請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27956完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑媛 | |
| dc.contributor.author | Wei-Shin Ko | en |
| dc.contributor.author | 柯惟信 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:30:03Z | - |
| dc.date.available | 2013-08-13 | |
| dc.date.copyright | 2008-08-13 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-02 | |
| dc.identifier.citation | 1. Silverberg, M.J., et al., Prevalence of clinical symptoms associated with highly active antiretroviral therapy in the Women's Interagency HIV Study. Clin Infect Dis, 2004. 39(5): p. 717-24.
2. Abrescia, N., et al., Hepatotoxicity of antiretroviral drugs. Curr Pharm Des, 2005. 11(28): p. 3697-710. 3. Kontorinis, N. and D. Dieterich, Hepatotoxicity of antiretroviral therapy. AIDS Rev, 2003. 5(1): p. 36-43. 4. Kohler, J.J. and W. Lewis, A brief overview of mechanisms of mitochondrial toxicity from NRTIs. Environ Mol Mutagen, 2006. 5. Manuel, O., et al., Treatment of dyslipidaemia in HIV-infected persons. Expert Opin Pharmacother, 2005. 6(10): p. 1619-45. 6. Friis-Moller, N., et al., Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med, 2003. 349(21): p. 1993-2003. 7. Kotani, K. and K. Kaku, The metabolic syndrome and insulin resistance. Nippon Rinsho, 2005. 63(8): p. 1485-91. 8. Milinkovic, A. and E. Martinez, Current perspectives on HIV-associated lipodystrophy syndrome. J Antimicrob Chemother, 2005. 56(1): p. 6-9. 9. Calza, L., et al., Incidence of hyperlipidaemia in a cohort of 212 HIV-infected patients receiving a protease inhibitor-based antiretroviral therapy. Int J Antimicrob Agents, 2003. 22(1): p. 54-9. 10. Carr, A., et al., A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. Aids, 1998. 12(7): p. F51-8. 11. Mobius, U., et al., Switching to atazanavir improves metabolic disorders in antiretroviral-experienced patients with severe hyperlipidemia. J Acquir Immune Defic Syndr, 2005. 39(2): p. 174-80. 12. Taylor, P., et al., Natural history of lipid abnormalities and fat redistribution among human immunodeficiency virus-infected children receiving long-term, protease inhibitor-containing, highly active antiretroviral therapy regimens. Pediatrics, 2004. 114(2): p. e235-42. 13. Temple, M.E., K.I. Koranyi, and M.C. Nahata, Lipodystrophy in HIV-infected pediatric patients receiving protease inhibitors. Ann Pharmacother, 2003. 37(9): p. 1214-8. 14. Tsiodras, S., et al., Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy: a 5-year cohort study. Arch Intern Med, 2000. 160(13): p. 2050-6. 15. Calza, L., R. Manfredi, and F. Chiodo, Hyperlipidaemia in patients with HIV-1 infection receiving highly active antiretroviral therapy: epidemiology, pathogenesis, clinical course and management. Int J Antimicrob Agents, 2003. 22(2): p. 89-99. 16. Mascolini, M., On the trail of fugitive fat: the chase turns to NRTIs. J Int Assoc Physicians AIDS Care, 1999. 5(10): p. 24-43. 17. van Leth, F., et al., Plasma lipid concentrations after 1.5 years of exposure to nevirapine or efavirenz together with stavudine and lamivudine. HIV Med, 2006. 7(6): p. 347-50. 18. Hatano, H., et al., Metabolic and anthropometric consequences of interruption of highly active antiretroviral therapy. Aids, 2000. 14(13): p. 1935-42. 19. van der Valk, M., et al., Increased risk of lipodystrophy when nucleoside analogue reverse transcriptase inhibitors are included with protease inhibitors in the treatment of HIV-1 infection. Aids, 2001. 15(7): p. 847-55. 20. Murphy, R.L., et al., Dose-ranging, randomized, clinical trial of atazanavir with lamivudine and stavudine in antiretroviral-naive subjects: 48-week results. Aids, 2003. 17(18): p. 2603-14. 21. Periard, D., et al., Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors. The Swiss HIV Cohort Study. Circulation, 1999. 100(7): p. 700-5. 22. Rodriguez-French, A., et al., The NEAT study: a 48-week open-label study to compare the antiviral efficacy and safety of GW433908 versus nelfinavir in antiretroviral therapy-naive HIV-1-infected patients. J Acquir Immune Defic Syndr, 2004. 35(1): p. 22-32. 23. 丁予安.等, 高血脂防治手冊. 2003, 行政院衛生署國民健康局: 台北. p. 1-21. 24. 何敏夫, 脂質及脂蛋白, in 臨床化學, 何敏夫, Editor. 2000, 合記圖書出版社: 台北. p. 322-364. 25. Krauss, R.M., et al., Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circ Res, 1973. 33(4): p. 403-11. 26. Jong, M.C., M.H. Hofker, and L.M. Havekes, Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol, 1999. 19(3): p. 472-84. 27. Talmud, P.J., et al., Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet, 2002. 11(24): p. 3039-46. 28. van Dijk, K.W., et al., The role and mode of action of apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr Opin Lipidol, 2004. 15(3): p. 239-46. 29. Lai, C.Q., L.D. Parnell, and J.M. Ordovas, The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol, 2005. 16(2): p. 153-66. 30. Talmud, P.J., et al., Determination of the functionality of common APOA5 polymorphisms. J Biol Chem, 2005. 280(31): p. 28215-20. 31. van der Vliet, H.N., et al., Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem, 2001. 276(48): p. 44512-20. 32. Maeda, N., et al., Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem, 1994. 269(38): p. 23610-6. 33. van der Vliet, H.N., et al., Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem Biophys Res Commun, 2002. 295(5): p. 1156-9. 34. Schamaun, O., et al., The two apolipoprotein loci apo A-I and apo A-IV are closely linked in man. Hum Genet, 1984. 68(2): p. 181-4. 35. Pennacchio, L.A., et al., An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science, 2001. 294(5540): p. 169-73. 36. O'Brien, P.J., et al., The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin Chem, 2005. 51(2): p. 351-9. 37. Oliva, C.P., et al., Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol, 2005. 25(2): p. 411-7. 38. Merkel, M., et al., Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem, 2005. 280(22): p. 21553-60. 39. Prieur, X., H. Coste, and J.C. Rodriguez, The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J Biol Chem, 2003. 278(28): p. 25468-80. 40. Vu-Dac, N., et al., Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J Biol Chem, 2003. 278(20): p. 17982-5. 41. Prieur, X., et al., Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J Biol Chem, 2005. 280(30): p. 27533-43. 42. Jakel, H., et al., The liver X receptor ligand T0901317 down-regulates APOA5 gene expression through activation of SREBP-1c. J Biol Chem, 2004. 279(44): p. 45462-9. 43. Mooser, V. and A. Carr, Antiretroviral therapy-associated hyperlipidaemia in HIV disease. Curr Opin Lipidol, 2001. 12(3): p. 313-9. 44. Fullerton, S.M., et al., The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster. Hum Genet, 2004. 115(1): p. 36-56. 45. Olivier, M., et al., Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11. Genomics, 2004. 83(5): p. 912-23. 46. Nabika, T., et al., The genetic effect of the apoprotein AV gene on the serum triglyceride level in Japanese. Atherosclerosis, 2002. 165(2): p. 201-4. 47. Peacock, R.E., et al., Associations of genotypes at the apolipoprotein AI-CIII-AIV, apolipoprotein B and lipoprotein lipase gene loci with coronary atherosclerosis and high density lipoprotein subclasses. Clin Genet, 1994. 46(4): p. 273-82. 48. Pennacchio, L.A., et al., Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet, 2002. 11(24): p. 3031-8. 49. Kao, J.T., et al., A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia. Hum Mol Genet, 2003. 12(19): p. 2533-9. 50. Hegele, R.A., et al., Common genomic variation in the APOC3 promoter associated with variation in plasma lipoproteins. Arterioscler Thromb Vasc Biol, 1997. 17(11): p. 2753-8. 51. Hoffer, M.J., et al., Increased risk for endogenous hypertriglyceridaemia is associated with an apolipoprotein C3 haplotype specified by the SstI polymorphism. Eur J Clin Invest, 1998. 28(10): p. 807-12. 52. Carpentier, A., et al., Mechanism of highly active anti-retroviral therapy-induced hyperlipidemia in HIV-infected individuals. Atherosclerosis, 2005. 178(1): p. 165-72. 53. Shahmanesh, M., et al., Antiretroviral treatment reduces very-low-density lipoprotein and intermediate-density lipoprotein apolipoprotein B fractional catabolic rate in human immunodeficiency virus-infected patients with mild dyslipidemia. J Clin Endocrinol Metab, 2005. 90(2): p. 755-60. 54. Willnow, T.E., et al., Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science, 1994. 264(5164): p. 1471-4. 55. Carr, A., et al., Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet, 1998. 351(9119): p. 1881-3. 56. Espirito Santo, S.M., et al., Triglyceride-rich lipoprotein metabolism in unique VLDL receptor, LDL receptor, and LRP triple-deficient mice. J Lipid Res, 2005. 46(6): p. 1097-102. 57. Chambon, P., A decade of molecular biology of retinoic acid receptors. Faseb J, 1996. 10(9): p. 940-54. 58. Li, E. and A.W. Norris, Structure/function of cytoplasmic vitamin A-binding proteins. Annu Rev Nutr, 1996. 16: p. 205-34. 59. Napoli, J.L., Retinoic acid biosynthesis and metabolism. Faseb J, 1996. 10(9): p. 993-1001. 60. Adams, M., et al., Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest, 1997. 100(12): p. 3149-53. 61. Mukherjee, R., et al., Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature, 1997. 386(6623): p. 407-10. 62. Pfahl, M. and F. Chytil, Regulation of metabolism by retinoic acid and its nuclear receptors. Annu Rev Nutr, 1996. 16: p. 257-83. 63. Tontonoz, P., E. Hu, and B.M. Spiegelman, Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell, 1994. 79(7): p. 1147-56. 64. Tarr, P.E., et al., Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J Infect Dis, 2005. 191(9): p. 1419-26. 65. Riddle, T.M., et al., HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem, 2001. 276(40): p. 37514-9. 66. Andre, P., et al., An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13120-4. 67. Parker, R.A., et al., Endoplasmic reticulum stress links dyslipidemia to inhibition of proteasome activity and glucose transport by HIV protease inhibitors. Mol Pharmacol, 2005. 67(6): p. 1909-19. 68. Kim, J.B., et al., Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest, 1998. 101(1): p. 1-9. 69. Jakel, H., et al., Is apolipoprotein A5 a novel regulator of triglyceride-rich lipoproteins? Ann Med, 2006. 38(1): p. 2-10. 70. Fauvel, J., et al., An interaction between apo C-III variants and protease inhibitors contributes to high triglyceride/low HDL levels in treated HIV patients. Aids, 2001. 15(18): p. 2397-406. 71. Foulkes, A.S., et al., Associations among race/ethnicity, ApoC-III genotypes, and lipids in HIV-1-infected individuals on antiretroviral therapy. PLoS Med, 2006. 3(3): p. e52. 72. Guardiola, M., et al., Protease inhibitor-associated dyslipidemia in HIV-infected patients is strongly influenced by the APOA5-1131T->C gene variation. Clin Chem, 2006. 52(10): p. 1914-9. 73. Miserez, A.R., et al., A single-nucleotide polymorphism in the sterol-regulatory element-binding protein 1c gene is predictive of HIV-related hyperlipoproteinaemia. Aids, 2001. 15(15): p. 2045-9. 74. Yang, A., et al., Lack of correlation between SREBF1 genotype and hyperlipidemia in individuals treated with highly active antiretroviral therapy. Aids, 2003. 17(14): p. 2142-3. 75. Weinberg, R.B., et al., Structure and interfacial properties of human apolipoprotein A-V. J Biol Chem, 2003. 278(36): p. 34438-44. 76. Schaap, F.G., et al., ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem, 2004. 279(27): p. 27941-7. 77. Riddle, T.M., et al., The HIV protease inhibitor ritonavir increases lipoprotein production and has no effect on lipoprotein clearance in mice. J Lipid Res, 2002. 43(9): p. 1458-63. 78. Hsu, L.A., et al., Genetic variations of apolipoprotein A5 gene is associated with the risk of coronary artery disease among Chinese in Taiwan. Atherosclerosis, 2006. 185(1): p. 143-9. 79. Ishihara, M., et al., A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration. J Lipid Res, 2005. 46(9): p. 2015-22. 80. Yen, C.-T., Functional study of apolipoprotein AV variant, in Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology. 2006, National Taiwan University: Taipei. p. 20-24. 81. Ohta, T., Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc Natl Acad Sci U S A, 1982. 79(6): p. 1940-1944. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27956 | - |
| dc.description.abstract | 高效能抗反轉錄病毒療法(HAART)已大幅地改善HIV感染者之健康狀況,然而HAART所使用之某些藥物卻可能帶來一些非期望之副作用,常見者如脂肪代謝異常而造成血脂濃度過高,進而增加了發生心血管疾病之風險。某些HAART所搭配之藥物,特別是HIV蛋白酶抑制劑(Protease Inhibitor ; PI),與患者接受治療後所產生的高血脂症有顯著的相關性,但對於不同患者的影響程度不一。脂蛋白元在脂肪的代謝過程中扮演重要角色,例如近年發現的脂蛋白元AV以及脂蛋白元CIII皆是調控血脂濃度的重要因子。脂蛋白元基因本身即具多型性,已知某些單一核苷酸多型性(SNP)的存在與高三酸甘油酯血症相關,例如APOA5 SNP1 (1891T>C)、SNP2 (IVS3 + 476G>A)、SNP3 (–1131T>C)以及c.553G>T。過去也有報導指出某些APOC3單一核苷酸多型性與HIV患者接受HAART治療後所產生的高三酸甘油酯血症相關,例如:3238C>G、-482C>T以及-455T>C;此外SREBP-1c基因之3’322C>G亦可能與之相關。因此我們想要了解在我國的HIV感染者中,在脂肪代謝相關基因上某些單一核苷酸多型性的存在是否較容易造成HAART治療後之高三酸甘油酯血症。
本研究針對台大醫院之310位HIV感染者,我們記錄並統整其接受治療前後之各項數值,並依照其使用藥物的種類分成PI-based HAART以及NNRTI-based HAART兩組以進行分析及比較。我們以PCR-RFLP的方法,針對上述八個單一核苷酸多型性位點,先以PCR複制特定基因片段並以限制酵素切割反應之結果來判斷其基因型。分析結果發現,接受PI-based HAART的患者在用藥後半年即可觀察到TG值顯著地增加;進一步針對基因型做探討,若於APOA5 SNP3此位點帶有一或兩個變異型核苷酸,於用藥半年後即有較高之風險可能產生高三酸甘油酯血症:若為heterozygous (T/C),其odds ratio為1.82 (95% C.I.=1.55~9.41),若為mutant type (C/C),其odds ratio為11.19 (95% CI=2.29~54.73)。此外於APOA5 c.553G>T此位點帶有一個以上之變異型核苷酸(G/T或T/T),亦於用藥半年後具有較高之高三酸甘油酯血症風險,其odds ratio為3.61 (95% C.I.=1.31~9.95)。然而在我們的受試者中,APOA5 SNP3以及c.553G>T之基因型呈現連鎖不平衡的情況,分析結果顯示:若將這兩個位點之基因型一同納入迴歸分析的模式當中,在調整各變項的分布狀況之後,僅SNP3與TG值有顯著的相關,因此SNP3可能是一個較為顯著的影響因子。觀察用藥後半年之TG值,在NNRTI-based HAART的患者中則沒有見到基因型上的差異。經由患者用藥後三年內的長期觀察分析亦指出,上述兩個單一核苷酸多型性與接受PI後所造成的高三酸甘油酯血症有顯著相關,而在NNRTI-based HAART的患者中則是APOA5 SNP1及SNP3與之相關;然而在我們的受試者族群中,SNP1及SNP3在遺傳上有連鎖不平衡的情況,因此SNP3較可能是造成高三酸甘油酯血症之危險因子。此外在本篇研究中,APOC3各SNP以及SREBP-1c 3’322C>G都不是造成患者在HAART治療後產生高三酸甘油酯血症的風險因子。我們的研究提供了一個訊息:在替台灣地區的HIV患者選擇藥物時,可以事先篩選其是否帶有APOA5 SNP3以及c.553G>T之變異型核苷酸,以期降低治療所帶來之高三酸甘油酯血症之風險。 | zh_TW |
| dc.description.abstract | Highly Active Anti-Retroviral Therapy (HAART) has greatly improved the clinical outcomes of HIV-1 infected individuals. However, some of the HAART regimens may incur some unexpected side effects, such as defect in lipid metabolism, which could possibly increase the risk for cardiovascular diseases. Some antiretroviral drugs, especially protease inhibitors (PIs), are strongly associated with HAART-related hyperlipidemia, yet some individual variations have been observed, implicating the involment of some genetic factors. It’s well known that apolipoprotein plays an important role in lipid metabolism, such as apoCIII and a newly discovered apolipoprotein, apoAV. The single nucleotide polymorphisms (SNPs) in these apolipoprotein genes were reported to be associated with hyprelipidemia in normal population. Further, some of APOC3 SNPs were defined to be associated with HAART-related hypertriglyceridemia in PI treated HIV patients. Another polymorphism, SREBP-1c 3’322C>G, was also shown to be related with PI-associated hypertriglyceridemia. Therefore, we would like to figure out if there is some correlation between HAART-associated hypertriglyceridemia and the gene polymorphisms in Taiwanese population.
In this study, data from 310 HIV-positive patients from National Taiwan University Hospital was collected before and after HAART therapy. They were divided into two groups, PI-based HAART and NNRTI-based HAART, according to the regimen they underwent. PCR-RFLP were performed to determine the SNP polymorphisms at SNP1 (1891T>C), SNP2 (IVS3 + 476G>A), SNP3 (–1131T>C), c.553G>T of APOA5, 3238C>G、-482C>T, -455T>C of APOC3, and 3’322C>G of SREBP-1c. After treatment, patients underwent PI-based HAART had a significantly elevated TG level after 6 months. We found a strong association between APOA5 SNP3 and elevated plasma TG level in patients receiving PIs for 6 months. The minor C allele carriers may have a higher risk to have hypertriglyceridemia: the odds ratios are 1.82 (95% C.I.=1.55~9.41) for heterozygous (T/C) carrier and 11.19 (95% C.I.=2.29~54.73) for homozygous minor allele (C/C) carrier. Besides, minor allele carriers of APOA5 c.553G>T were also significantly associated with hypertriglyceridemia with an odds ratio of 3.61 (95% C.I.=1.31~9.95). Nevertheless, the two loci described above showed strong linkage disequilibrium (LD) with SNP3 as the stronger predictor for PI associated hypertriglyceridemia. In the NNRTI-based HAART group, we did not find any significant associations between particular genotypes and elevated plasma TG level after 6 months. Longitudinal analysis was also performed by monitoring the patients at a three-year follow-up observation. As a result, in PI treated patients, APOA5 SNP3 and c.553G>T were obvious risk factors for elevated TG level. In the NNRTI treated patients, SNP1 and SNP3 of APOA5 were significant risk factors. However, the effect of SNP1 may be due to its linkage disequilibrium with SNP3, thus making SNP3 the dominant factor. Unlike previous studies, the SNPs of APOC3 and 3’322C>G of SREBP-1c were not significantly associated with plasma TG level among HAART treated patients. In summary, we found that, in our study population, minor allele carriers of SNP3 and c.553G>T of APOA5 had a higher risk of PI-related hypertriglyceridemia. Screening for these genetic variations before therapy may help to avoid PI-related hypertriglyceridemia in Taiwanese HIV patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:30:03Z (GMT). No. of bitstreams: 1 ntu-96-R93424011-1.pdf: 1020879 bytes, checksum: ec85a2b102c9fe91bb66d4bcfdba500f (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書-I
誌謝-II 中文摘要-III 英文摘要-V 第一章 導論 第一節 HIV的感染與治療-1 1-1-1. HIV的盛行及其嚴重性-1 1-1-2. HIV感染者的治療-1 1-1-3. HAART的藥物副作用-2 第二節 脂肪代謝及脂蛋白元-5 1-2-1. 脂肪的運輸與代謝-5 1-2-2. 脂蛋白與脂蛋白元-6 1-2-3. 影響血脂濃度的因素-8 1-2-4. 脂蛋白元AV-9 第三節 脂蛋白元基因之單一核苷酸多型性與血脂濃度之關係-11 1-3-1. 單一核苷酸多型性-11 1-3-2. 脂蛋白元AV及脂蛋白元CIII之基因多型性與血脂濃度之關係-11 第四節 HIV蛋白酶抑制藥物造成病人血脂異常之可能因素-14 第五節 研究動機-16 第二章 實驗材料與方法 第一節 研究對象-18 2-1-1. 研究對象之資料收集與分析-18 2-1-2. 樣本採集與處理方式-19 第二節 實驗流程與方法-20 2-2-1. SNP鑑定方法與流程-20 2-2-2. DNA的萃取-20 2-2-3. DNA之定量與稀釋-21 2-2-4. 單一核苷酸多型性之偵測-22 2-2-4 (1). APOA5 exon 4 region:SNP1 (1259T>C)-22 2-2-4 (2). APOA5 exon 4 region:SNP2 (IVS3+476G>A)-23 2-2-4 (3). APOA5 promoter region:SNP3 (-1131T>C)-23 2-2-4 (4). APOA5 exon 4 region:c.553G>T-24 2-2-4 (5). APOC3 promoter region:-455T>C-25 2-2-4 (6). APOC3 promoter region:-482C>T-25 2-2-4 (7). APOC3 3’UTR region:Sst I site (+3238C>G)-26 2-2-4 (8). SREBP-1c:3’ 322C>G-26 第三節 資料統計與分析-28 2-3-1. 統計軟體-28 2-3-2. 統計方法-28 第三章 實驗結果 第一節 受試者之分組以及基本資料分析-29 第二節 受試者基因型之分布-31 第三節 受試者接受HAART前相關數值之分析-33 3-3-1. 受試者血脂濃度基準值與相關基本資料之分析-33 3-3-2. 分析HIV感染是否可能影響受試者之血脂濃度-34 3-3-3. 分析所有受試者之血脂濃度基準值是否與特定基因型相關-34 第四節 受試者接受HAART前後之血脂濃度變化以及相關數值之分析-37 3-4-1. 受試者接受HAART後之血脂濃度變化-37 3-4-2. 受試者接受HAART後pVL以及CD4之變化-38 3-4-3. 分析d4T的使用是否可能影響受試者接受HAART後之血脂濃度-38 第五節 使用藥物種類、基因型以及血脂濃度之關係-40 3-5-1. 分析P組受試者接受HAART前後之TG值是否與特定基因型相關-40 3-5-2. 分析N組受試者接受HAART前後之TG值是否與特定基因型相關-41 3-5-3. Haplotype分析-42 3-5-4. 分析兩組受試者接受HAART之血脂濃度變化程度是否與特定基因型相關-43 3-5-5. 由長期的觀察來分析受試者接受HAART三年內之血脂濃度變化程度是否與特定基因型相關-43 第四章 討論-45 參考文獻-100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抑制劑 | zh_TW |
| dc.subject | 脂蛋白元AV | zh_TW |
| dc.subject | 單一核苷 | zh_TW |
| dc.subject | 蛋白酶 | zh_TW |
| dc.subject | 三酸甘油酯 | zh_TW |
| dc.subject | HIV | zh_TW |
| dc.subject | 酸多型性 | zh_TW |
| dc.subject | triglyceride (TG) | en |
| dc.subject | single nucleotide polymorphism (SNP) | en |
| dc.subject | apolipoprotein AV | en |
| dc.subject | protrease inhibitor (PI) | en |
| dc.subject | HIV | en |
| dc.title | 探討脂蛋白元AV基因單一核苷酸多型性與HIV患者接受蛋白酶抑制劑治療後血漿中高三酸甘油酯濃度之相關性 | zh_TW |
| dc.title | Determination of the association between particular APOA5 SNPs and elevated plasma TG level after protease inhibitor treatment in HIV patients | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高全良,李君男,洪健清,高照村 | |
| dc.subject.keyword | HIV,蛋白酶,抑制劑,脂蛋白元AV,單一核苷,酸多型性,三酸甘油酯, | zh_TW |
| dc.subject.keyword | HIV,protrease inhibitor (PI),apolipoprotein AV,single nucleotide polymorphism (SNP),triglyceride (TG), | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 996.95 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
