Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳朝峰
dc.contributor.authorChih-Yang Chanen
dc.contributor.author詹志洋zh_TW
dc.date.accessioned2021-06-12T18:28:33Z-
dc.date.available2007-08-13
dc.date.copyright2007-08-13
dc.date.issued2007
dc.date.submitted2007-08-07
dc.identifier.citationAbboud RT, Fera T, Johal S, Richter A, Gibson N. Effect of smoking on plasma neutrophil elastase levels. J Lab Clin Med. 1986;108:294 –300.
Al-Fakhri N, Wilhelm J, Hahn M, Heidt M, Hehrlein FW, Endisch AM, Hupp T, Cherian SM, Bobryshev YV, Lord RS, Katz N. Increased expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following upregulation of integrins alpha5beta1 and alphavbeta3 in atherosclerosis. J Cell Biochem. 2003;89:808–823.
Allaire E, Hasenstab D, Kenagy RD, Starcher B, Clowes MM, Clowes AW. Prevention of aneurysm development and rupture by local overexpression of plasminogen activator inhibitor-1. Circulation. 1998;98:249–255.
Allon M, Robbin ML. Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int. 2002; 62: 1109–1124.
Andreasen PA, Kjoller L, Christensen LMJD. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997;72:1–22.
Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115:3719–3727.
Barry LE, Tan MH. Changes in the composition of plasma lipoproteins in the chronic uremic rat. Atherosclerosis. 1990;85:139-150.
Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation. 1998;98:157-163.
Bayes-Genis A, Conover CA, Overgaard MT, Bailey KR, Christiansen M, Holmes DR Jr, Virmani R, Oxvig C, Schwartz RS. Pregnancy associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001;345:1022–1029.
Bayes-Genis A, Conover CA, Schwartz RS. The insulin-like growth factor axis: A review of atherosclerosis and restenosis. Circ Res. 2000;86:125–130.
Besser D, Verde P, Nagamine Y, Blasi F. Signal transduction and the u-PA:u-PAR system. Fibrinolysis. 1996;10:215–237.
Bigg HF, Shi YE, Liu YE, Steffensen B, Overall CM. Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J Biol Chem. 1997;272:15496-15500.
Bikfalvi A, Klein S, Pintucci G, Rifkin DB. The roles of proteases in angiogenesis. In: Bicknell R, Lewis CE, Ferrara N. Tumor angiogenesis. Oxford: Oxford University Press; 1997:115–124.
Bogoyevitch MA. An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin and the lessons learnt from studies in neuroprotection. Cardiovasc Res. 2004;63:208-216.
Bot I, von der Thusen JH, Donners MM, Lucas A, Fekkes ML, de Jager SC, Kuiper J, Daemen MJ, van Berkel TJ, Heeneman S, Biessen EA. Serine protease inhibitor Serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in ApoE -/- mice. Circ Res. 2003;93:464–471.
Brauer PR. MMPs—role in cardiovascular development and disease. Front Biosci. 2006; 11: 447-478.
Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000;1477:267-283.
Bro S, Borup R, Andersen CB, Moeller F, Olgaard K, Nielsen LB. Uremia-specific effects in the arterial media during development of uremic atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:570-575.
Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol. 2005;100:397-403.
Carlyle WC, Jacobson AW, Judd DL, Tian B, Chu C, Hauer KM, Hartman MM, McDonald KM. Delayed reperfusion alters matrix metalloproteinase activity and fibronectin mRNA expression in the infarct zone of the ligated rat heart. J Mol Cell Cardiol. 1997;29:2451–2463.
Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997;17:439–444.
Chan CY, Chen YS, Ma MC, Chen CF. Remodeling of experimental arteriovenous fistula with increased matrix metalloproteinase expression in rats. J Vasc Surg. 2007;45:804-811.
Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation. 2002; 105: 1983-1988.
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37-40.
Chen H, Li D, Saldeen T, Mehta JL. TGF-beta 1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. Am J Physiol Heart Circ Physiol. 2003;284:H1612-H1617.
Chen YS, Chien CT, Ma MC, Tseng YZ, Lin FY, Wang SS, Chen CF. Protection “outside the box” (skeletal remote preconditioning) in rat model is triggered by free radical pathway. J Surg Res. 2005;126:92-101.
Chesler NC, Ku DN, Galis ZS. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am J Physiol. 1999;277:H2002-H2009.
Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101:1833-1839.
Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res. 2002;91:845-851.
Chung AWY, Rauniyar P, Luo H, Hsiang YN, van Breemen C, Okon EB. Pressure distention compared with pharmacologic relaxation in vein grafting upregulates matrix metalloproteinase-2 and -9. J Vasc Surg. 2005;42:747-756.
Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1994;27:1281–1292.
Coker MS, Thomas CV, Doscher MA. Matrix metalloproteinase expression and activity in adult ventricular myocytes: influence of basement membrane adhesion. Circulation. 1997;96(suppl 1):I-689. Abstract.
Collier A, Jackson M, Bell D, Patrick AW, Matthews DM, Young RJ, Clarke BF, Dawes J. Neutrophil activation detected by increased neutrophil elastase activity in type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 1989;10:135–138.
Corpataux JM, Haesler E, Silacci P, Ris HB, Hayoz D. Low-pressure environment and remodelling of the forearm vein in Brescia-Cimino haemodialysis access. Nephrol Dial Transplant. 2002;17:1057-62.
Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res. 2001; 89: 201-210.
Damen JE, Wakao H, Miyajima A, Krosl J, Humphries RK, Cutler RL, Krystal G. Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin-induced cell proliferation and Stat5 activation. EMBO J. 1995;14:5557-5568.
de Smet BJ, de Kleijn D, Hanemaaijer R, Verheijen JH, Robertus L, van Der Helm YJ, Borst C, Post MJ. Metalloproteinase inhibition reduces constrictive arterial remodeling after balloon angioplasty: a study in the atherosclerotic Yucatan micropig. Circulation. 2000;101:2962–2967.
Dixon BS. Why don’t fistulas mature? Kidney Int. 2006;70:1413-1422.
Dollery CM, McEwan JR, Wang M, Sang QA, Liu YE, Shi YE. TIMP-4 is regulated by vascular injury in rats. Circ Res. 1999;84:498-504.
Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P. Neutrophil elastase in human atherosclerotic plaques: production by macrophages. Circulation. 2003;107:2829 –2836.
Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55– 62.
Dzau VJ, Lopez-Ilasaca M. Searching for transcriptional regulators of Ang II-induced vascular pathology. J Clin Invest. 2005;115:2319-2322.
Esparza J, Vilardell C, Calvo J, Juan M, Vives J, Urbano-Marquez A, Yague J, Cid MC. Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood. 1999;94:2754-2766.
Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol. 2004;286:R977-R988.
Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90:251-262.
Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Amento E, Libby P. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994;75:181–189.
Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94:2493–2503.
Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, Conover C, Schwartz RS. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol. 2005;25:1119-1127.
Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood LM, Woolley K. Processing of tumour necrosis factor-a precursor by metalloproteinases. Nature. 1994;370:555–557.
Gibson KD, Gillen DL, Caps MT et al. Vascular access survival and incidence of revisions: a comparison of prosthetic grafts, simple autogenous fistulas, and venous transposition fistulas from the United States Renal Data System Dialysis Morbidity and Mortality Study. J Vasc Surg. 2001; 34:694–700.
Gnasso A, Motti C, Irace C, Carallo C, Liberatoscioli L, Bernardini S, Massoud R, Mattioli PL, Federici G, Cortese C. Genetic variation in human stromelysin gene promoter and common carotid geometry in healthy male subjects. Arterioscler Thromb Vasc Biol. 2000;20:1600–1605.
Grote K, Luchtefeld M, Schieffer B. JANUS under stress--role of JAK/STAT signaling pathway in vascular diseases. Vascul Pharmacol. 2005;43:357-363.
Hanlon PR, Fu P, Wright GL, Steenbergen C, Arcasoy MO, Murphy E. Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling. FASEB J. 2005;19:1323-1325.
Henney AM, Ye S, Zhang B, Jormsjo S, Whatling C, Eriksson P, Hamsten A. Genetic diversity in the matrix metalloproteinase family: effects on function and disease progression. Ann N Y Acad Sci. 2000;902:27–38.
Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, Kilbride M, Breitbart RE, Chun M, Schonbeck U. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation. 2001;104:1899 –1904.
Herren B. ADAM-mediated shedding and adhesion: a vascular perspective. News Physiol Sci. 2002;17:73–76.
Herzog E, Gu A, Kohmoto T, Burkhoff D, Hochman JS. Early activation of metalloproteinases after experimental myocardial infarction occurs in infarct and non-infarct zones. Cardiovasc Pathol. 1998;7:307–312.
Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JPM, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P. Inhibition of plasminogen activators or matrix metalloproteinases prevent cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med. 1999;10:1135–1142.
Hobeika MJ, Thompson RW, Muhs BE, Brooks PC, Gagne PJ. Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg. 2007;45:849-857.
Huang HS, Chen J, Chen CF, Ma MC. Vitamin E attenuates crystal formation in rat kidneys: Roles of renal tubular cell death and crystallization inhibitors. Kidney Int. 2006;70:699-710.
Ihle JN. Cytokine recepter signaling. Nature. 1995;377:591-594.
Ishikawa J, Kario K, Matsui Y, Shibasaki S, Morinari M, Kaneda R, et al. Collagen metabolism in extracellular matrix may be involved in arterial stiffness in older hypertensive patients with left ventricular hypertrophy. Hypertens Res. 2005;28:995-1001.
Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313:806-810.
Jones SS, D’Andrea AD, Haines LL, Wong GG. Human erythropoietin receptor: cloning, expression, and biologic characterization. Blood. 1990;76:31-35.
Kadri Z, Petitfrere E, Boudot C, Freyssinier JM, Fichelson S, Mayeux P, Emonard H, Hornebeck W, Haye B, Billat C. Erythropoietin induction of tissue inhibitors of metalloproteinase-1 expression and secretion is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Cell Growth Differ. 2000;11:573-580.
Kassell B, Kay J. Zymogens of proteolytic enzymes. Science. 1973;180:1022–1027.
Klinge U, Si ZY, Zheng H, Schumpelick V, Bhardwaj RS, Klosterhalfen B. Abnormal collagen I to III distribution in the skin of patients with incisional hernia. Eur Surg Res. 2000;32:43-48.
Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, Kantor C, Gahmberg CG, Salo T, Konttinen YT, Sorsa T, Ruoslahti E, Pasquanlini R. Tumor targeting with a selective gelatinase inhibitor. Nature. 1999;17:768 –774.
Kuzuya M, Iguchi A. Role of matrix metalloproteinases in vascular remodeling. J Atheroscler Thromb. 2003;10:275-282.
Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G, Schulz R. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J. 2004;18:690-692.
Laviades C, Varo N, Fernandez J, Mayor G, Gil MJ, Monreal I, et al. Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation. 1998;98:535-540.
Leicht M, Briest W, Holzl A, Zimmer HG. Serum depletion induces cell loss of rat cardiac fibroblasts and increased expression of extracellular matrix proteins in surviving cells. Cardiovasc Res. 2001;52:429-437.
Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998;98:1728-1734.
Lijnen HR, Arza B, Van Hoef B, Collen D, Declerck PJ. Inactivation of plasminogen activator inhibitor-1 by specific proteolysis with stromelysin-1 (MMP-3). J Biol Chem. 2000;275:37645–37650.
Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, et al. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem. 1997;272:20479-83.
Lupu F, Heim DA, Bachmann F, Hurni M, Kakkar VV, Kruithof EK. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1995;15:1444 –1455.
Ma MC, Qian H, Ghassemi F, Zhao P, Xia Y. Oxygen sensitive -opioid receptor-regulated survival and death signals: Novel insights into neuronal preconditioning and protection. J Biol Chem. 2005;280:16208-16218.
Maciewicz RA, Etherington DJ. A comparison of four cathepsins (B, L, N and S) with collagenolytic activity from rabbit spleen. Biochem J. 1988;256:433– 440.
Mandriota SJ, Pepper MS. Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor. J Cell Sci. 1997;110:2293–2302.
Mason DP, Kenagy RD, Hasenstab D, Bowen-Pope DF, Seifert RA, Coats S, Hawkins SM, Clowes AW. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res. 1999;85:1179–1185.
Mavromatis K, Fukai T, Tate M, Chesler N, Ku DN, Galis ZS. Early effects of arterial hemodynamic conditions on human saphenous veins perfused ex vivo. Arterioscler Thromb Vasc Biol. 2000;20:1889-1895.
McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001;13:534 –540.
Millichip MI, Dallas DJ, Wu E, Dale S, McKie N. The metallo-disintegrin ADAM10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys Res Commun. 1998;245:594 –598.
Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97:916-31.
Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J. Mechanisms for pro matrix metalloproteinase activation. Apmis. 1999;107:38–44.
Nagase H, Woessner JF Jr. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997;378:151–160.
Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–21494.
Narayanan AS, Page RC, Swanson J. Collagen synthesis by human fibroblasts: regulation by transforming growth factor-b in the presence of other inflammatory mediators. Biochem J. 1989;260:463– 469.
Nath KA, Kanakiriya SK, Grande JP, Croatt AJ, Katusic ZS. Increased venous proinflammatory gene expression and intimal hyperplasia in an aorto-caval fistula model in the rat. Am J Pathol. 2003;162:2079-2090.
Neurath H. Evolution of proteolytic enzymes. Science. 1984;224:350–357.
Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. Available at: www.chem.qmul.ac.uk/iubmb/enzyme/EC3.
Pasterkamp G, Galis ZS, de Kleijn DP. Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol. 2004;24:650-657.
Pasterkamp G, Schoneveld AH, Hijnen DJ, de Kleijn DP, Teepen H, van der Wal AC, Borst C. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteinases 1, 2 and 9 in the human coronary artery. Atherosclerosis. 2000;150:245–253.
Pawlak K, Pawlak D, Mysliwiec M. Extrinsic coagulation pathway activation and metalloproteinase-2/TIMPs system are related to oxidative stress and atherosclerosis in hemodialysis patients. Thromb Haemost. 2004;92:646-653.
Pepper MS. Role of the matrix metalloproteinase and plasminogen activator–plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21:1104-1117.
Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation. 1990;81:1161–1172.
Plow EF, Miles LA. Plasminogen receptors in the mediation of pericellular proteolysis. Cell Differ Dev. 1990;32:293–298.
Prescott MF, Sawyer WK, Von Linden-Reed J, Jeune M, Chou M, Caplan SL, Jeng AY. Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Ann N Y Acad Sci. 1999;878:179 –190.
Rafiee P, Shi Y, Su J, Pritchard KA Jr, Tweddell JS, Baker JE. Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol. 2005;100:187-197.
Rauch BH, Bretschneider E, Braun M, Schrör K. Factor Xa releases matrix metalloproteinase-2 (MMP-2) from human vascular smooth muscle cells and stimulates the conversion of pro–MMP-2 to MMP-2: role of MMP-2 in factor Xa–induced DNA synthesis and matrix invasion. Circ Res. 2002;90:1122-1127.
Raymond J, Lebel V, Ogoudikpe C, Metcalfe A, Chagnon M, Robledo O. Recanalization of arterial thrombus, and inhibition with beta-radiation in a new murine carotid occlusion model: MRNA expression of angiopoietins, metalloproteinases, and their inhibitors. J Vasc Surg. 2004;40:1190-1198.
Reddy VY, Zhang QY, Weiss SJ. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci USA. 1995;92:3849–3853.
Rijken DC, Wijngaards G, Welbergen J. Relationship between tissue plasminogen activator and the activators in blood and vascular wall. Thromb Res. 1980;18:815– 830.
Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999;99:3063–3070.
Rosch R, Klinge U, Si Z, Junge K, Klosterhalfen B, Schumpelick V. A role for the collagen I/III and MMP-1/-13 genes in primary inguinal hernia? BMC Med Genet 2002;3:2.
Rotmans JI, Velema E, Verhagen HJ, Blankensteijn JD, deKleijn DP, Stroes ES, et al. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model. J Vasc Surg. 2004;39:432-9.
Saarialho-Kere UK, Kovacs SO, Pentland AP, Olerud J, Welgus HG, Parks WC. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J Clin Invest. 1993;92:2858 –2866.
Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1b by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1b processing. J Immunol. 1998;161:3340 –3346.
Seals DF, Courtneidge SA. The ADAMs family of metalloproteinases: multidomain proteins with multiple functions. Genes Dev. 2003;17:7–30.
Seki Y, Kai H, Shibata R, Nagata T, Yasukawa H, Yoshimura A, Imaizumi T. Role of the JAK/STAT pathway in rat carotid artery remodeling after vascular injury. Circ Res. 2000;87:12-18.
Sharony R, Pintucci G, Saunders PC, Grossi EA, Baumann FG, Galloway AC, et al. Matrix metalloproteinase expression in vein grafts: role of inflammatory mediators and extracellular signal-regulated kinases-1 and -2. Am J Physiol Heart Circ Physiol. 2006;290:H1651-H1659.
Sho E, Sho M, Singh TM, Nanjo H, Komatsu M, Xu C, et al. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol. 2002;73:142-153.
Silence J, Collen D, Lijnen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res. 2002;90:897–903.
Southgate KM, Mehta D, Izzat MB, Newby AC, Angelini GD. Increased secretion of basement membrane-degrading metalloproteinases in pig saphenous vein into carotid artery interposition grafts. Arterioscler Thromb Vasc Biol. 1999;19:1640-1649.
Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR. Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res. 1999;85:364 –376.
Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure. Circ Res. 1998;82:482– 495.
Steins MB, Padro T, Li CX, Mesters RM, Ostermann H, Hammel D, Scheld HH, Berdel WE, Kienast J. Overexpression of tissue-type plasminogen activator in atherosclerotic human coronary arteries. Atherosclerosis. 1999;145:173–180.
Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, Bode W. The metzincins–topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 1995;4:823–840.
Strauss BH, Robinson R, Batchelor WB, Chisholm RJ, Ravi G, Natarajan MK, Logan RA, Mehta SR, Levy DE, Ezrin AM, Keeley FW. In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ Res. 1996;79:541–550.
Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest. 1998;102:576–583.
Szmigielski C, Raczkowska M, Styczynski G, Pruszczyk P, Gaciong Z. Metabolism of collagen is altered in hypertensives with increased intima media thickness. Blood Press. 2006;15:157-163.
Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97:1708 –1715.
Todaka K, Jiang T, Chapman JT, Gu A, Zhu SM, Herzog E, Hochman JS, Steinberg SF, Burkhoff D. Functional consequences of acute collagen degradation studied in crystalloid perfused rat hearts. Basic Res Cardiol. 1997;92:147-158.
Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 1999;7:442-452.
Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, Jenkins AW, Wang J, Sawyer DB, Bing OH, Apstein CS, Colucci WS, Singh K. Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res. 2001;88:1080-1087.
Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem. 1996;63:185–198.
Tyagi SC, Kumar SG, Haas SJ, Reddy HK, Voelker DJ, Hayden MR, Demmy TL, Schmaltz RA, Curtis JJ. Post-transcriptional regulation of extracellular regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol. 1996;28:1415–1428.
Tyagi SC, Matsubara L, Weber KT. Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem. 1993;26:191–198.
Vaalamo M, Mattila L, Johansson N, Kariniemi AL, Karjalainen-Lindsberg ML, Kahari VM, Saarialho-Kere U. Distinct populations of stromal cells express collagenase-3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally healing wounds. J Invest Dermatol. 1997;109:96 –101.
van Hinsbergh VW, van den Berg EA, Fiers W, Dooijewaard G. Tumor necrosis factor induces the production of urokinase-type plasminogen activator by human endothelial cells. Blood. 1990;75:1991–1998.
Villacorta L, Azzi A, Zingg JM. Regulatory role of vitamins E and C on extracellular matrix components of the vascular system. Mol Aspects Med. 2007 Jun 2; [Epub ahead of print]
Wang SC, Lu KY, Chen SM, Young TK. Gastric emptying and intestinal transit of liquid and solid markers in rats with chronic uremia. Chin J Physiol. 2001;44:81-87.
Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106:1543-1549.
Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993;74:227-236.
Wong V, Ward R, Tayler J, Selvakumar S, How TV, Bakran A. Factors associated with early failure of arteriovenous fistulae for haemodialysis access. Eur J Vasc Endovasc Surg. 1996;12:207-213.
Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J. 2004;18:1031-1033.
Yang YB, Yang YX, Su B, Tang YL, Zhu BY, Hu ZW, Li GY, Li YJ, Liao DF. Probucol mediates vascular remodeling after percutaneous transluminal angioplasty via down-regulation of the ERK1/2 signaling pathway. Eur J Pharmacol. 2007 Jun 9; [Epub ahead of print]
Yasuda S, Miyazaki S, Kinoshita H, Nagaya N, Kanda M, Goto Y, Nonogi H. Enhanced cardiac production of matrix metalloproteinase-2 and -9 and its attenuation associated with pravastatin treatment in patients with acute myocardial infarction. Clin Sci (Lond). 2007;112:43-49.
Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Bromme D. Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J Biol Chem. 2004;279:36761–36770.
Ye S, Watts GF, Mandalia S, Humphries SE, Henney AM. Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br Heart J. 1995;73:209–215.
Zaltsman AB, Newby AC. Increased secretion of gelatinases A and B from the aortas of cholesterol fed rabbits: relationship to lesion severity. Atherosclerosis. 1997;130:61-70.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27930-
dc.description.abstract基質金屬蛋白酶 (matrix metalloproteinases, MMPs) 能特異性分解细胞外基質 (extracellular matrix, ECM),對心臟血管组織的蛋白沉積量和组織结構的重塑 (remodeling) 具有重要作用。MMPs 的調控異常也曾報告過與許多血管疾病有關聯。
靜脈管腔膨脹和管壁增厚是臨床上常用為血管通路的動靜脈瘻管 (arteriovenous fistula, AVF) 成熟過程的一部分,也就是所謂的血管重塑。但是影響 AVF 重塑的機制以及它是否受到 MMPs 的影響依然是未知。於是我們在大鼠實驗研究 MMPs 是否在 AVF中加強血管重塑扮演一重要角色。結果證實了我們的假說,高血流率在AVF 靜脈段影響MMPs 表現量,造成AVF 的重塑或成熟性。並且這種血管重塑與基質膠原蛋白的退化有關,膠原蛋白I/III 比率因而上昇。
過去研究顯示心肌缺血後會調高 MMPs,並且促進心肌細胞凋亡,引起梗塞的心臟的心室擴張,並且造成隨後心臟功能不良。雖然過去研究已知基因重組人類紅血球生成素 (recombinant human erythropoetin, rhEpo, EPO) 可以保護心肌免受缺血-再灌流傷害 (ischemia-reperfusion, IR),但它是否影響 ECM 降解退化還不為人所知。因此,我們研究了 MMPs 在心臟缺血後的角色,並且檢查由EPO觸發 Janus kinase 2-Extracelular kinase (Jak2-ERK) 調控信號途徑的作用,是否影響 MMPs 的表現和膠原蛋白 (collagen) 的量。這些觀察顯示,EPO 可以顯著降低心肌IR 傷害後ECM 降解退化,這也許是保護心肌免受細胞死亡的依據。而且 Jak2-ERK 的活化也許在這個過程中是一個重要信號途徑。
在心血管疾病的基礎科學和臨床研究上,MMPs 持續代表一個扣人心弦的焦點。我們的觀察顯示有能力分解基質的MMPs 不論在EPO 的心肌保護作用和在周邊AVF 的血管重塑上都扮演重要角色。能夠調控MMP 作用的治療藥物也許很快被開發,有可能未來將改善心血管的治療。
zh_TW
dc.description.abstractMatrix metalloproteinases (MMPs) are extracellular matrix (ECM)–modifying enzymes that are important in the degradation of ECM components and in many physiologic and pathologic cardiovascular processes.
Dysregulation of MMPs activity has also been associated with various vascular diseases. Venous dilatation and wall thickening are part of the maturation of a surgically created arteriovenous fistula (AVF) commonly used for vascular access. However, the underlying mechanism of AVF remodeling and whether it affected by the MMPs remains unknown. We therefore studied if matrix remodeling MMPs may contribute to experimental AVF maturation in rats. The results confirmed our hypothesis that a high blood flow rate in the fistula vein affects the expression of MMPs, resulting in the remodeling or maturation of the AVF. Remodeling is associated with degradation of collagen, with an increase in the collagen I/III ratio.
MMPs are upregulated by myocardial ischemia, and this facilitates the apoptosis of cardiomyocytes and contributes to the subsequent cardiac dysfunction and to ventricular dilation of the infarcted hearts. Although recombinant human erythropoietin (rhEpo, EPO) protects the myocardium from ischemia-reperfusion injury (IR), but whether it affects ECM degradation is not known. For this reason, we studied MMPs in the post-ischemic hearts and examined the effect of the Janus kinase 2-Extracelular signal-regulated kinase (Jak2-ERK) pathway, which is triggered by EPO, on the expression of MMPs and collagen in post-ischemic hearts. These observations show that EPO attenuates ECM degradation following IR and this may be the basis of the protection from cell death. Jak2-ERK phosphorylation may be an important signal in this process.
MMPs continue to represent an exciting focus for basic science and clinical investigation in cardiovascular disease. Our observations show that matrix remodeling MMPs play roles both in EPO myocardial protection and in peripheral AVF remodeling. It is possible that therapeutic modulation of MMP function may soon be developed and will one day change the practice of cardiovascular treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:28:33Z (GMT). No. of bitstreams: 1
ntu-96-D87441002-1.pdf: 8087872 bytes, checksum: 1a750328639f164e7c0cf2b8ea9239d4 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書……………………………………………… i
誌謝………………………………………………………………… ii
中文摘要…………………………………………………………… iv
英文摘要…………………………………………………………… vi
縮寫表……………………………………………………………… viii
第一章、文獻回顧與序論………………………………………… 02
1.1、細胞外蛋白質酶初論…………………………………… 03
1.2、目前細胞外蛋白質酶的分類…………………………… 04
1.3、細胞外蛋白質酶的合成與控制………………………… 08
1.4、細胞外基質的降解與汰換……………………………… 12
1.5、在血管系統中細胞外蛋白質分解可能扮演的角色….. 14
1.6、基質金屬性蛋白酶對心臟的可能影響………………… 17
第二章、研究動機………………………………………………… 20
2.1、研究基質金屬蛋白酶可能影響動靜脈瘻管的動機…… 21
2.2、研究基質金屬蛋白酶可能影響心臟損傷的動機……… 25
第三章、基質金屬蛋白酶影響動靜脈瘻管血管重塑的動物實驗研究………………………………………………………………… 27
3.1、研究摘要………………………………………………… 28
3.1、引言……………………………………………………… 29
3.3、取材與方法……………………………………………. 31
3.4、實驗結果……………………………………………… 36
3.5、討論……………………………………………………... 44
3.6、結論……………………………………………………... 48
第四章、基質金屬性蛋白酶在促紅細胞生成素保護心肌的角色………………………………………………………………….. 49
4.1、研究摘要……………………………………………… 50
4.2、引言…………………………………………………… 51
4.3、取材與方法………………………………..…………… 52
4.4、實驗結果……………………………………………… 55
4.5、討論…………………………………………………… 63
4.6、結論…………………………………………………… 65
第五章、尚待解決的問題………………………………………… 67
5.1、目前研究的進階探討………………………………… 68
5.1.1、基質金屬蛋白酶瓦解心臟血管系統的細胞外基質… 68
5.1.2、基質金屬蛋白酶開始作用的時間…………………… 71
5.1.3、細胞外基質中膠原蛋白受到分解與組成成份改變的意義………………………………………………………………… 71
5.1.4、紅細胞生成素受體激活之後的信號傳遞途徑…….. 72
5.2、尚待克服的問題……………………………………… 75
第六章、未來研究方向與總結…………………………………… 78
6.1、未來研究方向………………………………………… 79
6.2、啟發與總結……………………………………………… 81
參考文獻…………………………………………………………… 84
dc.language.isozh-TW
dc.subject抑制劑zh_TW
dc.subject基質金屬蛋白&#37238zh_TW
dc.subject膠原蛋白zh_TW
dc.subject重塑zh_TW
dc.subject紅細胞生成素zh_TW
dc.subject缺血/再灌注zh_TW
dc.subject動靜脈&#30267zh_TW
dc.subject管zh_TW
dc.subject組織型金屬蛋白&#37238zh_TW
dc.subject TIMPen
dc.subject MMPen
dc.subjectcollagenen
dc.subjectextracelular signal-regulated kinaseen
dc.subject ERKen
dc.subjecttissue inhibitor of metalloproeinaseen
dc.subjectarteriovenous fistulaen
dc.subject AVFen
dc.subject IRen
dc.subjectischemia/reperfusionen
dc.subject EPOen
dc.subjectmatrix metalloproteinaseen
dc.subjecterythropoietinen
dc.subjectRemodelingen
dc.title基質金屬蛋白酶影響缺血後心肌细胞外基質降解以及影響動靜脈瘻管血管重塑的研究zh_TW
dc.titleMatrix Metalloproteinases in Post-Ischemic Heart and in Arteriovenous Fistulaen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee賴義隆,鄭雅蓉,陳益祥,周財福,王宗倫
dc.subject.keyword重塑,紅細胞生成素,缺血/再灌注,動靜脈&#30267,管,組織型金屬蛋白&#37238,抑制劑,膠原蛋白,基質金屬蛋白&#37238,zh_TW
dc.subject.keywordRemodeling,erythropoietin, EPO,ischemia/reperfusion, IR,arteriovenous fistula, AVF,matrix metalloproteinase, MMP,extracelular signal-regulated kinase, ERK,tissue inhibitor of metalloproeinase, TIMP,collagen,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2007-08-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
7.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved