請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28092
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹東榮 | |
dc.contributor.author | Ching-ling Lin | en |
dc.contributor.author | 林慶齡 | zh_TW |
dc.date.accessioned | 2021-06-13T00:00:57Z | - |
dc.date.available | 2007-08-01 | |
dc.date.copyright | 2007-08-01 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-31 | |
dc.identifier.citation | Goldman, B., Multidrug resistance: can new drugs help chemotherapy score against cancer? J Natl Cancer Inst, 2003. 95(4): p. 255-7.
2. McDevitt, C.A. and R. Callaghan, How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacol Ther, 2007. 113(2): p. 429-41. 3. Leonard, G.D., T. Fojo, and S.E. Bates, The role of ABC transporters in clinical practice. Oncologist, 2003. 8(5): p. 411-24. 4. Ferry, D.R., H. Traunecker, and D.J. Kerr, Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer, 1996. 32A(6): p. 1070-81. 5. Leith, C.P., et al., Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood, 1999. 94(3): p. 1086-99. 6. Clifford, S.C., D.E. Neal, and J. Lunec, High level expression of the multidrug resistance (MDR1) gene in the normal bladder urothelium: a potential involvement in protection against carcinogens? Carcinogenesis, 1996. 17(3): p. 601-4. 7. Juliano, R.L. and V. Ling, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta, 1976. 455(1): p. 152-62. 8. Goldstein, L.J., MDR1 gene expression in solid tumours. Eur J Cancer, 1996. 32A(6): p. 1039-50. 9. Aouali, N., et al., Immunosuppressors and reversion of multidrug-resistance. Crit Rev Oncol Hematol, 2005. 56(1): p. 61-70. 10. Sun, J., et al., Multidrug resistance P-glycoprotein: crucial significance in drug disposition and interaction. Med Sci Monit, 2004. 10(1): p. RA5-14. 11. Cordon-Cardo, C., et al., Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A, 1989. 86(2): p. 695-8. 12. van der Valk, P., et al., Distribution of multi-drug resistance-associated P-glycoprotein in normal and neoplastic human tissues. Analysis with 3 monoclonal antibodies recognizing different epitopes of the P-glycoprotein molecule. Ann Oncol, 1990. 1(1): p. 56-64. 13. Schinkel, A.H., et al., Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994. 77(4): p. 491-502. 14. Linardi, R. and C. Natalini, Multi-drug resistance (MDR1) gene and P-glycoprotein influence on pharmacokinetic and pharmacodymanic of therapeutic drugs. Ciencia Rural, Santa, Maria, 2006. 36 (1): p. 336-341. 15. Ling, V., Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol, 1997. 40 Suppl: p. S3-8. 16. Biedler, J.L. and H. Riehm, Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res, 1970. 30(4): p. 1174-84. 17. Marian, T., et al., In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging, 2003. 30(8): p. 1147-54. 18. Taylor, C.W., et al., Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br J Cancer, 1991. 63(6): p. 923-9. 19. Dalton, W.S., et al., Immunohistochemical detection and quantitation of P-glycoprotein in multiple drug-resistant human myeloma cells: association with level of drug resistance and drug accumulation. Blood, 1989. 73(3): p. 747-52. 20. Zhai, B.J., et al., Development and characterization of multidrug resistant human hepatocarcinoma cell line in nude mice. World J Gastroenterol, 2006. 12(41): p. 6614-9. 21. Mistry, P., et al., In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res, 2001. 61(2): p. 749-58. 22. Shinoda, H., et al., Therapeutic efficacy of combination of antitumor agent with AHC-52 against multidrug-resistant cells in the intravenously inoculated P388 leukemia model. Cancer Chemother Pharmacol, 1992. 30(5): p. 335-40. 23. Yoshida, N., et al., Inhibition of P-glycoprotein-mediated transport by terpenoids contained in herbal medicines and natural products. Food Chem Toxicol, 2006. 44(12): p. 2033-9. 24. Findling-Kagan, S., et al., Establishment and characterization of new cellular lymphoma model expressing transgenic human MDR1. Leuk Res, 2005. 29(4): p. 407-14. 25. Konya, A., et al., Inhibition of the MDR1 transporter by new phenothiazine derivatives. Biochem Biophys Res Commun, 2006. 346(1): p. 45-50. 26. Barbarics, E., et al., Characterization of P-glycoprotein transport and inhibition in vivo. Cancer Res, 1998. 58(2): p. 276-82. 27. Piwnica-Worms, D., et al., Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res, 1993. 53(5): p. 977-84. 28. Lorke, D.E., et al., In vitro and in vivo tracer characteristics of an established multidrug-resistant human colon cancer cell line. J Nucl Med, 2001. 42(4): p. 646-54. 29. Han, Y., et al., Nude mice multi-drug resistance model of orthotopic transplantation of liver neoplasm and Tc-99m MIBI SPECT on p-glycoprotein. World J Gastroenterol, 2005. 11(22): p. 3335-8. 30. Tsuruo, T., et al., Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res, 1981. 41(5): p. 1967-72. 31. Hendrikse, N.H., et al., Visualization of multidrug resistance in vivo. Eur J Nucl Med, 1999. 26(3): p. 283-93. 32. Theis, J.G., et al., Assessment of systemic toxicity in children receiving chemotherapy with cyclosporine for sarcoma. Med Pediatr Oncol, 2000. 34(4): p. 242-9. 33. Hayes, T. QLT discontinues tariquidar phase Ⅲ non-small cell lung cancer trials following planned interim analysis by the independent data safety monitoring committee. 2003 [cited; Available from: www.qltinc.com/Qltinc/main/mainhome.cfm. 34. Kitagawa, S., Inhibitory effects of polyphenols on p-glycoprotein-mediated transport. Biol Pharm Bull, 2006. 29(1): p. 1-6. 35. Kitagawa, S., T. Nabekura, and S. Kamiyama, Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J Pharm Pharmacol, 2004. 56(8): p. 1001-5. 36. Holland, M.L., et al., The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem Pharmacol, 2006. 71(8): p. 1146-54. 37. Zhang, W., T.M. Tan, and L.Y. Lim, Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab Dispos, 2007. 35(1): p. 110-5. 38. Del Vecchio, S., et al., Fractional retention of technetium-99m-sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients. J Nucl Med, 1997. 38(9): p. 1348-51. 39. Kostakoglu, L., et al., Association of tumor washout rates and accumulation of technetium-99m-MIBI with expression of P-glycoprotein in lung cancer. J Nucl Med, 1998. 39(2): p. 228-34. 40. Burak, Z., et al., 99mTc-MIBI imaging as a predictor of therapy response in osteosarcoma compared with multidrug resistance-associated protein and P-glycoprotein expression. J Nucl Med, 2003. 44(9): p. 1394-401. 41. Kunishio, K., et al., Technetium-99m sestamibi single photon emission computed tomography findings correlated with P-glycoprotein expression in pituitary adenoma. J Med Invest, 2006. 53(3-4): p. 285-91. 42. Peck, R.A., et al., Phase I and pharmacokinetic study of the novel MDR1 and MRP1 inhibitor biricodar administered alone and in combination with doxorubicin. J Clin Oncol, 2001. 19(12): p. 3130-41. 43. Agrawal, M., et al., Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin Cancer Res, 2003. 9(2): p. 650-6. 44. Sharma, V., Radiopharmaceuticals for assessment of multidrug resistance P-glycoprotein-mediated drug transport activity. Bioconjug Chem, 2004. 15(6): p. 1464-74. 45. Pusztai, L., et al., Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 2005. 104(4): p. 682-91. 46. Gomes CM, W.M., Que I, Henriquez NV, van der Pluijm G, Romeo S, Abrunhosa AJ, Botelho MF, Hogendoorn PC, Pauwels EK, Cleton-Jansen AM., Functional imaging of multidrug resistance in an orthotopic model of osteosarcoma using (99m)Tc-sestamibi. Eur J Nucl Med Mol Imaging, 2007: p. [Epub ahead of print] 47. Liu, Z., et al., Imaging recognition of inhibition of multidrug resistance in human breast cancer xenografts using 99mTc-labeled sestamibi and tetrofosmin. Nucl Med Biol, 2005. 32(6): p. 573-83. 48. 衛生署. 癌症關懷照護網. 2007 [cited; Available from: http://www.totcare.com.tw/homenews.asp?newsid=846. 49. Iizasa, H., et al., Altered expression and function of P-glycoprotein in dextran sodium sulfate-induced colitis in mice. J Pharm Sci, 2003. 92(3): p. 569-76. 50. Barrand, M.A. and P.R. Twentyman, Differential recognition of mdr1a and mdr1b gene products in multidrug resistant mouse tumour cell lines by different monoclonal antibodies. Br J Cancer, 1992. 65(2): p. 239-45. 51. Echevarria-Lima, J., et al., Expression and activity of multidrug resistance protein 1 in a murine thymoma cell line. Immunology, 2005. 114(4): p. 468-75. 52. Yu, J.L., et al., Immunoenhancing activity of protopanaxatriol-type ginsenoside-F3 in murine spleen cells. Acta Pharmacol Sin, 2004. 25(12): p. 1671-6. 53. Wersinger, C., G. Rebel, and I.H. Lelong-Rebel, Detailed study of the different taurine uptake systems of colon LoVo MDR and non-MDR cell lines. Amino Acids, 2000. 19(3-4): p. 667-85. 54. Fang, L., et al., Discovery of a daunorubicin analogue that exhibits potent antitumor activity and overcomes P-gp-mediated drug resistance. J Med Chem, 2006. 49(3): p. 932-41. 55. Choi, C.H., J.H. Kim, and S.H. Kim, Reversal of P-glycoprotein-mediated MDR by 5,7,3',4',5'-pentamethoxyflavone and SAR. Biochem Biophys Res Commun, 2004. 320(3): p. 672-9. 56. Krasznai, Z.T., et al., Paclitaxel modifies the accumulation of tumor-diagnostic tracers in different ways in P-glycoprotein-positive and negative cancer cells. Eur J Pharm Sci, 2006. 28(3): p. 249-56. 57. Shen, D.W., et al., Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J Biol Chem, 1986. 261(17): p. 7762-70. 58. Sietsma, H., R.J. Veldman, and J.W. Kok, The involvement of sphingolipids in multidrug resistance. J Membr Biol, 2001. 181(3): p. 153-62. 59. Manov, I., et al., High Dose Acetaminophen Inhibits the Lethal Effect of Doxorubicin in HepG2 Cells: the Role of P-glycoprotein and Mitogen-Activated Protein Kinase p44/42 Pathway. J Pharmacol Exp Ther, 2007: p. [Epub ahead of print]. 60. Jin, J., et al., Reversal of multidrug resistance of cancer through inhibition of P-glycoprotein by 5-bromotetrandrine. Cancer Chemother Pharmacol, 2005. 55(2): p. 179-88. 61. Sudhir Gupta, M. and T. Tsuruo, Multidrug resistance in cancer cells. 1996. 20-21. 62. Killion, J.J., et al., The immunogenic properties of drug-resistant murine tumor cells do not correlate with expression of the MDR phenotype. Cancer Immunol Immunother, 1993. 36(6): p. 381-6. 63. Wilmanns, C., et al., Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer, 1992. 52(1): p. 98-104. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28092 | - |
dc.description.abstract | 過度表現多重藥物抗藥性mdr1基因為癌症病患主要化療失敗的原因之一,mdr1基因產物為細胞膜上之轉運蛋白P-glycoprotein (P-gp),此蛋白將化療藥物從腫瘤細胞中排出因此無法有效毒殺腫瘤細胞。本論文的研究目的為建立具有抗藥性的腫瘤細胞株及其小鼠腫瘤動物模式,以應用於抗藥性腫瘤之研究。大腸癌CT-26/WT細胞株逐漸式培養在doxorubicin (DOX)濃度由低至高(1 nM-1 μM或10 μM)後,稱此為CT-26/DOX1和CT-26/DOX10亞型細胞株,以MTT試驗測試細胞對化療藥物的抗藥性,結果顯示CT-26/DOX1細胞對於DOX的抵抗倍率(resistant index; RI)相較於CT-26/WT為90倍,對P-gp基質之化療藥物vincristine和etoposide的RI也高於CT-26/WT,而對非P-gp基質之化療藥物5-FU和methotrexate,其RI則與CT-26/WT相似。CT-26/DOX1細胞在mdr1a mRNA表現較CT-26/WT高,而其他抗藥性基因mdr1b和mrp1表現則無差異。在P-gp蛋白表現和功能方面,CT-26/DOX1和CT-26/DOX10細胞顯著高於CT-26/WT。將細胞皮下接種於小鼠,於CT-26/WT和CT-26/DOX1活體腫瘤大小約75-250 mm3時,給予三劑DOX化療,CT-26/DOX1腫瘤大小相較於CT-26/WT有極顯著較高,老鼠犧牲後萃取其腫瘤的RNA和蛋白質,CT-26/DOX1腫瘤之mdr1a mRNA表現高於CT-26/WT,mdr1b和mrp1 mRNA則無差異。CT-26/DOX1腫瘤的P-gp表現亦高於CT-26/WT。而CT-26/WT和CT-26/DOX1腫瘤的病理特徵皆屬高度侵犯性和異型性,且血管充份供應。綜合上述結果證實本研究已建立抗藥性大腸癌CT-26/DOX1和CT-26/DOX10的細胞模式以及CT-26/DOX1的實驗動物模式。此抗藥性活體模式以核醫影像和自體放射性顯影,利用示蹤劑99mTc-MIBI診斷P-gp功能並無法測得影像,99mTc-MIBI 在CT-26/WT和CT-26/DOX1腫瘤分布量極低,但腫瘤對18F-FDG的攝取則非常清晰,未來可嘗試利用其他示蹤劑如99mTc-tetrofosmin、18F-paclitaxel和11C-verapamil等以進行抗藥性活體動物的影像分析。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:00:57Z (GMT). No. of bitstreams: 1 ntu-96-R94629024-1.pdf: 2170743 bytes, checksum: 25360059cd8a09b84038e8d0abf8d4a4 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
誌謝-------------------------------------------------------------------------------------------- Ⅰ 中文摘要-------------------------------------------------------------------------------------- Ⅱ Abstract --------------------------------------------------------------------------------------- Ⅲ 目錄-------------------------------------------------------------------------------------------- Ⅴ 圖次-------------------------------------------------------------------------------------------- Ⅸ 表次-------------------------------------------------------------------------------------------- ⅩⅠ 簡寫對照表----------------------------------------------------------------------------------- ⅩⅡ 第一章、前言與文獻探討------------------------------------------------------------------ 1 第一節、多重藥物抗藥性(multidrug resistance;MDR)----------------------------- 1 一、MDR在臨床扮演之角色---------------------------------------------------------- 1 二、P-gp的構造、功能、分布及造成MDR的機制--------------------------------- 2 第二節、抗藥性腫瘤的細胞模式和實驗動物模式---------------------------------- 5 一、抗藥性腫瘤的細胞模式----------------------------------------------------------- 5 二、抗藥性腫瘤的實驗動物模式----------------------------------------------------- 6 第三節、MDR抑制物(modulators;inhibitors) ---------------------------------------- 6 一、P-gp抑制物(modulators; inhibitors)在臨床上的療效評估------------------ 6 二、天然的P-gp modulators------------------------------------------------------------ 8 第四節、臨床上診斷P-gp的策略------------------------------------------------------- 10 一、傳統診斷MDR之方法------------------------------------------------------------ 10 二、非侵入性核子醫學影像技術----------------------------------------------------- 10 三、核醫影像偵測P-gp之功能------------------------------------------------------- 11 四、99mTc-MIBI在抗藥性腫瘤動物模式造影之研究---------------------------- 12 第五節、研究動機與目的---------------------------------------------------------------- 13 第二章、實驗材料與方法------------------------------------------------------------------ 14 第一節、藥品資料------------------------------------------------------------------------- 14 第二節、實驗方法------------------------------------------------------------------------- 15 一、細胞株及動物模式----------------------------------------------------------------- 15 二、建立抗藥性細胞株之流程-------------------------------------------------------- 15 三、利用MTT測定化療藥物對細胞之毒殺作用---------------------------------- 17 四、Trypan Blue染色比較CT-26/WT和CT-26/DOX1細胞株之生長曲線 17 五、Flow cytometry分析P-gp表現--------------------------------------------------- 18 六、以calcein-AM分析細胞P-gp功能---------------------------------------------- 18 七、以rhodamine123 (Rh123)分析細胞P-gp功能--------------------------------- 19 八、建立抗藥性CT-26腫瘤動物模式之流程-------------------------------------- 19 九、反轉錄-聚合酶鏈反應(RT-PCR)------------------------------------------------- 20 十、Western blot分析P-gp表現------------------------------------------------------- 23 十一、腫瘤組織之蘇木紫-伊紅(hematoxylin-eosin; H&E)染色----------------- 24 十二、腫瘤組織P-gp和血管之免疫組織化學(Immunohistochemistry;IHC)染色--------------------------------------------------------------------------------------- 26 十三、偵測99mTc-MIBI在腫瘤之分布----------------------------------------------- 27 Ι、閃爍攝影機(scintigraphy)活體偵測腫瘤分布------------------------------ 27 Ⅱ、自體放射性顯影(autoradiography)偵測腫瘤分步------------------------ 28 十四、利用PET活體影像18F-FDG在腫瘤之分布-------------------------------- 28 十五、數據統計分析-------------------------------------------------------------------- 29 第三章、實驗結果--------------------------------------------------------------------------- 30 第一節、探討抗藥性CT-26/DOX1及CT-26/DOX10細胞株之形態、生長速 度、抗化療藥物及抗藥性基因和蛋白表現------------------------------------------- 30 一、觀察CT-26/WT、CT-26/DOX1及CT-26/DOX10細胞之形態-------------- 30 二、CT-26/WT、CT-26/DOX1及CT-26/DOX10細胞之生長速度--------------- 30 三、DOX及其他化療藥物對CT-26/WT、CT-26/DOX1及CT-26/DOX1 n7細胞之毒殺作用------------------------------------------------------------------------ 30 四、分析CT-26/WT、CT-26/DOX1細胞抗藥性(MDR)基因mRNA之表現 31 五、分析CT-26/WT、CT-26/DOX1及CT-26/DOX10細胞之P-gp表現-------- 32 Ι、Western blot分析P-gp表現---------------------------------------------------- 32 Ⅱ、Flowcytometry分析P-gp表現------------------------------------------------- 32 六、分析CT-26/WT、CT-26/DOX1及CT-26/DOX10細胞之P-gp功能-------- 33 Ι、Calcein-AM分析P-gp功能----------------------------------------------------- 33 Ⅱ、Rh123分析P-gp功能----------------------------------------------------------- 33 第二節、探討動物模式下抗藥性腫瘤之生長、抗藥性基因之表現以及CT-26腫瘤之病理特性--------------------------------------------------------------------------- 44 ㄧ、給藥組及對照組老鼠之體重、腫瘤生長變化--------------------------------- 44 二、CT-26/WT、CT-26/DOX1活體腫瘤組織MDR基因之mRNA表現------- 44 三、H&E染色觀察CT-26/WT和CT-26/DOX1腫瘤之特性--------------------- 45 四、CT-26/WT、CT-26/DOX1活體腫瘤組織之P-gp表現---------------------- 45 Ι、Western blot----------------------------------------------------------------------- 45 Ⅱ、IHC染色法----------------------------------------------------------------------- 45 五、IHC染色觀察CT-26/WT和CT-26/DOX1腫瘤之血管分布---------------- 46 第三節、探討99mTc-MIBI和18F-FDG在此抗藥性腫瘤模式之研究-------------- 46 一、Scintigraphy偵測活體99mTc-MIBI在CT-26/WT和CT-26/DOX1腫瘤之分布------------------------------------------------------------------------------------ 46 二、自體放射性顯影(autoradiography)偵測99mTc-MIBI在CT-26/WT和CT-26/DOX1腫瘤之分布------------------------------------------------------------- 46 三、18F-FDG在活體腫瘤之分布------------------------------------------------------ 46 第四章、討論--------------------------------------------------------------------------------- 58 第一節、抗藥性腫瘤細胞的建立------------------------------------------------------- 58 第二節、抗藥性腫瘤的實驗動物模式建立------------------------------------------- 62 第三節、探討99mTc-MIBI和18F-FDG在此抗藥性腫瘤模式之研究-------------- 63 參考文獻-------------------------------------------------------------------------------------- 65 | |
dc.language.iso | zh-TW | |
dc.title | 抗藥性大腸癌細胞株及其小鼠腫瘤動物模式之建立 | zh_TW |
dc.title | Establishment and Characterization of A Multidrug Resistant (MDR) Colon Carcinoma Cell line and MDR Tumor Model in BALB/c Mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱瑞民,魏孝萍,林中天 | |
dc.subject.keyword | CT-26,doxorubicin,multidrug resistance,mdr1a,P-glycoprotein,99mTc-MIBI, | zh_TW |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-31 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。