Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27977
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余幸司
dc.contributor.authorYi-Ju Chenen
dc.contributor.author陳怡如zh_TW
dc.date.accessioned2021-06-12T18:31:16Z-
dc.date.available2007-08-13
dc.date.copyright2007-08-13
dc.date.issued2007
dc.date.submitted2007-08-02
dc.identifier.citationAssia E, Rosner M, Belkin M, Solomon A, Schwartz M. Temporal Parameters of Low Energy Laser Irradiation for Optimal Delay of Post-Traumatic Degeneration of Rat Optic Nerve. Brain Res. 1989 Jan 9;476(2):205-12.
Babapour R, Glassberg E, Lask GP. Low-Energy Laser Systems. Clin Dermatol. 1995 Jan-Feb;13(1):87-90.
Baffy G, Miyashita T, Williamson JR, Reed JC. Apoptosis Induced by Withdrawal of Interleukin-3 (Il-3) from an Il-3-Dependent Hematopoietic Cell Line Is Associated with Repartitioning of Intracellular Calcium and Is Blocked by Enforced Bcl-2 Oncoprotein Production. J Biol Chem. 1993 Mar 25;268(9):6511-9.
Basford JR. Low-Energy Laser Therapy: Controversies and New Research Findings. Lasers Surg Med. 1989;9(1):1-5.
Borner C. Diminished Cell Proliferation Associated with the Death-Protective Activity of Bcl-2. J Biol Chem. 1996 May 31;271(22):12695-8.
Boulakia CA, Chen G, Ng FW, Teodoro JG, Branton PE, Nicholson DW, Poirier GG, Shore GC. Bcl-2 and Adenovirus E1b 19 Kda Protein Prevent E1a-Induced Processing of Cpp32 and Cleavage of Poly(Adp-Ribose) Polymerase. Oncogene. 1996 Feb 1;12(3):529-35.
Buffey JA, Messenger AG, Taylor M, Ashcroft AT, Westgate GE, MacNeil S. Extracellular Matrix Derived from Hair and Skin Fibroblasts Stimulates Human Skin Melanocyte Tyrosinase Activity. Br J Dermatol. 1994 Dec;131(6):836-42.
Chinnaiyan AM, Dixit VM. The Cell-Death Machine. Curr Biol. 1996 May 1;6(5):555-62.
Chuang YH, Dean D, Allen J, Dawber R, Wojnarowska F. Comparison between the Expression of Basement Membrane Zone Antigens of Human Interfollicular Epidermis and Anagen Hair Follicle Using Indirect Immunofluorescence. Br J Dermatol. 2003 Aug;149(2):274-81.
Conlan MJ, Rapley JW, Cobb CM. Biostimulation of Wound Healing by Low-Energy Laser Irradiation. A Review. J Clin Periodontol. 1996 May;23(5):492-6.
Cui J, Shen LY, Wang GC. Role of Hair Follicles in the Repigmentation of Vitiligo. J Invest Dermatol. 1991 Sep;97(3):410-6.
Desagher S, Martinou JC. Mitochondria as the Central Control Point of Apoptosis. Trends Cell Biol. 2000 Sep;10(9):369-77.
Duan R, Zhu L, Liu TC, Li Y, Liu J, Jiao J, Xu X, Yao L, Liu S. Light Emitting Diode Irradiation Protect against the Amyloid Beta 25-35 Induced Apoptosis of Pc12 Cell in Vitro. Lasers Surg Med. 2003;33(3):199-203.
Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT. Therapeutic Photobiomodulation for Methanol-Induced Retinal Toxicity. Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3439-44.
Fitzpatrick TB. Mechanisms of Phototherapy of Vitiligo. Arch Dermatol. 1997 Dec;133(12):1591-2.
Gibson WT, Couchman JR, Weaver AC. Fibronectin Distribution During the Development of Fetal Rat Skin. J Invest Dermatol. 1983 Dec;81(6):480-5.
Gilchrest BA, Albert LS, Karassik RL, Yaar M. Substrate Influences Human Epidermal Melanocyte Attachment and Spreading in Vitro. In Vitro Cell Dev Biol. 1985 Feb;21(2):114-20.
Hennet T, Richter C, Peterhans E. Tumour Necrosis Factor-Alpha Induces Superoxide Anion Generation in Mitochondria of L929 Cells. The Biochemical journal. 1993 Jan 15;289 ( Pt 2):587-92.
Hode L. The Importance of the Coherency. Photomed Laser Surg. 2005 Aug;23(4):431-4.
Hu DN, McCormick SA, Orlow SJ, Rosemblat S, Lin AY, Wo K. Melanogenesis by Human Uveal Melanocytes in Vitro. Invest Ophthalmol Vis Sci. 1995 Apr;36(5):931-8.
Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS. Helium-Neon Laser Irradiation Stimulates Cell Proliferation through Photostimulatory Effects in Mitochondria. J Invest Dermatol. 2007 Apr 19.
Huang CL, Nordlund JJ, Boissy R. Vitiligo: A Manifestation of Apoptosis? Am J Clin Dermatol. 2002;3(5):301-8.
Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax Directly Induces Release of Cytochrome C from Isolated Mitochondria. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4997-5002.
Kana JS, Hutschenreiter G, Haina D, Waidelich W. Effect of Low-Power Density Laser Radiation on Healing of Open Skin Wounds in Rats. Arch Surg. 1981 Mar;116(3):293-6.
Kao CH. Evaluation of Effects of Light-Emitting Diode (Led) Red Light (640nm) on Vitiligo and Investigation of Possible Therapeutic Mechanism. the 23rd Meeting of Pacific Skin Research Conference; 2005 November 11th-12th; Hua-Lien, Taiwan; 2005. p. 55.
Karu T. Photobiology of Low-Power Laser Effects. Health Phys. 1989 May;56(5):691-704.
Karu T. Primary and Secondary Mechanisms of Action of Visible to near-Ir Radiation on Cells. J Photochem Photobiol B. 1999 Mar;49(1):1-17.
Katsuoka K, Mauch C, Schell H, Hornstein OP, Krieg T. Collagen-Type Synthesis in Human-Hair Papilla Cells in Culture. Arch Dermatol Res. 1988;280(3):140-4.
Kawa Y, Ito M, Ono H, Asano M, Takano N, Ooka S, Watabe H, Hosaka E, Baba T, Kubota Y, Mizoguchi M. Stem Cell Factor and/or Endothelin-3 Dependent Immortal Melanoblast and Melanocyte Populations Derived from Mouse Neural Crest Cells. Pigment Cell Res. 2000;13 Suppl 8:73-80.
Khaled AR, Kim K, Hofmeister R, Muegge K, Durum SK. Withdrawal of Il-7 Induces Bax Translocation from Cytosol to Mitochondria through a Rise in Intracellular Ph. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14476-81.
Kovacs SO. Vitiligo. J Am Acad Dermatol. 1998 May;38(5 Pt 1):647-66; quiz 67-8.
Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence That Bcl-2 Represses Apoptosis by Regulating Endoplasmic Reticulum-Associated Ca2+ Fluxes. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6569-73.
Lan CC, Wu CS, Chiou MH, Hsieh PC, Yu HS. Low-Energy Helium-Neon Laser Induces Locomotion of the Immature Melanoblasts and Promotes Melanogenesis of the More Differentiated Melanoblasts: Recapitulation of Vitiligo Repigmentation in Vitro. J Invest Dermatol. 2006 Sep;126(9):2119-26.
Liang HL, Whelan HT, Eells JT, Meng H, Buchmann E, Lerch-Gaggl A, Wong-Riley M. Photobiomodulation Partially Rescues Visual Cortical Neurons from Cyanide-Induced Apoptosis. Neuroscience. 2006 May 12;139(2):639-49.
Limat A, Klein CE. Expression of Epidermal Integrins in Human Organotypic Keratinocyte Cultures. Exp Dermatol. 1993 Oct;2(5):196-203.
Linette GP, Li Y, Roth K, Korsmeyer SJ. Cross Talk between Cell Death and Cell Cycle Progression: Bcl-2 Regulates Nfat-Mediated Activation. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9545-52.
Mandel AS, Haberman HF, Pawlowski D, Goldstein E. Non Puva Nonsurgical Therapies for Vitiligo. Clin Dermatol. 1997 Nov-Dec;15(6):907-19.
Marchetti P, Susin SA, Decaudin D, Gamen S, Castedo M, Hirsch T, Zamzami N, Naval J, Senik A, Kroemer G. Apoptosis-Associated Derangement of Mitochondrial Function in Cells Lacking Mitochondrial DNA. Cancer research. 1996 May 1;56(9):2033-8.
McCarthy J, Turley EA. Effects of Extracellular Matrix Components on Cell Locomotion. Crit Rev Oral Biol Med. 1993;4(5):619-37.
McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE. Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability. Cell. 2002 Jun 14;109(6):707-18.
Monney L, Otter I, Olivier R, Ravn U, Mirzasaleh H, Fellay I, Poirier GG, Borner C. Bcl-2 Overexpression Blocks Activation of the Death Protease Cpp32/Yama/Apopain. Biochemical and biophysical research communications. 1996 Apr 16;221(2):340-5.
Murphy AN, Bredesen DE, Cortopassi G, Wang E, Fiskum G. Bcl-2 Potentiates the Maximal Calcium Uptake Capacity of Neural Cell Mitochondria. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9893-8.
Neitmann M, Alexander M, Brinckmann J, Schlenke P, Tronnier M. Attachment and Chemotaxis of Melanocytes after Ultraviolet Irradiation in Vitro. Br J Dermatol. 1999 Nov;141(5):794-801.
Njoo MD, Westerhof W. [Vitiligo]. Ned Tijdschr Geneeskd. 1997 Apr 19;141(16):759-64.
Norris DA, Horikawa T, Morelli JG. Melanocyte Destruction and Repopulation in Vitiligo. Pigment Cell Res. 1994 Aug;7(4):193-203.
O'Reilly LA, Huang DC, Strasser A. The Cell Death Inhibitor Bcl-2 and Its Homologues Influence Control of Cell Cycle Entry. The EMBO journal. 1996 Dec 16;15(24):6979-90.
Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 Heterodimerizes in Vivo with a Conserved Homolog, Bax, That Accelerates Programmed Cell Death. Cell. 1993 Aug 27;74(4):609-19.
Ooka S, Kawa Y, Ito M, Soma Y, Mizoguchi M. Establishment and Characterization of a Mouse Neural Crest Derived Cell Line (Nccmelan5). Pigment Cell Res. 2001 Aug;14(4):268-74.
Oron U, Yaakobi T, Oron A, Mordechovitz D, Shofti R, Hayam G, Dror U, Gepstein L, Wolf T, Haudenschild C, Haim SB. Low-Energy Laser Irradiation Reduces Formation of Scar Tissue after Myocardial Infarction in Rats and Dogs. Circulation. 2001 Jan 16;103(2):296-301.
Ortel B, Alge C, Pandy A. Phototherapeutic Options for Vitiligo. In: J K, J H, CA E, PR B, editors. Dermatological Phototherapy and Photodiagnostic Methods. Heidelberg: Springer-Verlag; 2001. p. 135-61.
Otter I, Conus S, Ravn U, Rager M, Olivier R, Monney L, Fabbro D, Borner C. The Binding Properties and Biological Activities of Bcl-2 and Bax in Cells Exposed to Apoptotic Stimuli. J Biol Chem. 1998 Mar 13;273(11):6110-20.
Pontinen PJ, Aaltokallio T, Kolari PJ. Comparative Effects of Exposure to Different Light Sources (He-Ne Laser, Ingaal Diode Laser, a Specific Type of Noncoherent Led) on Skin Blood Flow for the Head. Acupunct Electrother Res. 1996 Apr-Jun;21(2):105-18.
Reed JC. Bcl-2 and the Regulation of Programmed Cell Death. The Journal of cell biology. 1994 Jan;124(1-2):1-6.
Reed JC, Kitada S, Takayama S, Miyashita T. Regulation of Chemoresistance by the Bcl-2 Oncoprotein in Non-Hodgkin's Lymphoma and Lymphocytic Leukemia Cell Lines. Ann Oncol. 1994;5 Suppl 1:61-5.
Savill J, Fadok V, Henson P, Haslett C. Phagocyte Recognition of Cells Undergoing Apoptosis. Immunology today. 1993 Mar;14(3):131-6.
Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O. Low-Energy Laser Irradiation Promotes the Survival and Cell Cycle Entry of Skeletal Muscle Satellite Cells. J Cell Sci. 2002 Apr 1;115(Pt 7):1461-9.
Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory Windows in Low-Intensity Laser Activation: Lasers, Scanners, and Nasa's Light-Emitting Diode Array System. J Clin Laser Med Surg. 2001 Feb;19(1):29-33.
Staricco RG, Miller-Milinska A. Activation of the Amelanotic Melanocytes in the Outer Root Sheath of the Hair Follicle Following Ultra Violet Rays Exposure. J Invest Dermatol. 1962 Sep;39:163-4.
Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC. Increased Fibroblast Proliferation Induced by Light Emitting Diode and Low Power Laser Irradiation. Lasers Med Sci. 2003;18(2):95-9.
Walsh LJ. The Current Status of Low Level Laser Therapy in Dentistry. Part 1. Soft Tissue Applications. Aust Dent J. 1997 Aug;42(4):247-54.
Watabe H, Soma Y, Ito M, Kawa Y, Mizoguchi M. All-Trans Retinoic Acid Induces Differentiation and Apoptosis of Murine Melanocyte Precursors with Induction of the Microphthalmia-Associated Transcription Factor. J Invest Dermatol. 2002 Jan;118(1):35-42.
Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M. Effect of Nasa Light-Emitting Diode Irradiation on Molecular Changes for Wound Healing in Diabetic Mice. J Clin Laser Med Surg. 2003 Apr;21(2):67-74.
Whelan HT, Connelly JF, Hodgson BD, Barbeau L, Post AC, Bullard G, Buchmann EV, Kane M, Whelan NT, Warwick A, Margolis D. Nasa Light-Emitting Diodes for the Prevention of Oral Mucositis in Pediatric Bone Marrow Transplant Patients. J Clin Laser Med Surg. 2002 Dec;20(6):319-24.
Whelan HT, Smits RL, Jr., Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J. Effect of Nasa Light-Emitting Diode Irradiation on Wound Healing. J Clin Laser Med Surg. 2001 Dec;19(6):305-14.
Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the Cytosol to Mitochondria During Apoptosis. The Journal of cell biology. 1997 Dec 1;139(5):1281-92.
Wong-Riley MT, Bai X, Buchmann E, Whelan HT. Light-Emitting Diode Treatment Reverses the Effect of Ttx on Cytochrome Oxidase in Neurons. Neuroreport. 2001 Oct 8;12(14):3033-7.
Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT. Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins: Role of Cytochrome C Oxidase. J Biol Chem. 2005 Feb 11;280(6):4761-71.
Yamamoto K, Yamauchi M. Characterization of Dermal Type I Collagen of C3h Mouse at Different Stages of the Hair Cycle. Br J Dermatol. 1999 Oct;141(4):667-75.
Yoshida H, Kunisada T, Kusakabe M, Nishikawa S, Nishikawa SI. Distinct Stages of Melanocyte Differentiation Revealed by Anlaysis of Nonuniform Pigmentation Patterns. Development. 1996 Apr;122(4):1207-14.
Yu HS, Wu CS, Yu CL, Kao YH, Chiou MH. Helium-Neon Laser Irradiation Stimulates Migration and Proliferation in Melanocytes and Induces Repigmentation in Segmental-Type Vitiligo. J Invest Dermatol. 2003 Jan;120(1):56-64.
Yu W, Naim JO, Lanzafame RJ. The Effect of Laser Irradiation on the Release of Bfgf from 3t3 Fibroblasts. Photochem Photobiol. 1994 Feb;59(2):167-70.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27977-
dc.description.abstract在紅光與紅外光波段的發光二極體(Light emitting dioide,又簡稱 LED),一種低能量光源,已被證實在促進傷口癒合與促進視神經的傷害的恢復有功效。直到最近,紅光的發光二級體也被報告對於治療白斑有效。白斑是一種後天性,黑色素細胞的功能缺失所造成的疾病,細胞可能是經由凋亡的途徑破壞。相對於傳統的治療方式中的氦氖雷射(He-Ne laser) (632.8nm),發光二級體可以發射類似波長,價格低廉,機器不易耗損,且單次治療時間也較短。然而白斑以發光二級體治療,截至目前為止,仍未有進一步的有關於其作用在細胞上機轉的報告。在此研究中,我們使用研究白斑常用的NCCmelb4 and NCCmelan5兩株黑色素母細胞珠來研究LED 光源對黑色素母細胞的抗凋亡的細胞保護功能,並且排除其對於細胞直接造成細胞增生,細胞移動,或黑色素增加的機轉,希望為其治療白斑的應用提供依據。
本研究發現,紅光二極體照光4J/cm2為兩株黑色素母細胞的致死量,照射1J/ cm2時,為最有效果的劑量。以1J/ cm2照光後,正常營養狀態的成熟黑色素母細胞,其黑色素含量,細胞數,總細胞活性,與移動能力皆有被抑制的情形。在不成熟的黑色素母細胞,紅光二極體的抑制狀況則不如成熟黑色素母細胞明顯。但是若在血清缺乏下,紅光二極體照射1J/ cm2可以預防黑色素母細胞的死亡,並且可以使bax/bcl-2 mRNA 表現比例減少。
結論: 我們發現紅光二極體照光治療白斑的機制,並非在於直接促進黑色素增加,使細胞增生,或是使細胞移動能力增加,反而是使黑色素母細胞一些生理功能停歇,經由調節經粒腺體的凋亡機轉,來預防黑色素母細胞的死亡,進而達到保護的作用。
zh_TW
dc.description.abstractLight emitting dioide (LED), in the red and infrared spectrum has proved efficacy in stimulating wound healing and accelerating optic nerve recovery. Very recently, the LED (630nm) has shown effects on repigmentation of vitiligo. Vitiligo is an acquired pigmentary disorder resulting from melanocyte destruction, which is thought to be mediated by apoptosis. Compared to low energy He-Ne laser, which is now used in treating vitiligo, LED with similar wavelength, is cheaper, longer-lasting, and requires less treatment time. However, the molecular mechanism of LED light on the activation of melanocytic cells has not been investigated. In this study, we utilized NCCmelan5 and NCCmelb4 melanoblast (MB), two melanoblast cell lines which were previously used to investigate the treatment of vitiligo, to investigate the anti-apoptotic effects of LED (630nm), and ruled out others causes of repigmentation including proliferation, mitochondrial metabolism, melanin production, migration distances of MBs after irradiation, to formulate the theoretical basis LED’s treatment of vitiligo.
MBs showed 4J/cm2 to be the lethal dose and 1J/cm2 to be the effective dose for MBs. In mature MBs, there was decrement on total metabolism, cell number, melanin synthesis, and migration after irradiation, however, the effect of inhibition was not obvious for immature MBs. Under serum deprivation, pretreatment with LED (1J/cm2 ) has shown protective effect against cell death and down-regulated bax/bcl-2 mRNA expression ratio.
In this study, we found that the mechanism for LED (630nm) repigmentation in vitiliginous skin is not through direct stimulation of melanin synthesis, proliferation, nor cellular migration. On the contrary, LED puts healthy MBs to arrest and prevents death of un-healthy cells through a cyto-protective mechanism with regulation of the mitochondria pathway of apoptosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:31:16Z (GMT). No. of bitstreams: 1
ntu-96-P94421022-1.pdf: 592433 bytes, checksum: 13f2264c8eaff58de635797b6384576b (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents一、中文摘要 ------------------------------------------------------------------------------------5
二、緒論 ------------------------------------------------------------------------------------------6
三、研究方法與材料 ---------------------------------------------------------------------------11
(一) 細胞培養與培養需求----------------------------------------------------------------------11
(二) 照光設備與步驟----------------------------------------------------------------------------11
(三) 黑色素實驗---------------------------------------------------------------------------------12
(四) 生長曲線實驗------------------------------------------------------------------------------12
(五) 細胞活力實驗 ---------------------------------------------------------------------------13
(六) 曠時攝影黑色素細胞移動實驗-----------------------------------------------------------13
(七) 流式細胞儀分析細胞死亡比例-----------------------------------------------------------14
(八) 反轉錄聚合脢反應分析mRNA --------------------------------------------------------15
(九) 統計學分析 ------------------------------------------------------------------------------16
三、實驗結果-------------------------------------------------------------------------------------17
第一部份—黑色素母細胞的細胞活性在4J/cm2 會被明顯的抑制--------------------------17
第二部份--生長曲線與細胞活性----------------------------------------------------------------17
(一) 生長曲線:照光 1J/ cm2, NCCmelan5與NCCmelb4的生長曲線皆被抑制
-------------------------------------------------------------------------------------------------------18
(二) MTT assay : NCCmelan5細胞的總活性抑制-------------------------------------------19
第三部份—NCCmelan5其細胞在照光後六天其黑色素含量減少---------------------------19
第四部份—細胞移動因照光而減少-------------------------------------------------------------20
第五部份—血清缺乏的細胞保護實驗----------------------------------------------------------21
(一) 細胞數因照光前處理而增加------------------------------------------------------------21
(二) 細胞活性因為照光前處理而增加------------------------------------------------------21
(三) 細胞在光學顯微鏡下數目因為照光前處理而增加-----------------------------------22
(四) 細胞凋亡比例因為照光而減少---------------------------------------------------------22
(五) 照光後Bax/bcl-2 mRNA比例減少-----------------------------------------------------22
五、討論-------------------------------------------------------------------------------------------24
六、展望-------------------------------------------------------------------------------------------29
七、英文摘要-------------------------------------------------------------------------------------30
八、參考文獻-------------------------------------------------------------------------------------31
九、圖片-------------------------------------------------------------------------------------------41
圖一 測試NCCmelan5細胞的適當照光劑量------------------------------------------------41
圖二 測試NCCmelb4細胞的適當照光劑量-------------------------------------------------42
圖三 NCCmelan5 照射發光二極體後生長曲線圖------------------------------------------43
圖四 NCCmelan4 照射發光二極體後生長曲線圖圖----------------------------------------44
圖五 NCCmelan5 照射發光二極體後MTT assay-------------------------------------------45
圖六 NCCmelb4 照射發光二極體後MTT assay--------------------------------------------46
圖七 NCCmelan5平均細胞的黑色素含量照光後黑色素含量-----------------------------47
圖八 NCCmelan5 細胞在 (a) fibronectin,(b) Type I collagen,與(c) Type
IVcollagen上的移動距離比較-------------------------------------------------------------------48
圖九 NCCmelan5 細胞在 (a) fibronectin,(b) Type I collagen,與(c) Type
IVcollagen上的移動距離時序比較-------------------------------------------------------------50
圖十 NCCmelb4 細胞在 (a) fibronectin,(b) Type I collagen,與(c) Type
IVcollagen上的移動距離比較-------------------------------------------------------------------52
圖十一 NCCmelb4 細胞在 (a) fibronectin,(b) Type I collagen,與(c) Type
IV collagen上的移動距離時序比較-------------------------------------------------------------54
圖十二 發光二極體對血清缺乏的黑色母細胞的影響----------------------------------------56
圖十三 發光二極體對血清缺乏的黑色母細胞細胞活性影響--------------------------------57
圖十四 發光二極體前處理對於血清缺乏的NCCmelan5細胞內 bax and bcl-2 mRNA 相對量的影響-----------------------------------------------------------------------------------------58
圖十五 發光二極體前處理對於血清缺乏的NCCmelan5細胞內 bax / bcl-2 mRNA ratio相對量的影響--------------------------------------------------------------------------------------59
圖十六.發光二極體前處理對於血清缺乏的NCCmelan5細胞內 bax / bcl-2 mRNA ratio相對量的影響-----------------------------------------------------------------------------------------60
dc.language.isozh-TW
dc.subject白斑zh_TW
dc.subject保護zh_TW
dc.subject光zh_TW
dc.subject凋亡zh_TW
dc.subject黑色素母細胞zh_TW
dc.subject發光二極體zh_TW
dc.subjectmigrationen
dc.subjectapoptosisen
dc.subjectmelanoblasten
dc.subjectLight emitting diodeen
dc.subjectprotectionen
dc.subjectvitiligoen
dc.title紅光發光二極體對黑色素母細胞的生物效應—白斑治療的理論基礎zh_TW
dc.titleThe biological effect of light emitting diode on melanoblasts—theoretical basis for treatment of vitiligoen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor邱顯清
dc.contributor.oralexamcommittee賴明陽
dc.subject.keyword發光二極體,黑色素母細胞,凋亡,保護,光,白斑,zh_TW
dc.subject.keywordLight emitting diode,melanoblast,apoptosis,migration,protection,vitiligo,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2007-08-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
578.55 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved