Development of an integrated damage detection system for international America's Cup Class yacht structures using a fiber optic distributed sensor,' in 7th Annual International Symposium on Smart Structures and Materials. SPIE, 3896 (2000).
[35] Y.U. H. Naruse, T. Kurashima, and S. Unno, 'River levee change dectection using distributed fiber optic strain sensor.' IEICE Trans. Electron., E83-C, 462 (2000).
[36] M.k. K. Hiramatsu, M. Shima, and S. unno, 'Development and field test of an optical fiber sensor for river embankment observation,' in Technical Report of the Institute of Electronics. Information and Communication Engineering, OFT2000-7 (2000) 41-46 [in Japanese].
[37] H.O. K. Oka, T. Kurashima, M. Matsumoto, H. Kumagai, A. Mita, and K. Sekijima, 'Fiber optic distributed sensor for structural monitoring.' in Proceedings 2nd International Workshop on Structural Health Monitoring. (1999) 672-679.
[38] A.M. H. Kumagai, K. Oka, and H. Ohno, 'Development and verification of the optical fiber sensor for concrete structure.' Concrete J., 38 (2000) no. 7, 17 [in Japanese].
[39] K.H.a.T. Hasegawa, 'Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique--proposal, experiment and simulation.' IEICE Trans. Electron., E83-C (2000) 405-412.
[40] M.T. K. Hotate, 'Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique.' [J]. IEEEPhoto. Tech. Lett., 14(2) (2002) 179-181.
[41] K.H.a.S.S.L. Ong, 'Distributed dynamic strain measurement using a cor-relation-based Brillouin sensing system.' IEEE Photon. Technol. Lett., 15(2) (2003) 272-274.
[42] K.H. T. Yamauchi, 'Performance evaluation of Brillouin optical correlation domain analysis for fiber optic distributed strain sensing by numerical simulation.' Fiber Optic Sensor Technology and Applications III, Proceeding of the SPIE, 5589 (2004) 164-174.
[43] K.H.a.K. Abe, 'BOCDA fiber optic distributed strain sensing system with a polarization diversity scheme for enlargement of measurement range,' in Proceedings of 17th International Conference on Optical Fiber Sensors (OFS-17), M. Voet, R. Willsch, W. Ecke, J. Jones and B. Culshaw, eds.,. Proc. SPIE, 5855 (2005) 591-594.
[44] K. Hotate, 'Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering,' 17th Intern. Conf. on Optical Fiber Sensors (OFS-17). Bruges, Th-1, (2005) 62-67.
[45] K.H.a.H. Arai, 'Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme.' 17th Intern. Conf. on Optical Fiber Sensors (OFS-17). Bruges, Th-1, (2005) 184-187.
[46] K.Y.S.a.K. Hotate, 'Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator.' IEEE Photon. Technol. Lett., 18 (2006) 499-501.
[47] Z.H. K. Y. Song, and K. Hotate, 'Optimization of Brillouin optical correlation domain analysis system based on intensity modulation cheme.' Opt. Express, 14 (2006) 4256-4263.
[48] Z.H. K. Y. Song, and K. Hotate, 'Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis.' Optics letters, 31, no. 17, September 1 (2006) 2526-2528.
[49] K.A. K. Hotate, and K. Y. Song, 'Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme.' IEEE Photonics Technology letters, 18, no. 24, December 15 (2006) 2653-2655.
[50] M.A.D.A.D. Kersey, 'Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering .' IEEE Proc.-Optoelectron, 144 no. 3 (1997).
[51] S.T.V. Ralph Posey Jr., Alan B. Tveten, 'Simultaneous measurement of temperature and strain using stimulated Brillouin scattering in GeO2-Doped and dispersion shifted fiber.' Special Issue on Optical Fiber Sensors, (2000) 413-417.
[52] A.H. S. Sandlin, 'Embedding optical fibers in metal alloys.' Instrumentation & Measurement Magazine, IEEE, 6 (2003) 31-36.
[53] E.G. Antonio Carrillo, Armando Rosa, Alfredo Marquez, 'New distributed optical sensor for detection and localization of liquid leaks. Part I. Experimental studies.' Sensors and Actuators A Physical, 99(33) (2002) 229-235.
[54] V.V.S. R. M. Lopez, S. V. Miridonov, et al., 'Fiber optic distributed sensor for hydrocarbon leak localization based on transmission/reflection measurement .' Optics & Laser Technology, 34 (2002) 465-469.
[55] S.-J.B. Il-Bum Kwon, Kiegon Im, Jae-Wang Yu, 'Development of fiber optic BOTDA sensor for intrusion detection.' Sensors and Actuators A Physical, Elsevier Science 101:1-21-2 (2002) 77-84.
[56] K.T. Lau, 'Fiber-optic Sensors and Smart Composites for Concrete Application: A Review Article. Magazine of Concrete Research.' (2003) 19-34.
[57] M.C.M.a.J.K. Weese, 'Fiber Optic fence sensor developments.' AESM, (2004) 8-13.
[58] B.R.C. Y. L. Lo, S. H. Xu, 'Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating.' Optics Communications, (2004) 287-295.
[59] C.K.Y.L. Noah Olson, Aidong Meng, 'Crack sensing with a multimode fiber: experimental and theoretical studies.' (2004) 268-277.
[60] D.M. Brown A, Bao X, Bremner T, 'Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal Processing method[J].' J. Lightwave Technol., (1999) 1179-1183.
[61] A.M. Romeo Bernini, Luigi Zeni, 'Distributed fiber-optic frequency-domain Brillouin sensing.' Sensor and Actuators A Physical, Elsevier Science, 123 (2005) 337-342.
[62] G.P. Agrawal, 'Nonlinear Fiber Optics.' Third Edition, Academic Press.
[63] A.H.G. R. M. Jopson, and R. M. Derosier, IEEE Photon. Lett. 5, 663 (1993).
[64] K.K.a.C. Lorattanasane, IEEE Photon. Technol. Lett. 6, 104 (1994).
[65] R.W. Boyd, 'Nonlinear Optics.' Elsevier (2003).
[66] I. L., 'Molecular Scattering of Light.' Plenum Press, New York, (1968).
[67] http://www.bayspec.com/pdf/FBGA-IRS-3-07.pdf.
[68] http://www.broptics.com/data/back_0520.pdf.
[69] http://www.broptics.com/products_sensor.htm.
[70] http://qwiki.caltech.edu/wiki/Electro-Optic_Modulator.
[71] S.a.Y. Karna, Alan, 'Nonlinear Optical Materials: Theory and Modeling.' Washington, DC: American Chemical Society, 2-3, (1996).
[72] http://www.thinkSRS.com/Digital_Lock-Inamplifier.
[73] http://cp.literature.agilent.com/litweb/pdf/11896-90011.pdf.
[74] http://jazz.nist.gov/atpcf/prjbriefs/prjbrief.cfm?ProjectNumber=93-01-0027.
[75] http://www.micronoptics.com/pdfs/FFP-TF2.pdf.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28105-
dc.description.abstract由於結構物的大型化、複雜化,使得結構健康的監控變得越來越重要。目前已有很多監控系統實際應用的資料,但由於結構未來損害的位置很難預測,而傳統式感應器僅能在特定位置測量到結構的反應狀態,所以很難反映出結構體的真實狀況。最近光纖感測技術已經廣泛地被運用在橋梁和公共工程的監控方面,有些甚至已具有分佈式的感測能力。
本論文最主要目的就在於建立一個以相關性光纖布里淵散射為基礎的自動化光纖量測系統,以連續地測量在光纖任何位置的靜態或動態反應,並提供足夠高的空間解析度。藉由自動化儀器控制及定位系統的輔助,本研究已開發了可快速啟動(約2分鐘)的量測系統。
本論文藉由三項硬體改善技術來提高量測系統之性能。首先,將可調式的衰減器增加到測量系統中,使探測波的強度維持在較佳的狀態,如此可獲得較好的訊號雜訊比,並避免因泵波能量消耗所造成的量測誤差。其次,利用極化控制器去維持最佳化的極化狀態,以減少因為光波極化波動所造成的不穩定。第三,為了加大量測的範圍,本研究發展出一個極化隔離器,藉由這個隔離器的使用,可將量測的範圍提高許多倍。
本論文藉由簡支梁、物質特性測試和裂縫偵測測試,來驗證量測系統之性能。系統不但能提供應變和溫度的量測值,同時能夠提供代測物的定位資訊。在空間解析度2公分的情況下,應變量測可準確到100με、溫度量測可準確到1∘C。除此之外,藉由訊號處理技術進行布里淵光譜頻散的重建,可進一步提高空間解析度到6 mm。
本研究藉由新的動態量測方法的開發,來克服系統反應速率不足的問題,使本系統也可以運用到動態測量。藉由此量測方法的運用,本測量系統在動態測試中可以準確地量測到高達7 Hz的動態應變變化。
除了應變與溫度感測器外,本研究還設計了許多感測器,包過位移感測器、角度感測器和傾斜感測器。藉由此複合感測器的架構,可以提供量測系統更大的彈性,並滿足結構物健康監測的實際需求。
zh_TW
dc.description.abstractAs structures become bigger, taller, and more complex, the health monitoring of structures becomes more and more important. Many monitoring systems have been proposed in the literature. However, due to the characteristics of conventional sensors, structural response can only be measured at specific locations. Since it’s very difficult to predict the future damage locations of the structure, the monitoring systems usually fail to reflect the conditions of the structures. Recently, optical fiber sensing techniques have been widely adopted in the monitoring of bridges and public works, and some of them have the capacity of distributed sensing.
The goal of this dissertation is to establish an automatic optical fiber sensing system based on the Brillouin optical correlation domain analysis (BOCDA) such that static and dynamic response can be measured continuously at any point along the fiber with high spatial resolution. By the aid of GPIB and locating schemes, a quick start (about 2 minutes) measurement system has been developed.
Three major hardware modifications were made to the BOCDA system to improve the performance. First, an attenuator was added to the measurement system to keep the power level of the probe at a suitable level such that a better signal to noise ratio can be attained and pump depletion can be avoided. Second, a polarization controller was applied to keep the polarizations in optimal states such that the fluctuation of the polarizations of the lightwaves can be prevented. Third, in order to enlarge the measurement range, a polarization isolator was developed. With this isolator, the measurement range could be multiplied several times.
A simple beam test, a material property test, and a crack detection test were conducted to verity the performance of the measurement system. It is seen that the system can provide not only strain and temperature but also the location information of the measurand. The strain and temperature measurements of the system are accurate up to 100me and 1°C, respectively, with a spatial resolution of 2 cm. The spatial resolution was further improved by a signal processing technique to reconstruct the broadened Brillouin spectrum. A limiting spatial resolution of about 6mm was realized.
The monitoring system is also applicable to dynamic measurement. A measurement scheme was developed in this study to overcome the problem of low response rate. With the new measurement scheme, the system is able to measure the strain accurately in a dynamic test with a vibration frequency up to 7 Hz.
Finally, several sensors were devised in this study other than strain and temperature sensors, including the displacement sensor, rotation sensor, and inclination sensor. Such multi-sensor architecture provides more flexibility and meets the requirements of structural health monitoring in real applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:01:07Z (GMT). No. of bitstreams: 1
ntu-96-D89543008-1.pdf: 3835139 bytes, checksum: 240af1cac323ab4ed435535e693ce4fa (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書................................................................................................................... i
致謝......................................................................................................................................... ii
摘要........................................................................................................................................ iii
Abstract ................................................................................................................................... v
Table of Contents ................................................................................................................... vii
List of Figures ........................................................................................................................ xii
List of Tables........................................................................................................................ xxii
Chapter 1 Introduction ............................................................................................................. 1
1-1 Motivation..................................................................................................................... 1
1-2 Literature review............................................................................................................ 3
1-2.1 The current status of optical fiber sensors .............................................................. 3
1-2.2 Optical fiber sensors ............................................................................................... 4
1-2.2.1 Bragg grating strain sensors............................................................................. 4
1-2.2.2 SOFO displacement sensors ............................................................................ 5
1-2.2.3 Microbend displacement sensors ..................................................................... 6
1-2.2.4 Fabry-perot strain sensors ................................................................................ 7
1-2.2.5 Raman-distributed temperatures sensors ......................................................... 7
1-2.2.6 Brillouin-distributed strain and temperature sensors ....................................... 8
1-2.3 Distributed measuring system................................................................................. 9
1-2.3.1 Brillouin optical time-domain reflectometer (BOTDR) .................................. 9
1-2.3.2 Brillouin optical correlation domain analysis (BOCDA) .............................. 13
1-2.4 Other issues in the application of fiber optic sensors ........................................... 17
1-2.4.1 Coupling of temperature and strain................................................................ 17
1-2.4.2 Adherence between the optic fiber and the structures ................................... 18
1-2.4.3 Other applications of optic fiber sensor ......................................................... 19
1-2.4.4 Signal processing techniques ......................................................................... 21
1-3 Content of each chapter................................................................................................ 22
Chapter 2 Basic Theories for Fiber Optic .............................................................................. 29
2-1 Fiber characteristics ..................................................................................................... 29
2-1.1 Fiber types............................................................................................................. 29
2-1.2 Fiber losses............................................................................................................ 29
2-1.3 Polarization-mode dispersion................................................................................ 30
2-2 Light scattering ............................................................................................................ 31
2-2.1 Spontaneous light scattering ................................................................................. 31
2-2.2 Light scattering induced from material fluctuations............................................. 32
2-2.3 Light scattering by scalar thermodynamic............................................................ 34
2-2.4 Spectrum of the scattered light ............................................................................. 37
2-2.5 Brillouin scattering................................................................................................ 37
2-2.6 Stoke scattering..................................................................................................... 40
2-2.7 Anti-stokes scattering............................................................................................ 42
2-2.8 Attenuation of the acoustic wave.......................................................................... 43
2-2.9 Rayleigh center scattering..................................................................................... 43
2-3 Electrostrictive model for Brillouin scattering ............................................................ 44
2-3.1 Electrostrictive of medium.................................................................................... 44
2-3.2 Fiber Brillouin scattering by electrostrictive ........................................................ 48
2-3.3 Pump depletion effects in SBS.............................................................................. 54
2-3.4 SBS generator ....................................................................................................... 56
2-4 BOCDA........................................................................................................................ 58
2-4.1 Concepts of BOCDA ............................................................................................ 58
2-4.2. Principles of BOCDA .......................................................................................... 60
2-4.3 Spatial resolution of BOCDA ............................................................................... 63
Chapter 3 System Setup and Basic Tests ............................................................................... 75
3-1 Experimental setup....................................................................................................... 75
3-1.1 Introduction of equipment..................................................................................... 75
3-1.1.1 Passive devices............................................................................................... 75
3-1.1.2 Attenuator ...................................................................................................... 76
3-1.1.3 DBF laser diode ............................................................................................. 76
3-1.1.4 Laser diode controller .................................................................................... 77
3-1.1.5 Electro-optic modulators................................................................................ 77
3-1.1.6 Lock-in amplifier ........................................................................................... 79
3-1.1.7 Motorized polarization controller(Agilent 11896A) ................................ 81
3-1.1.8 EDFA ............................................................................................................. 82
3-1.1.9 Fiber fabry-perot tunable filters ..................................................................... 83
3-1.2 Measurement architecture..................................................................................... 84
3-2 Brillouin frequency measurement................................................................................ 85
3-2.1 Single-mode fiber.................................................................................................. 85
3-2.2 Dispersion shift fiber............................................................................................. 85
3-2.3 Temperature coefficient of Brillouin frequency ................................................... 86
3-2.4 Strain coefficient of Brillouin frequency .............................................................. 87
3-3 The establishment of auto locating system .................................................................. 88
3-3.1 Locating methodology .......................................................................................... 88
3-3.2 Locating by periodically repeated signal .............................................................. 89
3-3.3 Automatic measurement ....................................................................................... 89
3-4 Spatial resolution test................................................................................................... 90
3-4.1 Modulation frequency vs. spatial resolution......................................................... 90
3-4.2 Modulation depth vs. spatial resolution................................................................ 94
3-4.3 Probe level vs. spatial resolution .......................................................................... 95
3-4.4 Polarization controller to the spatial resolution .................................................... 98
Chapter 4 Applicational Measurement................................................................................. 129
4-1 Crack detection .......................................................................................................... 129
4-1.1 Crack measurement and locating ........................................................................ 129
4-1.2 The effect of modulation depth ........................................................................... 131
4-1.3 The effect of long distance measurement ........................................................... 131
4-2 Simple beam strain measurement .............................................................................. 133
4-2.1 BOCDA strain measurement .............................................................................. 133
4-2.2 Acryl beam finite element simulation................................................................. 134
4-2.3 Comparison between measured and simulated data ........................................... 134
4-2.4 Temperature effect and compensation ................................................................ 136
4-2.4.1 Acryl beam with temperature of 32.4°C ...................................................... 136
x
4-2.4.2 Acryl beam with temperature of 41.7°C ...................................................... 137
4-3 Material property monitoring..................................................................................... 139
4-3.1 Steel pipe measurement ...................................................................................... 139
4.3.2 Measurement after fatigue load........................................................................... 140
4-3.3 Discussion ........................................................................................................... 142
4-4 Vibration measurement .............................................................................................. 143
4-4.1 Static measurement ............................................................................................. 143
4-4.1.1 Pre-strained steel pipe .................................................................................. 144
4-4.1.2 Compression test.......................................................................................... 146
4-4.2 Dynamic test ....................................................................................................... 146
4-4.2.1 Low frequency test....................................................................................... 147
4-4.2.2 High frequency test ...................................................................................... 147
Chapter 5 System Enhancement........................................................................................ 177
5-1 Spatial resolution improvement ................................................................................. 177
5-1.1 Polarization optimization .................................................................................... 177
5-1.2 Compensation for broadening............................................................................. 179
5-1.2.1 Compensation model.................................................................................... 181
5-1.2.2 Spatial resolution limit improvement........................................................... 182
5-2 Measurement range enlargement ............................................................................... 185
5-2.1 Polarization isolator ............................................................................................ 186
5-2.2 Enlarge range by polarization isolator ................................................................ 187
5-3 Dynamic measurement by relative magnitude........................................................... 189
5-3.1 Dynamic measurement of steel pipe................................................................... 189
5-3.2 Dynamic measurement of plastic pipe................................................................ 192
5-4 Multi-sensor realization ............................................................................................. 193
5-4.1 Displacement sensor ........................................................................................... 193
5-4.2 Rotation sensor.................................................................................................... 195
5-4.3 Inclination sensor ................................................................................................ 197
5-5 System performance evaluation ................................................................................. 197
Chapter 6 Conclusion and Future Work............................................................................... 214
6-1 Summary .................................................................................................................... 214
6-2 Future work ................................................................................................................ 216
Reference............................................................................................................................. 218
dc.language.isoen
dc.title分散式光纖布里淵散射量測系統之建置zh_TW
dc.titleThe Establishment of Distributed Fiber Brillouin Scattering Measurement Systemen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee李有豐,林詠彬,李世光,張國鎮,王仲宇,郭茂坤
dc.subject.keyword健康監測,光纖,布里淵散射,分佈式感測,自動量測,zh_TW
dc.subject.keywordhealth monitoring,optical fiber,Brillouin scattering,distributed sensing,automatic measuring,en
dc.relation.page225
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved