Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章
dc.contributor.authorHsiang-Wei Linen
dc.contributor.author林翔偉zh_TW
dc.date.accessioned2021-06-12T18:36:29Z-
dc.date.available2014-08-18
dc.date.copyright2011-08-18
dc.date.issued2011
dc.date.submitted2011-08-08
dc.identifier.citationChapter 1.
1. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc. Chem. Commun. 1977, 578.
2. Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W. S.; Wujkowski, L. Thin Solid Films 2000, 363, 55.
3. Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andersson, M. R.; Hjertberg, T.; Wennerstrom, O. Nature 1994, 372, 444.
4. Andersson, M. R.; Berggren, M.; Inganaes, O.; Gustafsson, G.; Gustafsson-Carlberg, J. C.; Selse, D.; Hjertberg, T.; Wennerstroem, O. Macromolecules 1995, 28, 7525.
5. Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.; Meskers, S. C. J.; Dekkers, H. P. J. M.; Meijer, E. W. J. Am. Chem. Soc. 1996, 118, 4908.
6. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
7. R. Andersson, M.; Thomas, O.; Mammo, W.; Svensson, M.; Theander, M.; Inganas, O. J. Mater. Chem. 1999, 9, 1933.
8. Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.
9. Cornil, J.; Dos Santos, D. A.; Beljonne, D.; Bredas, J. L. J. Phys. Chem. 1995, 99, 5604.
10. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature Mater. 2005, 4, 864.
11. Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
12. Heremans, P.; Cheyns, D.; Rand, B. P. Acc. Chem. Res. 2009, 42, 1740.
13. Zhuang, X.-D.; Chen, Y.; Li, B.-X.; Ma, D.-G.; Zhang, B.; Li, Y. Chem. Mater. 2010, 22, 4455.
14. Ling, Q.-D.; Song, Y.; Lim, S.-L.; Teo, E. Y.-H.; Tan, Y.-P.; Zhu, C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G. Angew. Chem. Int. Ed. 2006, 45, 2947.
15. Lee, T. J.; Park, S.; Hahm, S. G.; Kim, D. M.; Kim, K.; Kim, J.; Kwon, W.; Kim, Y.; Chang, T.; Ree, M. J. Phys. Chem. C 2009, 113, 3855.
16. Chung, D. S.; Park, J. W.; Kim, S.-O.; Heo, K.; Park, C. E.; Ree, M.; Kim, Y.-H.; Kwon, S.-K. Chem. Mater. 2009, 21, 5499.
17. He, M.; Li, J.; Sorensen, M. L.; Zhang, F.; Hancock, R. R.; Fong, H. H.; Pozdin, V. A.; Smilgies, D.-M.; Malliaras, G. G. J. Am. Chem. Soc. 2009, 131, 11930.
18. Heeney, M.; Bailey, C.; Genevicius, K.; Shkunov, M.; Sparrowe, D.; Tierney, S.; McCulloch, I. J. Am. Chem. Soc. 2005, 127, 1078.
19. Lim, B.; Baeg, K.-J.; Jeong, H.-G.; Jo, J.; Kim, H.; Park, J.-W.; Noh, Y.-Y.; Vak, D.; Park, J.-H.; Park, J.-W.; Kim, D.-Y. Adv. Mater. 2009, 21, 2808.
20. Yuan, M.-C.; Chiu, M.-Y.; Liu, S.-P.; Chen, C.-M.; Wei, K.-H. Macromolecules 2010, 43, 6936.
21. Murphy, A. R.; Liu, J.; Luscombe, C.; Kavulak, D.; Fréchet, J. M. J.; Kline, R. J.; McGehee, M. D. Chem. Mater. 2005, 17, 4892.
22. Ong, B.; Wu, Y.; Jiang, L.; Liu, P.; Murti, K. Synth. Met. 2004, 142, 49.
23. Ong, B. S.; Wu, Y.; Li, Y.; Liu, P.; Pan, H. Chem. Eur. J. 2008, 14, 4766.
24. Pron, A.; Gawrys, P.; Zagorska, M.; Djurado, D.; Demadrille, R. Chem. Soc. Rev. 2010, 39, 2577.
25. van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Mater. Sci. and Eng., R 2001, 32, 1.
26. Heeger, A. J. Angew. Chem. Int. Ed. 2001, 40, 2591.
27. Roncali, J. Chem. Rev. 1997, 97, 173.
28. Bredas, J. L.; Street, G. B.; Themans, B.; Andre, J. M. J. Chem. Phys. 1985, 83, 1323.
29. Kwon, O.; McKee, M. L. J. Phys.l Chem. A 2000, 104, 7106.
30. Hernandez, V.; Castiglioni, C.; Del Zoppo, M.; Zerbi, G. Phys. Rev. B 1994, 50, 9815.
31. Grant, P. M.; Batra, I. P. Solid State Commun. 1979, 29, 225.
32. Hwavinga, E. E.; Tenhoeve, W.; Wynberg, H. Polym, Bull. 1992, 29, 119.
33. Ling, M. M.; Bao, Z. N. Org. Electron. 2006, 7, 568.
34. Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
35. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685.
36. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Fréchet, J. M. J. Adv. Mater. 2003, 15, 1519.
37. Chang, J.-F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; Sölling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H. Chem. Mater. 2004, 16, 4772.
38. Lee, H. S.; Kim, D. H.; Cho, J. H.; Hwang, M.; Jang, Y.; Cho, K. J. Am. Chem. Soc. 2008, 130, 10556.
39. Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
40. Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 2605.
41. Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616.
42. Bijleveld, J. C.; Gevaerts, V. S.; Di Nuzzo, D.; Turbiez, M.; Mathijssen, S. G. J.; de Leeuw, D. M.; Wienk, M. M.; Janssen, R. A. J. Adv. Mater. 2010, 22, E242.
43. Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J. J. Am. Chem. Soc. 2011, 133, 2198.
44. Zhou, E.; Cong, J.; Tajima, K.; Hashimoto, K. Chem. Mater. 2010, 22, 4890.
45. Heremans, P.; Gelinck, G. H.; Müller, R.; Baeg, K.-J.; Kim, D.-Y.; Noh, Y.-Y. Chem. Mater. 2010, 23, 341.
46. Katz, H. E. Chem. Mater. 2004, 16, 4748.
47. Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Prog. Polym. Sci. 2008, 33, 917.
48. Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Lee, H.; Kim, D. Y. Adv. Mater. 2006, 18, 3179.
49. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
50. Nunzi, J. M. C. R. Phys. 2002, 3, 523.
51. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
52. Moliton, A.; Nunzi, J. M. Polym. Int 2006, 55, 583.
53. Hummelen, J. C.; Knight, B. W.; Lepeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532.
54. Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868.
55. Arbogast, J. W.; Foote, C. S. J. Am. Chem. Soc. 1991, 113, 8886.
56. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
57. Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91, 954.
58. Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69, 4108.
59. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
60. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617.
61. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. Adv. Funct. Mater. 2007, 17, 1636.
62. Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. J. Am. Chem. Soc. 2007, 129, 4112.
63. Kong, H.; Chung, D. S.; Kang, I.-N.; Park, J.-H.; Park, M.-J.; Jung, I. H.; Park, C. E.; Shim, H.-K. J. Mater. Chem. 2009, 19, 3490.
64. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.
65. Fong, H. H.; Pozdin, V. A.; Amassian, A.; Malliaras, G. G.; Smilgies, D.-M.; He, M.; Gasper, S.; Zhang, F.; Sorensen, M. J. Am. Chem. Soc. 2008, 130, 13202.
66. Wu, Y.; Liu, P.; Ong, B. S.; Srikumar, T.; Zhao, N.; Botton, G.; Zhu, S. Appl. Phys. Lett. 2005, 86, 142102.
67. McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328.
68. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. Adv. Mater. 2005, 17, 1141.
69. Li, J.; Qin, F.; Li, C. M.; Bao, Q.; Chan-Park, M. B.; Zhang, W.; Qin, J.; Ong, B. S. Chem. Mater. 2008, 20, 2057.
70. Pan, H.; Wu, Y.; Li, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. Adv. Funct. Mater. 2007, 17, 3574.
71. Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911.
72. Zhou, E.; Tan, Z. a.; Huo, L.; He, Y.; Yang, C.; Li, Y. J. Phys. Chem. B 2006, 110, 26062.
73. Hou, J.; Tan, Z. a.; He, Y.; Yang, C.; Li, Y. Macromolecules 2006, 39, 4657.
74. Zhou, E.; Tan, Z. a.; Yang, C.; Li, Y. Macromol. Rapid Commun. 2006, 27, 793.
75. Zhou, E.; Tan, Z. a.; Yang, Y.; Huo, L.; Zou, Y.; Yang, C.; Li, Y. Macromolecules 2007, 40, 1831.
76. Wang, Y.; Zhou, E.; Liu, Y.; Xi, H.; Ye, S.; Wu, W.; Guo, Y.; Di, C.-a.; Sun, Y.; Yu, G.; Li, Y. Chem. Mater. 2007, 19, 3361.
77. Yu, C.-Y.; Ko, B.-T.; Ting, C.; Chen, C.-P. Sol. Energy Mater. Sol. Cells 2009, 93, 613.
78. Park, J. W.; Lee, D. H.; Chung, D. S.; Kang, D.-M.; Kim, Y.-H.; Park, C. E.; Kwon, S.-K. Macromolecules 2010, 43, 2118.
79. Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C. Chem. Mater. 2010, 22, 3290.
80. Kim, Y. M.; Lim, E.; Kang, I.-N.; Jung, B.-J.; Lee, J.; Koo, B. W.; Do, L.-M.; Shim, H.-K. Macromolecules 2006, 39, 4081.
81. Chen, Z.; Lemke, H.; Albert-Seifried, S.; Caironi, M.; Nielsen, M. M.; Heeney, M.; Zhang, W.; McCulloch, I.; Sirringhaus, H. Adv. Mater. 2010, 22, 2371.
82. Liu, Y.; Liu, Y.; Zhan, X. Macromol. Chem. Phys. 2011, 212, 428.
83. Patra, A.; Wijsboom, Y. H.; Leitus, G.; Bendikov, M. Chem. Mater. 2011, 23, 896.
Chapter 2.
1. Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andersson, M. R.; Hjertberg, T.; Wennerstrom, O. Nature 1994, 372, 444.
2. Andersson, M. R.; Berggren, M.; Inganaes, O.; Gustafsson, G.; Gustafsson-Carlberg, J. C.; Selse, D.; Hjertberg, T.; Wennerstroem, O. Macromolecules 1995, 28, 7525.
3. Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.; Meskers, S. C. J.; Dekkers, H. P. J. M.; Meijer, E. W. J. Am. Chem. Soc. 1996, 118, 4908.
4. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
5. R. Andersson, M.; Thomas, O.; Mammo, W.; Svensson, M.; Theander, M.; Inganas, O. J. Mater. Chem. 1999, 9, 1933.
6. Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W. S.; Wujkowski, L. Thin Solid Films 2000, 363, 55.
7. Ahn, S.-H.; Czae, M.-z.; Kim, E.-R.; Lee, H.; Han, S.-H.; Noh, J.; Hara, M. Macromolecules 2001, 34, 2522.
8. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
9. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
10. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
11. Berlin, A.; Zotti, G.; Zecchin, S.; Schiavon, G.; Vercelli, B.; Zanelli, A. Chem. Mater. 2004, 16, 3667.
12. Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C. Chem. Mater. 2010, 22, 3290.
13. Chu, T.-Y.; Lu, J.; Beaupré, S.; Zhang, Y.; Pouliot, J.-R. m.; Wakim, S.; Zhou, J.; Leclerc, M.; Li, Z.; Ding, J.; Tao, Y. J. Am. Chem. Soc. 2011, 133, 4250.
14. Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133, 4625.
15. Zhuang, X.-D.; Chen, Y.; Li, B.-X.; Ma, D.-G.; Zhang, B.; Li, Y. Chem. Mater. 2010, 22, 4455.
16. Ling, Q.-D.; Song, Y.; Lim, S.-L.; Teo, E. Y.-H.; Tan, Y.-P.; Zhu, C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G. Ange. Chem. Int. Ed. 2006, 45, 2947.
17. Lee, T. J.; Park, S.; Hahm, S. G.; Kim, D. M.; Kim, K.; Kim, J.; Kwon, W.; Kim, Y.; Chang, T.; Ree, M. J. Phys. Chem. C 2009, 113, 3855.
18. Kong, H.; Chung, D. S.; Kang, I.-N.; Park, J.-H.; Park, M.-J.; Jung, I. H.; Park, C. E.; Shim, H.-K. J. Mater. Chem. 2009, 19, 3490.
19. Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. J. Am. Chem. Soc. 2007, 129, 4112.
20. Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. Chem. Mater. 2006, 18, 3237.
21. Li, Y.; Wu, Y.; Liu, P.; Birau, M.; Pan, H.; Ong, B. S. Adv. Mater. 2006, 18, 3029.
22. Zhao, N.; Botton, G. A.; Zhu, S.; Duft, A.; Ong, B. S.; Wu, Y.; Liu, P. Macromolecules 2004, 37, 8307.
23. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.
24. Li, Y.; Singh, S. P.; Sonar, P. Adv. Mater. 2010, 22, 4862.
25. McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328.
26. Liu, Y.; Liu, Y.; Zhan, X. Macromol. Chem. Phys. 2011, 212, 428.
27. Mohapatra, S.; Holmes, B. T.; Newman, C. R.; Prendergast, C. F.; Frisbie, C. D.; Ward, M. D. Adv. Funct. Mater. 2004, 14, 605.
28. Kim, Y. M.; Lim, E.; Kang, I.-N.; Jung, B.-J.; Lee, J.; Koo, B. W.; Do, L.-M.; Shim, H.-K. Macromolecules 2006, 39, 4081.
29. Katz, H. E. Chem. Mater. 2004, 16, 4748.
30. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
31. Murphy, A. R.; Fr矇chet, J. M. J. Chem. Rev. 2007, 107, 1066.
32. Lim, E.; Jung, B.-J.; Lee, J.; Shim, H.-K.; Lee, J.-I.; Yang, Y. S.; Do, L.-M. Macromolecules 2005, 38, 4531.
33. Murphy, A. R.; Liu, J.; Luscombe, C.; Kavulak, D.; Fréchet, J. M. J.; Kline, R. J.; McGehee, M. D. Chem. Mater. 2005, 17, 4892.
34. Fong, H. H.; Pozdin, V. A.; Amassian, A.; Malliaras, G. G.; Smilgies, D.-M.; He, M.; Gasper, S.; Zhang, F.; Sorensen, M. J. Am. Chem. Soc. 2008, 130, 13202.
35. Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 7670.
36. Kong, H.; Jung, Y. K.; Cho, N. S.; Kang, I.-N.; Park, J.-H.; Cho, S.; Shim, H.-K. Chem. Mater. 2009, 21, 2650.
37. Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H.-J.; Winnewisser, C. Adv. Mater. 2008, 20, 2217.
38. Leenen, M. A. M.; Vian, F.; Cucinotta, F.; Pisula, W.; Thiem, H.; Anselmann, R.; De Cola, L. Macromol. Chem. Phys. 2010, 211, 2286.
39. Osaka, I.; Abe, T.; Shinamura, S.; Miyazaki, E.; Takimiya, K. J. Am. Chem. Soc. 2010, 132, 5000.
40. Paek, S.; Lee, J.; Lim, H. S.; Lim, J.; Lee, J. Y.; Lee, C. Synth. Met. 2010, 160, 2273.
41. Li, J.; Tan, H.-S.; Chen, Z.-K.; Goh, W.-P.; Wong, H.-K.; Ong, K.-H.; Liu, W.; Li, C. M.; Ong, B. S. Macromolecules 2011, 44, 690.
42. Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran, M.; Wu, W.; Woo, E. P.; Grell, M.; Bradley, D. D. C. Appl. Phys. Lett. 2000, 77, 406.
43. Patra, A.; Wijsboom, Y. H.; Leitus, G.; Bendikov, M. Chem. Mater. 2011, 23, 896.
44. Chung, D. S.; Kong, H.; Yun, W. M.; Cha, H.; Shim, H.-K.; Kim, Y.-H.; Park, C. E. Organic Electronics 2010, 11, 899.
45. Yu, C.-Y.; Ko, B.-T.; Ting, C.; Chen, C.-P. Sol. Energy Mater. Sol. Cells 2009, 93, 613.
46. Seitz, D.; Lee, S.-H.; Hanson, R.; Bottaro, J. Synth. Commun. 1983, 13, 121.
47. Jung, S.-H.; Kim, H. K.; Kim, S.-H.; Kim, Y. H.; Jeoung, S. C.; Kim, D. Macromolecules 2000, 33, 9277.
48. Kim, D. H.; Jang, Y.; Park, Y. D.; Cho, K. J. Phys. Chem. B 2006, 110, 15763.
49. Huang, J.; Wu, Y.; Fu, H.; Zhan, X.; Yao, J.; Barlow, S.; Marder, S. R. J. Phys. Chem. A 2009, 113, 2039.
50. Jung, I. H.; Jung, Y. K.; Lee, J.; Park, J.-H.; Woo, H. Y.; Lee, J.-I.; Chu, H. Y.; Shim, H.-K. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7148.
51. Park, J. W.; Lee, D. H.; Chung, D. S.; Kang, D.-M.; Kim, Y.-H.; Park, C. E.; Kwon, S.-K. Macromolecules 2010, 43, 2118.
52. Lee, B.-L.; Han, K.-M.; Lee, E.-K.; Kang, I.-N.; Kim, D. H.; Lee, S. Synth. Met. 2009, 159, 132.
53. Liu, C.-L.; Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Jenekhe, S. A. Macromolecules 2008, 41, 6952.
54. Ong, B. S.; Wu, Y.; Li, Y.; Liu, P.; Pan, H. Chem. Eur. J. 2008, 14, 4766.
Chapter 3.
1. Yuan, M.-C.; Chiu, M.-Y.; Liu, S.-P.; Chen, C.-M.; Wei, K.-H. Macromolecules 2010, 43, 6936.
2. Zhou, E.; Cong, J.; Tajima, K.; Hashimoto, K. Chem. Mater. 2010, 22, 4890.
3. Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2004, 38, 244.
4. Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C. Chem. Mater. 2010, 22, 3290.
5. Huo, L.; Hou, J.; Chen, H.-Y.; Zhang, S.; Jiang, Y.; Chen, T. L.; Yang, Y. Macromolecules 2009, 42, 6564.
6. Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Durrant, J. R.; Shakya Tuladhar, P.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272.
7. Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616.
8. Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H.-J.; Winnewisser, C. Adv. Mater. 2008, 20, 2217.
9. Bijleveld, J. C.; Gevaerts, V. S.; Di Nuzzo, D.; Turbiez, M.; Mathijssen, S. G. J.; de Leeuw, D. M.; Wienk, M. M.; Janssen, R. A. J. Adv. Mater. 2010, 22, E242.
10. Zhang, G.; Fu, Y.; Xie, Z.; Zhang, Q. Sol. Energy Mater. Sol. Cells 2011, 95, 1168.
11. Li, Y.; Singh, S. P.; Sonar, P. Adv. Mater. 2010, 22, 4862.
12. Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 2605.
13. Kim, Y. M.; Lim, E.; Kang, I.-N.; Jung, B.-J.; Lee, J.; Koo, B. W.; Do, L.-M.; Shim, H.-K. Macromolecules 2006, 39, 4081.
14. Leenen, M. A. M.; Vian, F.; Cucinotta, F.; Pisula, W.; Thiem, H.; Anselmann, R.; De Cola, L. Macromol. Chem. Phys. 2010, 211, 2286.
15. Ling, Q.; Liaw, D.; Zhu, C.; Chan, D.; Kang, E.; Neoh, K. Prog. Polym. Sci. 2008, 33, 917.
16. Asadi, K.; De Leeuw, D. M.; De Boer, B.; Blom, P. W. M. Nat. Mater. 2008, 7, 547.
17. McNeill, C. R.; Asadi, K.; Watts, B.; Blom, P. W. M.; de Leeuw, D. M. Small 2010, 6, 508.
18. Baeg, K.-J.; Noh, Y.-Y.; Ghim, J.; Lim, B.; Kim, D.-Y. Adv. Funct. Mater. 2008, 18, 3678.
19. Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus, H.; Kim, D.-Y. Adv. Funct. Mater. 2010, 20, 224.
20. Cai, X. Y.; Gerlach, C. P.; Frisbie, C. D. J. Phys. Chem. C 2007, 111, 452.
21. Pal, B. N.; Trottman, P.; Sun, J.; Katz, H. E. Adv. Funct. Mater. 2008, 18, 1832.
22. Seitz, D.; Lee, S.-H.; Hanson, R.; Bottaro, J. Synth. Commun. 1983, 13, 121.
23. Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J. J. Am. Chem. Soc. 2011, 133, 2198.
24. Liu, C.-L.; Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Jenekhe, S. A. Macromolecules 2008, 41, 6952.
25. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
26. Murphy, A. R.; Liu, J.; Luscombe, C.; Kavulak, D.; Fréchet, J. M. J.; Kline, R. J.; McGehee, M. D. Chem. Mater. 2005, 17, 4892.
27. Chang, J.-F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; Sölling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H. Chem. Mater. 2004, 16, 4772.
28. Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H. Friend, R. H. Nature 2005, 434, 194.
29. Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
30. Baeg, K.-J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Kim, D.-Y. Adv. Mater. 2006, 18, 3179.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28062-
dc.description.abstract高度結晶性共軛高分子由於具有高度順向性的排列而使其於薄膜電晶體與光伏打電池上的應用具有極好的元件表現,故近年來這方面的研究相當受到囑目。為了達到良好的元件特性,必須設計及合成出具有高電荷遷移率、規整與可調控的形態表現以及適當的分子能階的共軛高分子。因此,此碩士論文的目標在於利用具有共軛側鏈的聚噻吩以及具有強分子間作用力的硒吩單元來設計一系列高效能的共軛高分子。茲詳細介紹如下:
1. 以二維排列噻吩為基礎之新穎共軛高分子應用於有機薄膜電晶體與光伏打電池(第二章)
以二維排列噻吩(4T)為基礎,搭配不同之單元(T、Se、2T、2Se與TT)利用微波反應器合成出一系列之共聚高分子以及合成出其均聚物(P4T)。其高分子結構對於分子能階、電荷遷移率及光伏打電池特性是具有高度相關性的。其中,P4TTT由於具有高度的結晶性排列而具有最高的電洞遷移率高達0.396 cm2 V-1 s-1¬,同時也有高的電流開關比為7.45×105。對於共軛高分子混摻碳七十衍生物做為太陽能電池主動層的系統,P4TSe展現了最高的光電轉換效率達2.60%。綜合以上的結果顯示以二維排列噻吩(4T)系統發展之共軛高分子是具有增強電荷傳遞的能力,使其將是有機光電元件應用上的明日之星。
2.以硒吩建構之新穎施體/受體共軛高分子應用於高效能之薄膜電晶體、非揮發性記憶體及太陽能電池元件(第三章)
以硒吩(Se)及具有雙吡咯(DPP)官能基的單元利用微波反應器進行新材料PSeDPP之共軛高分子聚合。所獲得之高分子於退火後能夠形成較完整的層狀排列及π–π間的堆疊。此外,其電洞及電子的遷移率可以分別高達1.62 cm2 V-1 s-1¬及0.14 cm2 V-1 s-1,具有大量儲存電荷的能力,有利於應用於記憶體元件上。另一方面,當使用一比二的重量比混摻PSeDPP/PCBM並添加3vt%的添加劑DIO時,可以於太陽能電池元件上得到轉換效率1.64%。由以上的結果可知,多功能性的共軛高分子材料PSeDPP於可撓式有機元件的應用上是深具潛力的。
zh_TW
dc.description.abstractConjugated copolymers with well-ordered packing have attracted significant scientific interest recently due to their potential applications for high performance field-effect transistor and photovoltaic cells. In this thesis, we developed two new series of conjugated polymers to meet the above applications: (1) two-dimensional conjugated polythiophene with conjugated side chains; (2) selenophene based donor-acceptor conjugated polymers. The details of explorations are summarized as below:
1. Novel Two-Dimensional Quarterthiophene-Based Conjugated Polymers for Organic Field Effect Transistors and Photovoltaic Cells (Chapter 2): A series of new 4T-based polymers, including homopolymer poly(5,5’’’-di- (2-ethylhexyl)[2,3’;5’,2’’;4’’,2’’’] quarterthiophene) (P4T) and their copolymers P4TT, P4TSe, P4T2T, P4T2Se and P4TTT have been synthesized by Stille coupling reactions under microwave heating. The effects of their chemical structures on the electronic energy level, charge transport and photovoltaic properties were explored systematically. Among these copolymers, the field-effect transistor based on P4TTT showed the highest hole mobility of up to 0.396 cm2 V-1 s-1 due to its highly crystalline packing structure, and exhibited a high on/off ratio of 7.45×105, simultaneously. The performances of bulk heterojunction polymer solar cells based on the blends of these 4T-based polymers and 1-(3-methoxycarbonyl)-pyropyl-1-phenyl[6,6]C-71 (PC71BM) were also characterized. P4TSe/PC71BM based photovoltaic device showed the highest power conversion efficiency (PCE) of 2.60% under AM 1.5 illumination (100 mW/cm2). The above results exhibited that two-dimensional 4T-based conjugated copolymers could enhance the charge transport characteristics and emerge as a promising candidate for organic optoelectronic devices.
2. New Selenophene Donor-Acceptor Conjugated Polymer for High Performance Ambipolar Field Effect Transistor, and Solar Cell Applications (Chapter 3): A new conjugated copolymer PSeDPP from 2,5-bis-(trimethylstannyl)-selenophene(Se) and 3,6-bis-(5-bromo-thiophene-2-yl)-2,5-bis-(2-hexyldecyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione(DPP) was synthesized by Stille coupling reaction under microwave heating. The obtained polymer could form highly ordered lamella structure and π–π stacking after thermal annealing. Besides, the charge transporting characteristics of PSeDPP exhibited the relatively hole and electron mobility of up to 1.62 and 0.14 cm2 V-1s-1, respectively, which could store a large amount of charges to the memory device applications. On the other hand, PSeDPP based photovoltaic solar cells exhibited the best PCE of 1.64% with the blending weight ratio 1:2 for PSeDPP/PC71BM and 3vt% of 1,8-diiodooctane. The above results suggested that PSeDPP had potential applications for flexible electronics.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:36:29Z (GMT). No. of bitstreams: 1
ntu-100-R98549013-1.pdf: 8618066 bytes, checksum: c9401bba5055672f83a8122c05b34b6b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
誌謝...i
Abstract...iii
中文摘要...vi
Table of Contents...viii
Figure Captions...xii
Table Captions...xix
Chapter 1. Introduction...1
1.1 Introduction to π-Conjugated Polymers...1
1.1.1 History of π-Conjugated Polymers...1
1.1.2 Basic Electronic Structures and Bandgap Engineering of π-Conjugated Polymers...1
1.1.3 Donor-Acceptor Conjugated Polymers...6
1.1.4 Applications of Donor-Acceptor Conjugated Polymers...7
1.2 Introduction to Organic Field-Effect Transistors...9
1.2.1 Device Structures and Operation Principles...9
1.2.2 Characterization of OFETs...11
1.2.3 Factors Toward improving OFETs Performances...14
1.2.4 Donor-Acceptor Conjugated Polymers for Field-Effect Transistors...16
1.2.5 Transistor-Type Memory...18
1.2.5.1 Operating Principle...18
1.2.5.2 Charge-Storage in OFET Memory Devices...20
1.3 Introduction to Polymer Solar Cells...22
1.3.2 Operation Principles...24
1.4 Thiophene-Based Semiconducting Materials...34
1.4.2 Two-Dimensional-Based Conjugated Polymers...37
1.5 Selenophene-Based Semiconducting Materials...44
1.5.1 Polyselenophene-Based Derivatives...44
1.6 Research Objectives...47
Reference ...49
Chapter 2. Novel Two-Dimensional Quarterthiophene-Based Conjugated Polymers for Organic Field Effect Transistors and Photovoltaic Cells...57
2.1 Introduction...57
2.2 Experimental...61
2.2.1 Materials...61
2.2.2 General Procedures of Polymerization...62
2.3 Characterization...69
2.3.1 Fabrication and Characterization of Field Effect Transistors...70
2.3.2 Fabrication and Characterization of Polymer Photovoltaic Cells...71
2.4 Result and Disussion...73
2.4.1 Polymer Structure Characterization...73
2.4.2 Thermal Properties...74
2.4.3 X-Ray Diffraction Patterns...77
2.4.4 Thin Film Morphology...80
2.4.5 Optimized Geometries and Theoretical Calculations...81
2.4.6 Optical Properties...84
2.4.7 Electrochemical Properties...86
2.4.8 Polymer Field-Effect Transistor (FET) Characteristics...89
2.4.9 Polymer Photovoltaic Cell Characteristics...98
2.5 Conclusions...101
Reference ...103
Chapter 3. New Selenophene Donor-Acceptor Conjugated Polymer for High Performance Ambipolar Field Effect Transistor, and Solar Cell Applications...109
3.1 Introduction...109
3.2 Experimental...113
3.2.1 Materials...113
3.2.2 General Procedures of Polymerization...113
3.3 Characterization...116
3.3.1 Fabrication and Characterization of Field Effect Transistors...117
3.3.2 Fabrication and Characterization of Polymer Photovoltaic Cells ...118
3.4 Result and Disussion...120
3.4.1 Polymer Structure Characterization...120
3.4.2 Thermal Properties...120
3.4.3 Optical Properties...122
3.4.4 Electrochemical Properties...123
3.4.5 Polymer Field-Effect Transistor (FET) Characteristics...124
3.4.6 Transistor-type memory characterization...134
3.4.7 Polymer Photovoltaic Cell Characteristics...140
3.5 Conclusions...145
Reference...146
Chapter 4. Conclusion and Future Works...149
Autobiography...152
Appendix...153
Figure Captions
Figure 1.1 Frontier energy levels of oligothiophenes with n = 1 ~ 4 and of polythiophene.25...2
Figure 1.2 The schematic energy diagram of conjugated polymers....3
Figure 1.3 Five main contributions to the band gap of conjugated polymers.27...4
Figure 1.4 Hybridization of the energy levels of donor and acceptor....7
Figure 1.5 Schematic structure of (a) the top-contact and (b) the bottom-contact OFET. (c) Applied voltages and geometry for a n-channel OFET, where L is channel length and W is channel width....11
Figure 1.6 (a) Transfer characteristics of OFETs for the equivalent devices for various VD. (b) The output characteristics of OFETs for various VG.10...13
Figure 1.7 (a) The different alkylsilane monolayers are assembled by the reaction of octadecyl-, decyl-, and butyltrichlorosilane (OTS, DTS, and BTS) with the hydroxyl groups on the SiO2 surface.34 (b) F8BT n-channel OFETs with various alkyl length SAMs on SiO2 as dielectric or with polyethylene as buffer dielectric.39...15
Figure 1.8 An example of shift in transfer curves at VD = −30 V in the positive direction for OFET memory device with a 300nm thick SiO2 layer48...20
Figure 1.9 Four device architectures of conjugated polymer-based photovoltaic cells: (a) single-layer PV cell; (b) bilayer PV cell; (c) disordered bulk heterojunction; (d) ordered bulk heterojunction.8...23
Figure 1.10 (a) Energy diagram and working principles for polymer solar cells.12 (b) The typical structure of bulk-heterojunction solar cells. ...24
Figure 1.11 Chemical structures of PCBM and PC71BM....26
Figure 1.12 Current-voltage characteristics of polymer solar cells under dark (left) and illuminated (right) conditions, where Voc is the open-circuit voltage, Jsc is the short-circuit current density, and the maxium power flux can be calculated from Jmax×Vmax....27
Figure 1.13 Photon flux, integrated photon flux and current density from the AM 1.5 sun spectrum.57...31
Figure 1.14 Contour plot of the predicted PCE based on the model which Brabec et al. described.11...33
Figure 1.15 (a) Two-dimensional thiophene-based structures reported by Ting et al. (b) Normalized UV-vis absorption spectra of P29, P30, and P3HT in thin films.77...42
Figure 1.16 Schematic structure of the side chain conjugation polymer P32.78...43
Figure 1.17 Two-dimensional quarterthiophene-acceptor structures reported by Chen et al.79...43
Figure 2.1 1H-NMR Spectrum of P4T in CD2Cl2.(x: CD2Cl2, y: H2O)...64
Figure 2.2 1H-NMR Spectrum of P4TT in CDCl3.(x: CDCl3, y: H2O)...65
Figure 2.3 1H-NMR Spectrum of P4TSe in CDCl3.(x: CDCl3, y: H2O)...66
Figure 2.4 1H-NMR Spectrum of P4T2T in CDCl3.(x: CDCl3, y: H2O)...67
Figure 2.5 1H-NMR Spectrum of P4T2Se in CD2Cl2.(x: CD2Cl2, y: H2O)...68
Figure 2.6 TGA data of the 4T-based conjugated polymers....76
Figure 2.7 DSC curves of the 4T-based conjugated polymers with a scanning rate of 5 oC/min under a nitrogen atmosphere....76
Figure 2.8 XRD pattern of the P4T, P4TSe and P4T2T spin-coated films from the chloroform/o-dichlorobenzene solution on the ODTS-modified SiO2 wafer through the thermal annealing at 120 oC for 1h....77
Figure 2.9 XRD pattern of the P4TTT spin-coated film from the chloroform, chlorobenzene, o-dichlorobenzene and dichlorobenzene solution on the ODTS-modified SiO2 wafer through the thermal annealing at 120 oC for 1h....79
Figure 2.10 XRD pattern of the P4TTT spin-coated film from the chloroform, chlorobenzene, o-dichlorobenzene and dichlorobenzene solution on the ODTS-modified SiO2 wafer without the thermal annealing....80
Figure 2.11 TEM images of the P4TTT spin-coated film from the chloroform(a), chlorobenzene(b), dichlorobenzene(c) and trichlorobenzene(d) solution through the thermal annealing at 120 oC for 1h...81
Figure 2.12 The molecular conformation of P4TT(a), P4TSe(b), P4T2T(c), P4T2Se(d) and P4TTT(e) were measured by Gaussian03 with DFT//B3LYP/6-31G(d) method....83
Figure 2.13 UV-Vis spectra of the 4T-based conjugated polymers in (a) o-dichlorobenzene solution and in (b) film states....85
Figure 2.14 CV curves of 4T-based conjugated polymers with a potential scanning rate of 100 mV/s....88
Figure 2.15 Output characteristics of the (a) P4TSe;(b)P4T2T; (c)P4TTT conjugated copolymers, and (d) transfer characteristics of these studied polymers . FETs spin-coated on ODTS substractes from the trichlorobenzene of P4TTT and from the mixing solvent of chloroform/o-dichlorobenzene of other polymers through the thermal annealing at 120 oC for 1h....93
Figure 2.16 (a)(b)(c) Output characteristics of the P4TTT conjugated copolymer FETs spin-coated on ODTS substractes from the chloroform, chlorobenzene and and o-dichlorobenzene, respectively. (d) Transfer curves of the P4TTT measured from various processing solvents through thermal annealing at 150 oC for 1h, where Vd = ±100V...95
Figure 2.17 Current density-potential characteristics of 4T-based polymer solar cells with polymer/PC71BM under the illumination with AM 1.5G solar simulated light (100 mW/cm 2)...100
Figure 3.1 1H-NMR Spectrum of PSeDPP in CDCl3.(x: CDCl3, y: H2O)....115
Figure 3.2 TGA curve of the PSeDPP with a scanning rate of 10 oC/min under a nitrogen atmosphere....121
Figure 3.3 DSC curve of the PSeDPP with a scanning rate of 5 oC/min under a nitrogen atmosphere....121
Figure 3.4 UV-Vis spectra of the PSeDPP conjugated copolymer in o-dichlorobenzene solution and in film states....123
Figure 3.5 CV curve of PSeDPP conjugated copolymer with a potential scanning rate of 100 mV/s....124
Figure 3.6 P-type (right) and n-type (left) characteristics of PSeDPP. (a) output curves measured from the spin-coated ODTS substractes when using TCB as processing solvent, it through thermal annealing at 150 oC for 1h; (b) transfer curves measured from various processing solvents through thermal annealing at 150 oC for 1h, where Vd = ±100V....129
Figure 3.7 XRD pattern of the PSeDPP spin-coated films from the chloroform, chlorobenzene, o-dichlorobenzene and trichlorobenzene solution on the ODTS-modified SiO2 wafer without thermal annealing....130
Figure 3.8 XRD pattern of the PSeDPP spin-coated films from the chloroform, chlorobenzene, o-dichlorobenzene and trichlorobenzene solution on the ODTS-modified SiO2 wafer through the thermal annealing at 150 oC for 1h....131
Figure 3.9 TEM images of the PSeDPP spin-coated films from the (a) CF; (b) CB; (c) o-DCB; (d) TCB solution....132
Figure 3.10 TEM images of the PSeDPP spin-coated films from the (a) CF; (b) CB; (c) o-DCB; (d) TCB solution through the thermal annealing at 150 oC for 1h....133
Figure 3.11 AFM image of the PSeDPP spin-coated film from the TCB solution through the thermal annealing at 150 oC for 1h....134
Figure 3.12 (a) Shifts in transfer curves at V¬d = -60 V for an OFET memory device, where Vg = 100 V and Vg = -100 V were applied for 1 second for writing and erasing, respectively. (b) Retention time of the ON and OFF states measured at Vd = -50 V and Vg = 0 V . The writing bias (Vg = 100 V, V¬d = 0 V) and erasing bias (Vg = -100 V, V¬d = 0 V) were applied around 1 second. (c)(d) Reversible current responses to WRER cycle. (programming: Vg = 100 V and V¬d = 0 V; reading: V¬g = 0 V and V¬d = -60 V; erasing: Vg = -100 V, V¬d = 0 V)...139
Figure 3.13 (a) J-V curves of the OPVs based on PSeDPP/PC61BM with different weight ratios under the illumination with AM 1.5G solar simulated light (100 mW/cm2). (b) J-V curves of the OPVs based on PSeDPP/PCBM( =1:2) with adding a small amount of 1,8-diiodooctane (DIO)....143
Figure 3.14 UV-vis curves based on PSeDPP/PCBM( =1:2) with adding a small amount of 1,8-diiodooctane (DIO)....144
Figure A1. TGA curves of the other 4T-based conjugated copolymers with a scanning rate of 20 oC/min under a nitrogen atmosphere...154
Figure A2. DSC curves of the other 4T-based conjugated copolymers with a scanning rate of 5 oC/min under a nitrogen atmosphere...154
Figure A3. UV-Vis spectra of the other 4T-based conjugated copolymers in (a) chloroform solution and in (b) film states....156
Figure A4. CV curves of the other4T-based conjugated copolymers with a potential scanning rate of 100 mV/s...156
Figure A5. TGA curves of the other Se-based conjugated copolymers with a scanning rate of 20 oC/min under a nitrogen atmosphere...158
Figure A6. DSC curves of the PSeBDT conjugated copolymer with a scanning rate of 5 oC/min under a nitrogen atmosphere...159
Figure A7. UV-Vis spectra of the other Se-based conjugated copolymers in (a) o-dichlorobenzene solution and in (b) film states....160
Figure A8. CV curves of the other Se-based conjugated copolymers with a potential scanning rate of 100 mV/s...160
Table Captions
Table 1.1 Chemical structures of donor-acceptor copolymers and their corresponding device performance in OFET applications (μh: hole mobility; μe : electron mobility; Ion/off: on/off current ratio)...17
Table 1.2 Chemical structures of polythiophene-based copolymers and their corresponding device performance in OFET applications (μh: hole mobility; μe : electron mobility; Ion/off: on/off current ratio)...36
Table 1.3 Chemical structures of 2D-based copolymers and their corresponding device performance in OFET and OPV applications (μh: hole mobility; Ion/off: on/off current ratio; Jsc: short-circuit current; Voc: open-circuit voltage; FF: fill factor; PCE: power conversion efficiency)...40
Table 1.4 Chemical structures of polyselenophene-based copolymers and their corresponding device performance in OFET and OPV applications (μh: hole mobility; μe : electron mobility; Ion/off: on/off current ratio)...46
Table 2.1 Molecular weight, PDI, thermal properties data of 4T-based conjugated polymers....74
Table 2.2 Optical and Electrochemical data of the studied 4T-based conjugated polymers....88
Table 2.3 FETs characteristics of the 4T-based conjugated polymers. ...91
Table 2.4 Photovoltaic characteristics of the studied 4T-based polymers/PC71BM devices....100
Table 3.1 FET characteristics of the PSeDPP conjugated polymer....126
Table 3.2 Photovoltaic results of the OPV devices based on different PSeDPP/ PC61BM weight ratios....141
Table 3.3 Photovoltaic characteristics of PSeDPP/PCBM (=1:2) devices....142
Table A1. Molecular weight, PDI, thermal properties data of other 4T-based conjugated copolymers....153
Table A2. Optical and Electrochemical data of the other 4T-based conjugated copolymers....155
Table A3. Molecular weight, PDI, thermal properties data of the Se-based conjugated copolymers....157
Table A4. Optical and Electrochemical data of the studied Se-based conjugated polymers....158
dc.language.isoen
dc.title新穎共軛高分子之合成和形態鑑定及其於薄膜電晶體與太陽能電池元件應用zh_TW
dc.titleSyntheses, Morphology, and Properties of New Conjugated Polymers for High Performance Field Effect Transistors and Solar Cell Applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文中,孫亞賢,郭霽慶
dc.subject.keyword共軛高分子,薄膜電晶體,太陽能電池,zh_TW
dc.subject.keywordConjugated Polymer,Thin-Film Transistors,Photovoltaic Cells,en
dc.relation.page160
dc.rights.note有償授權
dc.date.accepted2011-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
8.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved