請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27973
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾萬年 | |
dc.contributor.author | Chun-Sung Yang | en |
dc.contributor.author | 楊竣菘 | zh_TW |
dc.date.accessioned | 2021-06-12T18:31:01Z | - |
dc.date.available | 2009-08-28 | |
dc.date.copyright | 2007-08-28 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-01 | |
dc.identifier.citation | Antunes C, Tesh FW (1997) A critical consideration of the metamorphosis zone when
identifying daily rings in otoliths of European eel, Anguilla anguilla (L.). Ecol Freshw Fish 6:102-107 Arai T, Otake T, Tsukamoto K (1997) Drastic changes in otolith microstructure and microchemistry accompanying the onset of metamorphosis in the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 161:17-22 Arai T, Limbong D, Otake T, Tsukamoto K (1999) Metamorphosis and inshore migration of tropical eels Anguilla spp. in the Indo-Pacific. Mar Ecol Prog Ser 182:283-293 Beckman DW, Wilson CA (1995) Seasonal timing of opaque zone formation in fish otoliths. In: Secor DH, Dean JM, Campana SE (eds) Recent developments in fish otolith research. University of South Carolina Press, p 27-43 Bell GW, Witting DA, Able KW (2003) Aspects of metamorphosis and habitat use in the conger eel, Conger oceanicus. Copeia 3:544-552 Boeuf G, Payan P (2001) How should salinity influence fish growth?Comp Biochem Physiol C 130:411-423 Bruland KW (1983) Trace elements in seawater. In: Riley JP, Chester R (eds) Chemical oceanography. Academic Press, London, p 157-220 Byrne RH, Kump LR, Cantrell KJ (1988) The influence of temperature and pH on trace metal speciation in seawater. Mar Chem 25:163-181 Campana SE (1999) Chemistry and composition of fish otoliths:pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263-297 Campana SE, Neilson JD (1982) Daily growth increments in otoliths of starry flounder (Platichthys stellatus) and the influence of some environmental variables in their production. Can J Fish Aquat Sci 39:937-942 Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014-1032 Campana SE, Thorrold SR (2001) Otolith, increments and elements:keys to comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30-38 Chen LS, Yan HY (2002) The relative distribution of otoliths as a means of larval fish identification. Zool Stud 41(2):144-152 Cieri MD, McCleave JD (2000) Discrepancies between otoliths of larvae and juveniles of the American eel: Is something fishy happening at metamorphosis? J Fish Biol 57:1189-1198 Chen HL, Tzeng WN (2006) Daily growth increment formation in otoliths of Pacific tarpon Megalops cyprinoides during metamorphosis. Mar Ecol Prog Ser 312:255-263 Chowdhury MJ, Ginneken LV, Blust R (2000) Kinetics of waterborne strontium uptake in the common carp, Cyprinus carpioat different calcium levels. Environ Toxicol Chem 19:622-630 Coates D (1987) Observation on the biology of tarpon, Megalops cyprinoides (Broussonet) (Pisces: Megalopidae), in the Sepik River, northern Papua New Guinea. Aust J Mar Freshw Res 38:529-535 Correia AT, Antunes C, Isidro EJ, Coimbra J (2003) Changes in otolith microstructure and microchemistry during larval development of the European conger eel (Conger conger). Mar Biol 142:777-789 de Jesus EG, Inui Y, Hirano T (1990) Cortisol enhances the stimulating action of thyroid hormones on dorsal fin-ray resorption of flounder in vitro. Gen Comp Endocrinol 79:167-173 de Jesus EG, Hirano T, Inui Y (1991) Changes in cortisol and thyroid hormone concentrations during early development and metamorphosing in Japanese flounder(Paralichthys olivaceus). Gen Comp Endocrinol 82:369-376 de Jesus EGT, Toledo JD, Simpas MS (1998) Thyroid hormones promote early metamorphosis in grouper (Epinephelus coioides) larvae. Gen Comp Endocrinol 112:10-16 de Pontual H, Lagarde` re F, Amara R, Bohn M, Ogor A (2003) Influence of ontogenetic and environmental changes in the otolith microchemistry of juvenile sole (Solea solea). J Sea Res 50:199-211 de Vries MC, Gillanders BM, Elsdon TS (2005) Facilitation of barium uptake into fish otoliths : Influence of strontium concentration and salinity. Geochim Cosmochim Acta 69(16):4061-4072 Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2:105-113 Donnelly J, Torres JJ, Crabtree RE. (1995) Proximate composition and nucleic acid content of premetamorphic leptocephalus larvae of the congrid eel Ariosoma balearicum. Mar Biol 123:851-858 Elsdon TS, Gillanders BM (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can J Fish Aquat Sci 59:1796-1808 Elsdon TS, Gillanders, BM (2003a) Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev Fish Biol Fish 13:219-235 Elsdon TS, Gillanders BM (2003b) Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrrus butcheri. Mar Ecol Prog Ser 260:263-272 Elsdon TS, Gillanders BM (2004) Fish otolith chemistry influenced by exposure to multiple environmental variables. J Exp Mar Biol Ecol 313, 269-284 Elsdon TS, Gillanders BM (2005) Strontium incorporation into calcified stuuctures : separating the effects of ambient water concentration and exposure time. Mar Ecol Prog Ser 285:233-243 Elsdon TS, Gillanders BM (2005) Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquat Sci 62:1143-1152 Elsdon TS, Gillanders BM (2006) Temporal variability in strontium, calcium, barium, and manganese in estuaries: Implication for reconstructing environmental histories of fish from chemicals in calcified structures. Estuar Coast Shelf Sci 66:147-156 Gillanders BM (2005) Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuarine Coast Shelf Sci 64:47-57 Guay CK, Falkner KK (1998) A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas. Cont Shelf Res 18, 859-882 Geffen AJ (1987) Methods of validating daily increment deposition in otoliths of larval fish. In: Summerfelt RC, Hall GE (eds) The age and growth of fish. Iowa State University Press, Ames, IA, p 223-240 Geffen AJ (1992) Validation of otolith increment deposition rate. In: Stevenson DK, Campana SE (eds) Otolith microstructure examination and analysis. Can Spec Publ Fish Aquat Sci 117:101-113 Hering JG, Morel FMM (1988) Kinetics of trace metal complexation: role of alkaline -earth metals. Environ Sci Technol 22:1469-1478 Ikeda Y, Arai N, Kidokoro H, Sakamoto W (2003) Strontium:calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Im- mastrephidae) as indicators of migratory behaviour. Mar Ecol Prog Ser 251:169-179 Jones C (1986) Determining age of larval fish with the otolith increment technique. Fish Bull 84:91–103 Lee TW, Byun JS (1996) Microstructural growth in otoliths of conger eel (Conger myriaster) leptocephali during the metamorphic stage. Mar Biol 125:259-268 Kalish JM (1989) Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J Exp Mar Biol Ecol 132:151-178 Kalish JM (1991) Determination of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of reared rock cod Pseudophycis barbatus. Mar Ecol Prog Ser 74:137-159 Kitajima C, Sato T, Kawanishi M (1967) On the effect of thyroxine to promote the metamorphosis of a conger eel—preliminary report. Bull Jpn Soc Sci Fish 33:919-22 Kraus RT, Secor DH (2004) Incorporation of strontium into otoliths of an estuarine fish. J Exp Mar Biol Ecol 302:85-106 Lee TW, Byun JS (1996) Microstructural growth in otoliths of conger eel (Conger myriaster) leptocephali during the metamorphic stage. Mar Biol 125:259-268 Libes SM (1992) An introduction to marine biogeochemistry. New York : Wiley Linkowski TB (1991) Otolith microstructure and growth patterns during the early life history of lanternfishes (family Myctophidae). Can J Zool 69:1777-1792 Marui M, Arai T, Miller MJ, Jellyman DJ, Tsukamoto K (2001) Comparison of early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructure and microchemistry. Mar Ecol Prog Ser 213:273-284 Martin GB, Thorrold SR, Jones CM (2004) Temperature and salinity effects on strontium incorporation in otoliths of larval spot Leiostomus xanthurus. Can J Fish Aquat Sci 61:34-42 Martin GB, Thorrold SR (2005) Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar Ecol Prog Ser 293:223-232 Miller MB, Clough AM, Batson JN, Vachet RW (2006) Transition metal binding to cod otolith proteins. J Exp Mar Biol Ecol 329:135-143 Milton DA, Chenery SR (2001) Sources and uptake of trace metals in otoliths of juvenile barramundi Lates calcarifer. J Exp Mar Biol Ecol 264:47-65 Marui M, Arai T, Miller MJ, Jellyman DJ, Tsukamoto K (2001) Comparison of early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructure and microchemistry. Mar Ecol Prog Ser 213:273-284 Morales-Nin B (2000) Review of the growth regulation processes of otolith daily increment formation. Fish Res 46: 53-67 Morse JW, Bender ML (1990) Partition coefficients in calcite:examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol 82:265-277 Mucci A, Morse JW (1983) The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition. Geochim Cosmochim Acta 47:217-233 Mugiya Y (1986) Effects of calmodulin inhibitors and other metabolic modulators on invitro otolith formation in the rainbow-trout, Salmo-GairdnerII. Comp Biochem Physiol 84 (1): 57-60 Mugiya Y (1994) Studies on otolith reading in fish. Nippon Suisan Gakkaishi 60 (1): 7-11 Mugiya Y, Uchimura T (1989) Otolith resorption induced by anaerobic stress in goldfish Carassius auratus. J Fish Biol 35:813-818 Mukkamala SB, Anson CE, Powell AK (2006) Modelling calcium carbonate biomineralisation processes. J Inor Bioche 100:1128-1138 Obermiller LE, Pfeiler E (2003) Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol Phylogenet Evol 26:202-214 Otake T, Ishii T, Nakahara M, Nakamura R (1994) Drastic changes in otolith strontium:calcium ratios in leptocephali and glass eels of Japanese eel Anguilla japonica. Mar Ecol Prog Ser 112:189-193 Otake T, Ishii T, Nakahara M, Nakamura R (1997) Changes in otolith strontium: calcium ratios in metamorphosing Conger myriaster leptocephali. Mar Biol 128:565-572 Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173:1124-1127 Payan P, De Pontual H, Boeuf G (2004) Endolymph chemistry and otolith growth in fish. Comptes Rendus Palevol 3 (6-7): 535-547 Pfeiler E (1984) Changes in water and salt content during metamorphosis of larval bonefish (Albula). Bull Mar Sci 34:177-184 Pfeiler E (1984) Glycosaminoglycan breakdown during metamorphosis of larval bonefish Albula. Mar Biol Lett 5:241-249 Pfeiler E (1989) Sensory systems and behavior of premetamorphic and metamorphic leptocephalous larvae. Brain Behav Evol 34:25-34 Pfeiler E, Almada E, Vrijenhoek RL (1990) Ontogentic changes in proteins and isozyme expression in larval and juvenile bonefish (Albula). J Exp Zool 254:248-255 Pfeiler E (1999) Developmental physiology of elopomorph leptocephali. Comp Biochem Physiol A 123:113-128 Pfeiler E (2001) Changes in hypoxia tolerance during metamorphosis of bonefish (Albula sp.) leptocephali. J Fish Biol 59:1677-1681 Pfeiler E, Lindley VA, Elser JJ (1998) Elemental (C, N and P) analysis of metamorphosing bonefish (Albula sp.) leptocephali: relationship to catabolism of endogenous organic compounds, tissue remodeling, and feeding ecology. Mar Biol 132:21-28 Pfeiler E, Toyoda H, Williams MD, Nieman RA (2002) Identification, structural analysis and function of hyaluronan in developing fish larvae (leptocephali). Comp Biochem Physiol B 132:443-451 Popper AN, Lu ZM (2000) Structure-function relationships in fish otolith organs. Fish Res 46:15-25 Power DM, Llewellyn L, Faustino M, Nowell MA, BjÖrnsson BT, Einarsdottir IE, Canario AVM, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol 130C:447-459 Power AN, Ramcharitar J, Campana SE (2005) Why otoliths?Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56:497-504 Radtke RL, Shafer DJ (1992) Environment sensitivity of fish otolith microchemistry. Aust J Mar Freshw Res 43:935-951 Rice JA, Crowder LB, Binkowski FP (1985) Evaluating the otolith increment analysis method for bloater Coregonus hoyi: Do otoliths ring true? Trans Am Fish Soc 114:532-539 Sadovy Y, Severin KP (1992) Trace elements in biogenic aragonite: correlation of body growth rate and strontium levels in the otoliths of the white grunt, Haemulon plumieri (Pisces: Haemulidae). Bull Mar Sci 50:237-257 Schreiber AM, Specker JL (2000) Metamorphosis in the Summer Flounder (Paralichthys dentatus):thyroidal status influences gill mitochondria-rich cells. Gen Comp Endocrinol 117:238-250 Secor DH, Rooker JR (2000) Is otolith strontium a useful scalar of life-cycles in estuarine fishes? Fish Res 46:359-371 Shinoda A, Tanaka H, Kagawa H, Ohta H, Tsukamoto K (2004) Otolith microstructural analysis of reared larvae of the Japanese eel Anguilla japonica. Fish Sci 70:339-341 Shiao JC, Hwang PP (2004) Thyroid hormones are necessary for teleostean otolith growth. Mar Ecol Prog Ser 278:271-278 Shiao JC, Hwang PP (2006) Thyroid hormones are necessary for the metamorphosis of tarpon Megalops cyprinoides leptocephali. J Exp Mar Biol Ecol 331: 121-132 Smith DG (1980) Early larvae of the tarpon, Megalops atlantica Valenciennes (Pisces: Elopidae), with notes on spawning in the Gulf of Mexico and the Yucatan Channel. Bull Mar Sci 30:136-141 Sonia Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang Z (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can J Fish Aquat Sci 62:2609-2619 Speer JA (1983) Crystal chemistry and phase relations of orthorhombic carbonates. In Carbonates: Reeder RJ (eds) Mineralogy and Chemistry. Mineralogical Society of America Rev Mineral 11:145-190 Subash Peter MC, Lock RAC, Wendelar Bonga SE (2000) Evidence for an osmoregulatory role of thyroid hormone in the freshwater Mozambique tilapia Oreochromis mosambicus. Gen Comp Endocrinol 120:157-167 Sweeting RM, Beamish RJ, Neville CM (2004) Crystalline otoliths in teleosts: Comparisons between hatchery and wild coho salmon (Oncorhynchus kisutch) in the Strait of Georgia. Rev Fish Biol Fish 14:361-369 Tanaka K, Mugiya Y, Yamada J (1981) Effects of photoperiod and feeding on daily growth patterns in otoliths of juvenile Tilapia nicolica. Fish Bull 79:459-466 Thresher RE (1999) Elemental composition of otoliths as a stock delineator in fishes. Fish Res 43:165-204 Tomas J (2006) The appearance of accessory growth centres in adult whiting Merlangius merlangus otoliths. J Fish Biol 69:601-607 Toole CL, Markle DF, Harris PM (1993) Relationships between otolith microstructure, microchemistry, and early life history events in Dover sole, Microstomus pacificus. Fis Bull 91:732-753 Tsukamoto K (1989) Otolith daily increments in the Japanese eel. Nippon Suisan Gakk 55:1017-1021 Tsukamoto Y, Okiyama M (1997) Metamorphosis of the Pacific tarpon, Megalops cyprinoides (Elopiformes, Megalopidae) with remarks on development patterns in the Elopomorpha. Bull Mar Sci 60:23-36 Tzeng WN (1996) Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel. J Exp Mar Biol Ecol 199:111-122 Tzeng WN, Severin KP, Wickstro¨m H (1997) Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Mar Ecol Prog Ser 149:73-81 Tzeng WN, Tsai YC (1994) Changes in otolith microchemistry of the Japanese eel, Anguilla japonica, during its migration from the ocean to the rivers of Taiwan. J Fish Biol 45:671-683 Tzeng WN, Wu CE, Wang YT (1998) Age of Pacific tarpon, Megalops cyprinoides, at estuarine arrival and growth during metamorphosis. Zool Stud 37:177-183 Tzeng WN, Chang CW, Wang CH, Shiao JC, Iiznk Y, Yang YJ, Yn CF, Lozys L (2007, in press) Misidentification of migratory environmental history of European eel Anguillia anguillia by Sr/Ca ratios of vaterite otolith. Mar Ecol Prog Ser Wang CH, Tzeng WN (1998) Interpretation of geographic variation in size of American eel Anguilla rostrata elvers on the Atlantic coast of North America using their life history and otolith ageing. Mar Ecol Prog Ser 168:35-43 Wang CH, Tzeng WN (2000) The timing of metamorphosis and growth rates of American and European eel leptocephali: a mechanism of larval segregative migration. Fish Res 46:191-205 Watanabe T, Kiron V, Shuichi S (1997) Trace minerals in fish nutrition. Aquacul 151: 185-207 Wells BK, Bath GE, Thorrold SR, Jones CM (2000) Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can J Fish Aquat Sci 57:2122-2129 Wright PJ, Panfili J, Morales-Nin B, Geffen AJ (2002) Types of calcified structures. In: Panfili J, de Pontual H, Troadec H, Wright PJ (eds) Manual of Fish Sclerochronology. Brest: Ifremer-IRD coedition, p 31-87 Yamano K, Tagawa M, de Jesus EG, Hirano T, Miwa S, Inui Y. (1991) Changes in whole body concentrations of thyroid hormones and cortisol in meta- morphosing conger eel. J Comp Physiol B 161:371-375 Zacheri DC, Manriques PH, Paradis G, Day RW, Castilla JC, Warner RR, Lea DW, Gaines SD (2003) Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories. Mar Ecol Prog Ser 248:297-303 Zerbi A, Aliaume C, Joyeux JC (2001) Growth of juvenile tarpon in Puerto Rican estuaries. J Mar Sci 58:87-95 Zhang Z (1992) Ultrastructure of otolith increments and checks in the teleost fish Oreochromis niloticus. J Morphol 211:231-220 Zhang Z, Beamish RJ, Riddell BE (1995) Differences in otolith microstructure between hatchery-reared and wild Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 52:344-352 曾萬年, 于學毓 (1985) 台灣北部公司田溪河口域夏威夷海鰱與大眼海鰱仔魚之出 現。行政院國科會生物處海洋生物科學術研討會論文集, p165-176 陳慧倫 (2004) 大眼海鰱Megalops cyprinoides變態過程中耳石微細構造與微化學 改變之研究。國立台灣大學動物學研究所碩士論文,台灣,台北。62頁 環保署 (2005) 海水中鎘、鈷、銅、鐵、錳、鎳、鉛及鋅檢測前處理方法-鉗合離子交換樹脂濃縮法。NIEA W308.22B | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27973 | - |
dc.description.abstract | 大眼海鰱 (Megalops cyprinoides) 與鰻鱺目魚類相同,都具有特殊柳葉魚(Leptocephalus) 發育階段的生活史。研究指出,柳葉魚仔魚轉換到稚魚的變態過程(Metamorphosis),須經歷行為、棲地轉換與身體組織重組等個體發生(Ontogenetic) 的劇烈變化;在此過程將觀察到耳石日週輪明顯變寬、耳石Sr/Ca比因GAGs降解而急速下降等現象。另外,影響耳石微化學變化的眾多環境因子中,以水體元素濃度的影響最為明顯,其次為鹽度及溫度。為了探討變態時期耳石微化學受生理效應和外在水體元素濃度的影響程度,本研究設計一室內養殖控制實驗,來比較大眼海鰱不同發育階段耳石元素比值的變化情形。
實驗用的大眼海鰱柳葉魚標本,於2005年8月到9月間,採自於淡水公司田溪,其發育階段已進入變態期 (StageⅡ) 的第一天,隨即帶回實驗室以河口半淡鹹水馴化一天後,用四環黴素 (Tetracycline) 螢光標示耳石當作實驗開始的第一天。個別添加 SrCl2 ˙ 6H2O和Ba(NO3)2 兩種藥品,將飼育水依2×、4×、8×的比例調配成含控制組的四個濃度加兩重複添加實驗,飼育螢光標示後的柳葉魚。根據耳石日週輪的變化與發育階段的關係,得知變態期大約14天,以此將耳石劃分為柳葉魚期、變態期和稚魚期三個發育階段。水樣分析在添加Sr、Ba後的倍率變化為Sr/Ca比1×、5.3×、13.4×和29.0×,Ba/Ca比1.00×、0.99×、1.15×和1.53×非等倍率的變化關係。利用EPMA及LA-ICPMS測定結果,發現變態時期耳石Sr/Ca劇烈下降的現象只出現在Sr1×,而在Sr的四個濃度下,耳石Sr/Ca比呈現變態期1.0×、2.5×、7.4×和16.0×,稚魚期1.0×、6.5×、20.0×和47.1×的倍率關係,表示Sr/Ca比從水體進入到耳石後,具有放大的效果;同樣地,耳石Ba/Ca比在Ba的四個濃度下,倍率關係則呈現變態期1.00×、1.19×、1.15×和1.16×,稚魚期1.00×、1.37×、1.60×和1.81×,相較於Sr/Ca比,Ba/Ca比的放大效果則較不明顯,但兩者皆反應了水樣中Sr/Ca、Ba/Ca比非等倍率增加的關係。耳石Sr/Ca比在兩發育階段皆隨水體Sr濃度增加而上升,並呈現高度的正相關 (r=0.99),且斜率檢定為 p>0.05,表示不論在變態期或稚魚期,耳石元素吸收的狀況皆是環境元素濃度的影響程度遠大於生理的效應;但Ba/Ca比在變態時期與水體Ba元素濃度之間的關係卻不顯著,而稚魚期耳石則同樣地受飼育水元素濃度增加而有正相關關係 (r=0.7);由以上結果顯示,耳石對於水中元素的吸收除具有選擇性差異外,亦會受不同發育階段關鍵性的影響。此外,魚體長、體重及存活率也受Ba元素濃度而變化較鍶實驗組來得大。 本研究重要的發現為大眼海鰱柳葉魚在變態過程中耳石元素比值與飼育水之間的關係,水體元素濃度的效應超過過去所認為很重要的變態期生理因子的調控,且其關係在不同元素間又有很大的差異。並由分配係數得知,耳石吸收鍶的效率約為鋇的20倍,鍶鋇雖同為鹼土族元素 (Alkali metals),在控制組(1×)和稚魚期也有著相似的變化趨勢,但進入耳石內的比例卻有很大的差別。經由本研究耳石對元素利用的發現,將有助於耳石微化學組成在魚群洄游環境及生態研究上之應用。 | zh_TW |
dc.description.abstract | The Pacific tarpon Megalops cyprinoides are similar with Anguilliformes which has a willow-leaf-shaped larva called leptocephalus. Previous research indicated a drastic ontogenetic change in behavior, habitat, body shape, and recombination of tissue during metamorphosing from leptocephalus to juvenile stages. A maximum otolith increment width (OIW) and sharp decreasing in otolith Sr/Ca ratios resulting from glycosaminoglycan (GAGs) broken–down were observed during metamorphosis. In addition to such physiological factor, otolith microchemistry was affected mostly by ambient concentration rather than salinity and temperature. In order to compare with the affected degree of physiological factors and water chemistry during metamorphosis, we designed a controlled experiment with adding strontium (Sr) and barium (Ba) in rearing water to discuss the relationships between otolith chemistry and life stages in Pacific tarpon.
Leptocephali (entering StageⅡ) were collected in the estuary of Gong-shy-tyan Creek, a tributary of the Tanshui river in August to September 2005. After acclimating 1 day, the leptocephali were immersed in a tetracycline solution to mark the otoliths with a fluorescent band as the onset of the experiment (Day 1) and then reared in the treatments spiked with different concentrations (2×、4×、8×) of Sr and Ba. According to the changes of otolith daily growth increments (DGIs), the leptocephalus completed metamorphosis is approximately 14d during rearing conditions. The results of Sr:Ca and Ba:Ca ratios in the rearing water were measured to be 1×、5.3×、13.4×、29.0× and 1.00×、0.99×、1.15×、1.53× respectively after spiking of Sr and Ba. The Sr:Ca ratios of the otoliths were analysed with EPMA and the period of metamorphosis (M-zone) increased times in:1.0×、2.5×、7.4×、16.0× and juvenile (J-zone) in:1.0×、6.5×、20.0×、47.1×, and the phenomenon of Sr:Ca ratios rapid decreasing only presented in control treatment (Sr1×). Other Ba:Ca ratios in the otoliths were analysed with LA-ICPMS and the concentration ratios at M-zone were: 1.00×、1.19×、1.15×、1.16× and J-zone: 1.00×、1.37×、1.60×、1.81×. Although Ba:Ca ratios has less magnification effects than Sr:Ca in the otoliths, both of them reflected the relationships of non-equal times of the element spiked in rearing water. Whether in metamorphasis or juvenile stages, the Sr:Ca ratios in the otoliths were highly related to water chemistry (r=0.99) which indicated that otolith Sr:Ca ratios were mostly influenced by ambient elemental concentrations. Besides, the relationships only appeared within juvenile (r=0.70) in Ba treatments. Sr and Ba belong to alkali metals, but mean partition coefficients DMe in Sr:Ca ratios are around 20 times more than Ba:Ca ratios. In this study the great discovery is the effects of water chemistry are more important than physical factor in metamorphosis, and selective absorption rate from ambient element to otoliths is also existed especially in different life stages. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:31:01Z (GMT). No. of bitstreams: 1 ntu-96-R93b45007-1.pdf: 1171885 bytes, checksum: aaa417d99091539d561c4bd9811326f0 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 摘要……………………………………………………………………...………………3
Abstract.............................................................................................................................5 壹、前言……………………………………………………...................………………7 1. 大眼海鰱的分類地位………………………………………………………….7 2. 大眼海鰱的特殊生活史………………………………………….....................7 2.1 柳葉魚發育階段的劃分…….…………………………………………….8 2.2 柳葉魚的發育生理學……………………………………………………..9 2.3 變態與激素之關係………………………………………………………10 3. 耳石學………………………………………………………………………...11 3.1 耳石形態與功能………………………………………………………....11 3.2 耳石形成的機制………………………………………………………....12 3.3 耳石微化學的研究………………………………………………………13 4. 研究目的……………………………………………………………………..15 貳、材料與方法…………………………………………………….............…………17 1. 實驗魚體的來源及標定……………………………………………………..17 1.1 採樣………………………………………………………………………17 1.2 耳石螢光標示……………………………………………………………17 2. 實驗設計……………………………………………………………………..17 3. 水樣的採集與分析…………………………………………………………..18 3.1 採集………………………………………………………………………18 3.2 分析………………………………………………………………………19 4. 耳石製備與判讀……………………………………………………………..19 4.1 製備………………………………………………………………………19 4.2 螢光照相…………………………………………………………………20 4.3 耳石日週輪的判讀及測量………………………………………………20 5. 微化學分析…………………………………………………………………..20 5.1 電子微探儀 (EPMA)................................................................................20 5.2 雷射感應耦合電漿質譜儀 (LA-ICPMS)………………………….........21 6. 資料分析……………………………………………………………………..22 6.1 耳石直徑與不同發育階段耳石距離之測量…………………………....22 6.2 不同發育階段耳石元素測量值之統計………………………………....22 6.3 統計方法………………………………………………………………....22 參、結果……………………………………………….................………………........23 1. 添加鍶、鋇元素後飼育水中Sr/Ca比和Ba/Ca比之變化……...................23 2. 飼育水的鍶、鋇濃度對體成長之影響…………………………………......24 3. 耳石微細構造隨發育階段的變化…………………………………………..24 3.1 變態期的長短…………………………………………........................…24 3.2 耳石構造的變化與發育階段之關係………………................................25 4. 飼育水的鍶、鋇濃度對耳石成長及耳石Sr/Ca比和Ba/Ca比之影響…...25 4.1 飼育水的元素濃度對耳石成長之影響…………………………………25 4.2 飼育水的元素濃度對耳石Sr/Ca比和Ba/Ca比之影響……….............26 5. 飼育水與耳石之間元素比之關係……………………………………..........27 6. 飼育水與耳石之間的Sr/Ca比和Ba/Ca比分配係數之關係.......................28 肆、討論………………….........................……………………………………………29 1. 飼育水中Sr/Ca比與Ba/Ca比倍率變化的差異性…………………….......29 2. 不同元素對體成長的影響…………………………………………………..29 3. 變態時間的長短及其影響因子……………………………………………..30 4. 耳石微細構造的變化與發育階段之關係…………………………………..31 4.1 耳石上的發育階段之劃分………………................................................31 4.2 耳石同分異構物對於元素吸收的影響………………………………....32 5. 耳石微化學…………………………………………………....……………..33 5.1 耳石Sr/Ca比與Ba/Ca比和發育階段之關係………………………….33 5.2 元素進入耳石內所需要的反應時間………………................................33 6. 飼育水的元素濃度對耳石微化學之影響……………………………..........34 6.1 水體中Sr的影響….........................………..............................................34 6.2 水體中Ba的影響………………………………………………………..35 6.3 環境中複雜因子間的交互作用對於魚體吸收元素比例之影響………35 7. 結論…………………………………………………………………………..36 8. 未來的工作…………………………………………………………………..37 伍、附錄…………………………………………….....................................…………38 參考文獻…........……………………………….....................…………………………40 表……………………………………………………………………………………….51 圖……………………………………………………………………………………….58 | |
dc.language.iso | zh-TW | |
dc.title | 大眼海鰱栁葉魚變態過程中耳石微量元素比值與外在水體元素濃度之關係 | zh_TW |
dc.title | Relationships between water chemistry and otolith elemental concentrations of Pacific tarpon (Megalops cyprinoides) during metamorphosis | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳弘成,黃鵬鵬,游鎮烽,王佳惠 | |
dc.subject.keyword | 大眼海鰱,耳石,變態,柳葉魚,鍶,鋇, | zh_TW |
dc.subject.keyword | Megalops cyprinoides,otolith,metamorphosis,leptocephalus,strontium,barium, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-02 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。