Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28060
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林立德
dc.contributor.authorHitoshi Mutoen
dc.contributor.author黃璟恆zh_TW
dc.date.accessioned2021-06-12T18:36:19Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation1. Asmussen E, Peutzfeldt A, Heitmann T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J Dent 1999;27:275-278
2. Lambjerg-Hansen H, Assmusen E. Mechanical properties of endodontic posts. J Oral Rehabil 1997;24:882-887
3. Malferrari S, Monaco C, Scotti R. Clinical evaluation of tooth restored with quartz fiber-reinforced epoxy resin post. Int J Prosthodont 2003;16:39-44
4. Ukon S, Moroi H, Okimoto K, Fujita M, Ishikawa M, Terada Y. Influence of different elastic moduli of dowel and core on stress distribution in root. Dent Mater J 2000;19:50-64
5. Mannocci F, Ferrari M, Watson TF. Microleakage of endodontically treated teeth restored with fiber post and composite cores after cyclic loading: a con focal microscopic study. J Prosthet Dent 2001;85:284-291
6. Standlee J, Caputo A. Biomechanics. J Calif Dent Assoc 1988;16:49-58
7. Freeman MA, Nicholls JI, Kydd WL, Harrington GW. Leakage associated with load fatigue-induced preliminary failure of full crowns placed over three different post and core systems. J Endod 1998;24:26-32
8. Martinez-Insua A, Da Silva LD, Rilo B, Santana U. Comparison of the fracture resistance of pulpless teeth restored with a cast post and core or carbon-fiber post witn a composite core. J Prosthet Dent 1998;80:527-532
9. Jokstad A, Mjor IA. Ten years’evaluation of three luting cement. J Dent 1996;24:309-315
10. Assif D, Ferber A. Retention of dowels using a composite resin as a cementing medium. J Prosthet Dent 1982;48:292-296
11. Ayad MF, Rosenstiel SF, Salama M. Influence of tooth surface roughness and type of cement on retention of complete cast crowns. J Prosthet Dent 1997;77:116-121
12. Chan FW, Harcourt JK, Brockhurst PJ. The effect of post adaptation in the root canal on retention of posts cemented with various of cements. Aust Dent J 1993;38:39-45
13. Junge T, Nicholls JI, Philips KM, Libman WK. Load fatigue of compromised teeth: A comparison of three luting cements. Int J Prosthodont 1998;11:558-564
14. Davy DT, Dilley GL, and Krejci RF. Determination of stress patterns in root-filled teeth incorporating various dowel designs. J Dent Res 1981;60:1301-1310
15. Asmussen E, Peutzfeldt A, and Sahafi A. Finite element analysis of stresses in endodontically treated, dowel-restored teeth. J Prosthet Dent 2005;94:321-329
16. Toparli M. Stress analysis in a post-restored tooth utilizing the finite element method. J Oral Rehabil 2003;30:470–476
17. Peters MCRB, Poort HW, Farahm JW and Craig RG. Stress analysis of a tooth restored with a post and core. J Dent Res 1983;62:760-763
18. Fennis WM, Kuijs RH, Kreulen CM, Roeters FJ, Creugers NH, Burgersdijk RC. A survey of cusp fractures in a population of general dental practices. Int J Prosthodont 2002;15:559-563
19. Panitivisai P, Messer HH. Cuspal deflection in molars in relation to endodontic and restorative procedures. J Endodon 1995;21:57-61
20. Sorensen JA, Martinoff JT. Intracoronal reinforcement and coronal coverage: a study of endodontically treated teeth. J Prosthet Dent 1984;54:780-784
21. Stankiewicz NR, Wilson PR. The ferrule effect: a literature review. Int Endod J 2002;35:575-581
22. Saupe WA, Gluskin AH, Radke RA Jr. A comparative study of fracture resistance between morphologic dowel and cores and a resin-reinforced dowel system in the intraradicular restoration of structurally compromised roots. Quintessence Int 1996;27:483-491
23. al-Hazaimeh N, Gutteridge DL. An in vitro study into the effect of the ferrule preparation on the fracture resistance of crowned teeth incorporating prefabricated post and composite core restorations. Int Endod J 2001;34:40-46
24. Mentink AGB, Meeuwiseen R, Katser AF, Mulder J. Survival rate and failure characteristics of the all metal post and core restoration. J Oral Rehabil 1993;20:455-461
25. Torbjoner A, Karlsson S,Odman PA. Survival rate and failure characteristics for two post designs. J prosthet Dent 1995;73:439-444
26. Weine FS, Wax AH, Wenchus CS. Retrospective study of tapered, smooth post systems in place for 10 years or more. J Endodon 1991;17:293-297
27. Torbjorner A, Fransson B. A literature review on the prosthetic treatment of structurally compromised teeth. Int J Prosthodont 2004;17:369-376
28. Ferrari M, Vichi A, Mannocci F, Mason PN. Retrospective study of the clinical performance of fiber posts. Am J Dent 2001;13:9B-13B
29. Glazer B. Restoration of endodontically treated teeth with carbon fiber posts-a prospective study. J Can Dent Assoc 2000;66:613-618
30. Tumer CH. Post-retained crown failure: A survey. Dent Update 1982;9:221-229
31. Sorensen JA, Martinoff JT. Clinically significant factors in dowel design. J Prosthet Dent 1984;52:28-35
32. Mentick AGB, Creugers NHJ, Meeuwissen R, Leempoel PJB, Kayser AF. Clinical performance of different post and core systems-Results from a pilot study. J Oral Rehabil 1993;20:577-584
33. Akkayan B, Gulmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent 2002;87:431-437
34. Reid LC, Kazemi RB, Meier JC. Effect of fatigue testing on core integrity and post microleakage of teeth restored with different post systems. J Endodon 2003;29:125-131
35. Bachicha WS, Difiore PM, Miller DA, Lautenschlager EP, Pashley DH. Microleakage of endodontically treated teeth restored with posts. J Endodon 1998;24:703-708
36. Mendoza DB, Eakle WS, Kahl EA, Ho R. Root reinforcement with a resin-bonded preformed post. J Prosthet Dent 1997;78:10-15
37. Yaman SD, Alacam T, and Yaman Y. Analysis of stress distribution in a maxillary central incisor subjected to various post and core applications. J Endodon 1998;24:107-111
38. Albuquerque Rde, Polleto LT, Fontana RH, Cimini CA.. Stress analysis of an upper central incisor restored with different posts. J Oral Rehabil 2003;30:936–943
39. Ismail YH, Misch CM. Finite element stress analysis of tooth-to-implant fixed partial denture design. J Prosthod 1993;2:83-92
40. Meijer HJ, Starmans FJ, Bosman F, Steen WH. A comparison of three finite element models of an edentulous mandible provided with implants. J Oral Rehabil 1993;20:147-157
41. Hansson S. The implant neck: smooth or provided with retention element. A biomechanical approach. Clin Oral Impl Res 1999;10:394-405
42. Barbier L, Vandor Sloten J, Krzesinski G, Schepers E, van der Perre G. Finite element analysis of non-axial loading of oral implants in the mandible of the dog. J Oral Rehabil, 1998;25:847-858
43. Dugdale, D.S. Yielding in steel sheets containing slits. Journal of the Mechanics and Physics of Solids 1960;8:100–104
44. Barenblatt, G.I. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 1962;7:55–129
45. Rice, J.R. Mathematical analysis in the mechanics of fracture. In: Fracture: An Advanced Treatise (edited by Liebowitz, H.), Academic Press, New York, 1968:191–311.
46. de Andres, A., Perez, J.L. and Ortiz, M. Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading. International Journal of Solids and Structures 1999;36:2231–2258.
47. Ortiz, M. and Pandolfi, A. Finite-deformation irreversible cohesive elements for three-dimensional crackpropagation analysis. International Journal for Numerical Methods in Engineering 1999;44:1267–1282.
48. Ko CC, Chu CS, Chung KH, Lee MC. Effects of posts on dentin stress distributions on pulpless teeth. J Prosthet Dent 68 (1992) 421-427
49. Sahafi A, Peutzfeldt A, Ravnholt G, Asmussen E, Gotfredsen K. resistance to cyclic loading of teeth restored with posts. Clin Oral Investig 2005;9:84-90
50. Martinez-Insua A, da Silva L, Rilo B, Santana U. Comparison of the fracture resistance of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core. J Prosthet Dent 1998;80:527-532
51. Fernandes AS, Dessai GS. Factors affecting the fracture resistance of post-core reconstructed teeth: a review. Int J Prosthodont 2001;14:355-363
52. Butz F, Lennon AM, Heydecke G, Strub JR. Survival rate and fracture strength of endodontically treated maxillary incisors with moderate defects restored with different post-and-core systems: an in vitro study. Int J Prosthodont 2001;14:58-64
53. Ottl P, Hahn L, Lauer HC, Fay M. Fracture characteristics of carbon fibre, ceramic and non-palladium endodontic post systems at monotonously increasing loads. J Oral Rehabil 2002;29:175-183
54. Isidor F, Odman P, Brondum K. Intermittent loading of teeth restored using prefabricated carbon fiber posts. Int J Prosthodont 1996;9:131-136
55. Milo P, Stein RS. Root fracture in endodontically treated teeth related to post selection and crown design. J Prosthet Dent 1992;68:428-435
56. Mannocci F, Ferrari M, Watson TF. Intermittent loading of teeth restored using quartz fiber, carbon-quartz fiber and zirconium dioxide ceramic root canal posts. J Adhes Dent 1999;1:153-158
57. Mezzomo E, Massa F, Libera SD. Fracture resistance of teeth restored with two different post-and-core designs cemented with two different cements: an in vitro study. Quintessence Int 2003;34:301-306
58. Cormier CJ, Burns DR, Moon P. In vitro comparison of the fracture resistance and failure mode of fiber, ceramic, and conventional post systems at various stages of restoration. J Prosthodont 2001;10:26-36
59. Newman MP, Yaman P, Dennison J, Rafter M, Billy E. Fracture resistance of endodontically treated teeth restored with composite posts. J Prosthet Dent 2003;89:360-367
60. Pilo R, Cardash HS, Levin E, Assif D. effct of core stiffness on the in vitro fracture of crowned, endodontically treated teeth. J Prosthet Dent 2002;88:302-306
61. Sorensen JA, Engelman MJ. Ferrule design and fracture resistance of endodontically treated teeth. J Prosthet Dent 1990;63:529-536
62. Nanayakkara L, McDonald A, Setchell DJ. Retrospective analysis of factors affecting the longevity of post crowns. J Dent Res 1999;78:222
63. Valderhaug J, Jokstad A, Ambjornsen E, Norheim PW. Assessment of the periapical and clinical status of crowned teeth over 25 years. J Dent 1997;25:97-105
64. Glazer B. Restoration of endodontically treated teeth with carbon fiber posts-a prospective study. J Can Dent Assoc 2000;66:613-618
65. Nissan J, Dmitry Y, Assif D. The use of reinforced composite resin cement as compensation for reduced post length. J Prosthet Dent 2001;86:304-308
66. Reinhardt RA, Krejci RF, Pao YC, and Stannard JG. Dentin stresses in post-reconstructed teeth with diminishing bone support. J Dent Res 1983;62:1002-1008
67. Ho MH, MS, Lee SY, Chen HH, and Lee MC. Three-dimensional finite element analysis of the effects of posts on stress distribution in dentin. J Prosthet Dent 1994;72:367-372
68. Holmes DC, Diaz-Arnold AM,and Leary JM. Influence of post dimension on stress distribution in dentin. J Prosthet Dent 1996;75:140-147
69. Yang HS , Lang LA, Molina A, and Felton DA. The effects of dowel design and load direction on dowel-and-core restorations. J Prosthet Dent 2001;85:558-567
70. Eskitascioglu G, Belli S, and Kalkan M. Evaluation of two post core systems using two different methods (fracture strength test and a finite elemental stress analysis) J Endodon 2002;28:629-633
71. Pegoretti A, Fambri L, Zappini G, Bianchetti M. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002;23:2667–2682
72. Toparli M, Sasaki S. Finite element analysis of the temperature and thermal stress in a post restored tooth. J Oral Rehabil 2003;30:921–926
73. Piwowarczyk A, Lauer HC, Sorensen JA. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials. J Prosthet Dent 2004;92:265-73
74. Almuammar MF, Schulman A, Salama FS. Shear bond strengthof six restorative materials. J Clin Pediatr Dent 2001;25:221-225
75. Stewart GP, Jain P, Hodges J. Shear bond strength of resin cements to both ceramic and dentin. J Prosthet Dent 2002;88:277-84
76. Miller BH, Nakajima H, Powers JM, Nunn ME. Bond strength between cements and metals used for endodontic posts. Dent Mater 1998;14:312-320
77. Ergin S, Gemalmaz D. Retentive properties of five different luting cements on base and noble metal copings. J Prosthet Dent 2002;88:491-497
78. Zhai J, Tomar V, Zhou M. Micromechanical simulation of dynamic fracture using the cohesive finite element method. J Eng Mater Technol 2004;126:179-191
79. Elices M., Guinea GV, Gomez J, Planas J. The cohesive zone model: advantages, limitations, and challenges. Eng Fract Mech 2002;69:137-163
80. Chowdhury SR, Narasimhan R. A cohesive finite element formulation for modelling fracture and delamination in solids. Sadhana 2000;25:561-587
81. Han TS, Ural A, Chen CS, Zehnder AT, Ingraffea AR, Billington SL. Delamination buckling and propagation analysis of honeycomb panels using a cohesive element approach. Int J Fract 2002;115:101-123
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28060-
dc.description.abstract如何重建一個根管治療過的牙齒,在現在仍舊是一個很受到爭議的問題,在眾多的根管重建材料中又該如何選擇,本研究針對以根柱冠心重建過的正中門牙來進行分析。利用了真實牙齒的電腦斷層影像架構了三維有限元素分析的牙齒模擬模型,並且包含了真實情況下的所有重要組成結構,並且利用ABAQUS中的結合區模型(cohesive zone model)及形態上的非線性模擬,目的就是利用三維有限元素分析來尋求:1、在正常咀嚼過程的施力下,不同根柱冠心重建方式所會造成牙齒內的應力影響之差異。2、以cohesive element的方式來模擬黏合劑,來和I-DEAS所做的線性有限元素分析做比較,看是否會造成應力分佈及大小上的不同。因此,本實驗分為二個部分:第一部份先以I-DEAS來正中門牙模型做三維有限元素分析,來比較不同材質組合的根柱冠心在牙齒內所造成的應力分佈及大小。第二個部分用同一個模型,以ABAQUS來做三維有限元素分析,並以cohesive element的方式來模擬黏合劑,來比較不同材質組合的根柱冠心在牙齒內所造成的應力分佈及大小,並和第一部份來作對照比較。
結果:
1. 應力因施力方向不同,會有不同的應力分佈及集中點,應力會集中在,一、受力點,二、根柱頰側中點,三、牙根舌側靠牙冠牙根交接處,距離齒槽骨約1.5mm的位置。四、根柱牙根尖端跟牙齒交界位置。
2. 除了受力點外的最大應力會出現在:I-DEAS施力一:glass fiber 在牙根舌側靠牙冠牙根交接處,距離齒槽骨約1.5mm的位置,其他牙根釘在根柱頰側中點處。I-DEAS施力二:在根柱頰側中點處。ABAQUS施力一:glass fiber post及gold post在牙根舌側靠牙冠牙根交接處,距離齒槽骨約1.5mm的位置,其他根柱在根柱頰側中點處。ABAQUS施力二:glass fiber post以順著牙齒長軸的角度來看,來觀察牙冠交接處及牙冠冠心部分的應力方面,在牙冠及牙根交接處的近遠心位置,其他根柱在根柱頰側中點處。
3. 在同一種根柱冠心組合中,只改變根柱材質時,當根柱彈性係數越高時,根柱的應力就越高,而根柱以外的位置應力就越低。
4. 在有圍箍效應(ferrule effect)時,施力一的情況下,大致上會造成牙齒的應力下降,而根柱的應力上升。在施力二的情況下,大致上會造成牙齒的應力下降,根柱及牙根處根柱跟牙齒交界位置應力上升。不過當材質是gold post,則結果剛好完全相反。
5. 在使用樹脂黏合劑時,施力一的情況下,會造成牙齒的最大應力下降,根柱的應力上升。在施力二的情況下,大致上會造成全部的應力上升。
本研究的結果顯示,應力因施力方向不同所造成的不同應力分佈及最大應力集中點,而在當根柱彈性係數越高時,根柱的應力就越高,而根柱以外的位置應力就越低。彈性係數較大的zirconia post,可以使牙齒本身所受應力較小,而彈性係數跟牙本質較相近的glass fiber post,可以造成整體牙齒應力較平均的分佈。使用結合區模型(cohesive zone model)來模擬黏合劑層應該是一個不錯的方式,若可以進一步加強參數方面的研究,在未來的實驗上,加以運用將可以得到更接近真實的有限元素分析結果。
zh_TW
dc.description.abstractThe restoration of endodontically treated teeth is a topic that is extensively studies and yet remains controversial from many perspective. This study focused on 3D finite element analysis of endodontically treated teeth restored with different types of post-core and crown. Computer tomography scan images were used to construct a model including the actual tooth morphology, and all the necessary structures. Cohesive element of ABAQUS is also used to simulate the adhesive layer between different contact structures including tooth, post, core and crown. A load of 100N was applied to the crown at an angle of 45 degrees, or along the tooth, von Mises (VM ) stresses were calculated. This study consisted of 2 parts: first, a linear, isotropic, completely-bonded 3D finite element study carried out by I-DEAS 9.2; second, was performed with ABAQUS 6.6 in order to simulate cement layer with cohesive element.
The results indicates that: 1. Different VM stress patterns can be caused by the different loading directions, caused different stress concentrations. And common stress concentration areas are: middle of the post at buccal side, between crown margin and alveolar bone at palatal side of the root, and at the junction of post and dentin at post apex. 2. The generated stresses decreased with respect to the post material in the following order: glass fiber, titanium, and zirconia. 3. The ferrule effect resulted in lower stress values in dentin in most cases, but higher values when post-core material is gold. 4. With the application of resin luting agent, in the study loaded with at an angle of 45 degrees, maximum stresses in dentin were decreased and maximum stresses in post were increased. In the study loaded along the tooth, most of the stresses increased.
Within the limitation of this study, it was found that all the investigated factors influenced the stress field generated in post-core restored teeth. Cohesive zone model seems to be a powerful tool to simulate adhesive layer, but further investigations of parameters are needed for better 3D finite element analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:36:19Z (GMT). No. of bitstreams: 1
ntu-96-R92422015-1.pdf: 15916468 bytes, checksum: 53fb77ee4f4837c12ffaa1789bfbbb36 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝--------------------------------------------------- Ⅰ
摘要--------------------------------------------------- Ⅱ
Abstract----------------------------------------------- Ⅳ
表次目錄----------------------------------------------- Ⅸ
圖次目錄----------------------------------------------- Ⅹ
第一章 前言-------------------------------------------- 1
第二章 文獻回顧---------------------------------------- 7
2-1 根管治療後牙齒重建之文獻回顧---------------- 7
2-2 根管治療後經由根柱冠心重建之齒內應力分析---- 10
2-3 有限元素法簡述------------------------------ 12
2-4 文獻上建立模型的方法------------------------ 15
2-5 結合區模型(cohesive zone model)簡述--------- 16
2-6 研究動機與目的------------------------------ 20
第三章 根管治療過後牙齒以不同材質及組合重建所造成齒內應力影響-I-DEAS之三維有限元素分析----------------------- 23
3-1 實驗目的------------------------------------- 23
3-2 實驗設備------------------------------------- 23
3-3 實驗方法------------------------------------- 23
3-3-1 影像輪廓掃瞄-------------------------- 23
3-3-2 曲線整順------------------------------ 24
3-3-3 正中門牙及齒槽骨建構------------------ 25
3-3-4 設立邊界條件-------------------------- 26
3-3-5 求解---------------------------------- 27
3-4 結果---------------------------------------- 27
3-4-1 不同牙根釘材質所在齒內造成的最大應力及應力集中處--------------------------- 27
3-4-2 有圍箍效應(ferrule effect)所在齒內造成的最大應力及應力集中處-------------- 29
3-4-3 樹脂黏合劑(resin luting cement)材質所在齒內造成的最大應力及應力集中處-------- 31
3-5 討論----------------------------------------- 33
第四章 根管治療過後牙齒以不同材質及組合重建所造成齒內應力影響-ABAQUS之三維有限元素分析----------------------- 38
4-1 實驗目的------------------------------------- 38
4-2 實驗設備------------------------------------- 38
4-3 實驗方法------------------------------------- 38
4-3-1 模型的設計與建立---------------------- 38
4-3-2 設立邊界條件-------------------------- 39
4-3-3 求解---------------------------------- 40
4-4 結果----------------------------------------- 41
4-4-1 不同牙根釘材質所在齒內造成的最大應力及應力集中處---------------------------- 41
4-4-2 有圍箍效應(ferrule effect)所在齒內造成的最大應力及應力集中處-------------- 43
4-4-3 樹脂黏合劑(resin luting cement)材質所在齒內造成的最大應力及應力集中處--------
45
4-4-4 結合區模型開裂情形及數值集中比較------ 46
4-5 討論----------------------------------------- 48
4-5-1 應力討論------------------------------ 48
4-5-2 結合區模型結果討論-------------------- 53
4-5-3 I-DEAS與ABAQUS的結果比較討論--------- 55
第五章 結論與展望-------------------------------------- 55
5-1 結論----------------------------------------- 57
5-2 未來展望------------------------------------- 62
參考文獻----------------------------------------------- 160
dc.language.isozh-TW
dc.title根管治療後之正中門牙以不同根柱冠心重建後之三維有限元素應力分析zh_TW
dc.titleA 3D finite element analysis of endodontically treated teeth restored with
different post-core systems
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭裕源,王兆麟
dc.subject.keyword有限元素分析,根柱,冠心,zh_TW
dc.subject.keywordfinite element,post,core,en
dc.relation.page168
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:臨床牙醫學研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
15.54 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved