請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28103完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰 | |
| dc.contributor.author | Bo-Yeh Huang | en |
| dc.contributor.author | 黃柏燁 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:01:05Z | - |
| dc.date.available | 2007-08-02 | |
| dc.date.copyright | 2007-08-02 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-30 | |
| dc.identifier.citation | [1] J. Welch, J.C. van Gemert “Optical –Thermal Response of Laser-Irradiated Tissue”, Plenum Press, New York and London (1995)
[2] N. Metropolis and S. Ulam. “The Monte Carlo method.” J. Am. Statistical Association, 44:335-341(1949) [3] Snow H. Tseng, Jethro H. Greene, and Allen Taflove,” Exact solution of Maxwell’s equations for optical interactions with macroscopic random medium”, Optics Letters Vol. 29, No. 12: 1393-1395 (2004) [4] Arjun Yodh and Britton Chance”Spectroscopy and imaging with diffusing light”, Physics Today,March 34-40(1995) [5] Zaccanti, G, Del Bianco, S, Martelli, F “Measurements of optical properties of high-density media”, Appl. Optics 42 (19): 4023-4030 (2003) [6] Wilson and Adam, “A Monte-Carlo Model for the absorption and flux distributions of light in tissue” Med. Phys. 10 (6):824-830 (1983) [7] L. Whang, S.L. Jacques, and L. Zheng, 'MCML- Monte Carlo modeling of light transport in multi-layered tissues,' Comput. Methods Programs Biomed. 47, 131-146, (1995) [8] G. W. Kattawar and G. N. Plass” Radiance and polarization of multiple scattered light from haze and clouds, ” Appl. Opt. 7, 1519-1527(1967) [9] S. Bartel and A. H. Hielscher, 'Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media, ' Appl. Opt. 39, 1580-1588, (2000) [10] J. C. Ramella-Roman, S. A. Prahl, S. L. Jacques, 'Three Monte Carlo programs of polarized light transport into scattering media: part I, ' Optics Express, 13, 4420-4438 (2005). [11] J. C. Ramella-Roman, S. A. Prahl, S. L. Jacques, 'Three Monte Carlo programs of polarized light transport into scattering media: part II,' Optics Express, 13,10392-10405 (2005). [12] M. ski, J. Mroczka, T. Girasole, r. Gouesbet, and r. han, 'Light-transmittance predictions under multiple-light-scattering conditions. I. direct problem: hybrid-Method approximation,' Appl. Opt. 40, 1514-1524 (2001) [13] M. ski, J. Mroczka, T. Girasole, r. Gouesbet, and r. han, 'Light-transmittance predictions under multiple-light-scattering conditions. II. inverse problem: particle size determination,' Appl. Opt. 40, 1514-1524 (2001) [14] X. Ma, J. Q Lu, R S. Brock, K. M Jacobs, P. Yang and X.H. Hu”Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm” Phys. Med. Biol. 48, 4165-4172 (2003) [15] Moritz Friebel, André Roggan, Gerhard Müller, and Martina Meinke” Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions”, J. Biomed. Opt. 11, 034021 (2006) [16] G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part1: Theory and validation on synthetic phantoms”, Appl. Optics. 45, No.5: 1062-1071(2006) [17] Prahl S A, Keijzer M, Jacques S L and Welch A J, “A Monte Carlo code of light propagation in tissue”, Proc. SPIE 5: 102-11(1989) [18] L. Henyey and J. Greenstein, “Diffuse radiation in the galaxy”, Astrophys. Journal, vol. 93: 70-83 (1941) [19] Dominique Toublanc, ”Henyey Greenstein and Mie phase functions in Monte Carlo radiative transfer computation”, Appl. Optics 35, 3270-3274(1996) [20] Bohren C G and Huffman D R, “Absorption and Scattering of Light by Small Particles “, New York: Wiley (1983) [21] H. V. de Hulst, “Light Scattering By Small Particles”, Dover Publications (1981) [22] S. L. Jacques, C. A. Alter, and S. A. Prahl. ”Angular dependence of HeNe laser light scattering by human dermis.” Lasers Life Sci., 1:309-333(1987) [23] G. Yoon. “Absorption and Scattering of Laser Light in Biological Media- Mathematical Modeling and Methods for Determining Optical Properties.” PhD thesis, University of Texas at Austin,(1988) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28103 | - |
| dc.description.abstract | 我們已利用蒙地卡羅法,模擬了光在紊亂媒質(隨機均勻分佈的球體)中的傳播情形,本篇論文深入探討蒙地卡羅法模擬無極化光與物質的交互作用,討論實際實驗上會遇到的問題如接收機與樣本距離和接收機的接收面積對散射結果會有不同的影響外,樣本裡的粒子大小或介電常數不同時會影響整體的散射行為,粒子的數量僅僅影響整體散射強度的量值,另外,若樣本裡的粒子資訊相同(如散射粒子的大小、數量及介電常數均相同)但樣本的外觀結構不同時,我們依然可以得到不同的散射後強度分佈圖,我們了解除了樣本裡不同散射體與吸收體對於散射結果有不錯的鑑別度外,模擬不同樣本結構亦會有不同的差異性,如此在應用逆蒙地卡羅法(Inverse Monte Carlo)時不但可以反推樣本裡的資訊,甚至樣本的結構亦可以利用逆蒙地卡羅法來推求。最後,蒙地卡羅法的模擬結果也與PSTD(Pseudo spectral time-domain method)的模擬結果做一個相比對發現,當球佔據樣本的空間密度小於10%的時候有很好的相符性。 | zh_TW |
| dc.description.abstract | Monte Carlo method is used to simulate light propagation in turbid media consisting of randomly distributed dielectric spheres. Interaction of unpolarized light with the medium has been simulated and analyzed. In this thesis, we discuss the influence on the total scattering cross section and scattering intensity of distance between the medium and photo-detector, due to model geometry, sphere size inside the sample, numbers and optical index. It is shown that specific information of the medium can be extracted. Therefore, the Inverse Monte Carlo technique can be employed to extract the information from turbid media. Finally, Monte Carlo results have been compared with the Pseudo spectral time-domain (PSTD) simulation for a cluster of volume density less than 10%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:05Z (GMT). No. of bitstreams: 1 ntu-96-R94941087-1.pdf: 2043708 bytes, checksum: f83403a67e5bc9f6cbe65dc256fd1968 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書… Ⅰ
誌謝… Ⅱ 中文摘要… Ⅲ 英文摘要… Ⅳ 目錄… Ⅴ 圖目錄… Ⅶ 表目錄… V 第一章 緒論 1 1.1 簡介 2 1.2 論文架構與研究動機 3 第二章 複雜物質的光學性質 3 2.1 光學特性 3 2.2 文獻回顧 6 第三章 模擬方法 8 3.1 蒙地卡羅法簡介 8 3.2 光子隨機路徑模型 11 3.2.1設定光子路徑長 12 3.2.2 決定光子遇到散射事件或吸收事件 14 3.2.3 決定光子遇散射事件後的散射角 15 3.3 介面反射與折射 22 3.4 入射場分佈 24 3.4.1同調平面波 24 3.4.2高斯波 25 3.5 光子記錄 27 3.5.1光通量(Light Fluence) 27 3.5.2 穿透係數(Transmittance)與反射係數(Reflectance) 28 3.5.3總散射截面積(Total Scattering Cross Section) 28 3.5.4 接收機位置與接收機截面積 28 3.6 應用推廣 31 第四章 模擬結果與分析 35 4.1 程式驗證 36 4.2 模擬結果與比較 39 4.3 討論 55 第五章 結論與未來展望 58 參考文獻 60 附錄一 彼式法則 63 附錄二 隨機亂數取樣 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光 | zh_TW |
| dc.subject | 散射 | zh_TW |
| dc.subject | 隨機 | zh_TW |
| dc.subject | 蒙地卡羅 | zh_TW |
| dc.subject | light scattering | en |
| dc.subject | random | en |
| dc.subject | sphere | en |
| dc.subject | monte carlo | en |
| dc.title | 利用蒙地卡羅法模擬光對隨機分佈球體
的傳播與散射行為 | zh_TW |
| dc.title | Monte Carlo Simulation of Light Scattering by Multi-Spheres | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張世慧,陳士元 | |
| dc.subject.keyword | 蒙地卡羅,光,散射,隨機, | zh_TW |
| dc.subject.keyword | monte carlo,light scattering,random,sphere, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
