請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27900
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖婉君(Wanjiun Liao) | |
dc.contributor.author | Li-Wei Yao | en |
dc.contributor.author | 姚立偉 | zh_TW |
dc.date.accessioned | 2021-06-12T18:26:51Z | - |
dc.date.available | 2007-08-28 | |
dc.date.copyright | 2007-08-28 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-10 | |
dc.identifier.citation | [1] T.-S. Kim, H. Lim, and J. C. Hou. “Improving spatial reuse through tuning transmit power, carrier sense threshold, and data rate in multihop wireless networks,” In Proc. ACM MobiCom Conference, Sept. 2006.
[2] X. Yang and N. H. Vaidya. “On the Physical Carrier Sense in Wireless Ad Hoc Networks,” In Proceedings of IEEE INFOCOM, 2005. [3] H. Zhai and Y. Fang, “Physical carrier sensing and spatial reuse in multirate and multihop wireless ad hoc networks,” in Proc. IEEE INFOCOM, April 2006. [4] J. Zhu, X. Guo, L. Lily Yang, W. Steven Conner, S. Roy, Mousumi M. Hazra, “Adapting physical carrier sensing to maximize spatial reuse in 802.11 mesh networks,” Wireless Communications and Mobile Computing Volume 4, Issue 8, p 933-946, December 2004. [5] J. Zhu, B. Metzler, X. Guo amd Y. Liu, “Adaptive CSMA for Scalable Network Capacity in High-Density WLAN: a Hardware Prototyping Approach,” Proc. IEEE INFOCOM, Mar. 2005. [6] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-Throughput Path Metric for Multi-Hop Wireless Routing,” In ACM MobiCom, 2003. [7] R. Draves, J. Padhye, and B. Zill., “Routing in Multi-Radio, Multi-Hop Wireless Mesh Networks,” In ACM MobiCom, 2004. [8] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Morris, “Performance of multihop wireless networks: Shortest path is not enough,” in Proc. the First Workshop on Hot Topics in Networks (HotNets-I), October 2002. [9] Y. Yang, J. Wang, and R. Kravets. ”Designing Routing Metrics for Mesh Networks,” In WiMesh, 2005. [10] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” in ACM MobiCom, September 2003. [11] Z. Jia, R. Gupta, J. Walrand, and P. Varaiya, “Bandwidth guaranteed routing for ad-hoc networks with interference consideration,” in 10th IEEE Symposium on Computers and Communications (ISCC), June 2005. [12] R. Gupta, Z. Jia, T. Tung, and J. Walrand, “Interference-aware qos routing (IQRouting) for ad-hoc networks,” in IEEE GLOBECOM, November 2005. [13] Anand Prabhu Subramanian, Milind M. Buddhikot, Scott C. Miller, “Interference Aware Routing in Multi-Radio Wireless Mesh Networks,” in the proceedings of the Second International Workshop on Wireless Mesh Networks (WiMesh 2006), Reston, VA, September 2006. [14] IEEE Std. 802.11b-1999. http://standards.ieee.org/. [15] T. Cover and J. Thomas, “Elements of Information Theory,” John Whiley & Sons, 1991. [16] T. Rappaport, “Wireless Communications: Principles and Practice,” 2nd Edition, Prentice Hall Communications Engineering and Emerging Technology Series. Prentice Hall, 2002. [17] P. Gupta and P. Kumar, “Capacity of Wireless Networks,” IEEE Trans. on Information Theory, Vol. 46, No. 2, pp. 388-404, 2000. [18] M. Zorzi and R. R. Roa, “Capture and retransmission control in mobile radio,” IEEE Journal on Selected Areas in Communications, Vol. 12, Oct. 1994, p. 1289-1298. [19] Lubo Song, Chansu Yu, “Improving Spatial Reuse with Collision-Aware DCF in Mobile Ad Hoc Networks,” ICPP 2006: 219-228 [20] C.E. Perkins and E.B. Royer., “Ad hoc On-demand Distance Vector Routing,” In IEEE Workshop on Mobile Computing and Systems and Applications, 1999. [21] D. B. Johnson and D. A. Maltz., “Dynamic Source Routing in Ad Hoc Wireless Networks,” Mobile Computing, 353, 1996. [22] C.E. Perkins and P. Bhagwat., “Highly Dynamic Destination Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” In SIGCOMM’ 94 Conference on Communication Architecture, Protocols and Application, pages 234–244, 1994. [23] M. Takai, J. Martin, and R. Bagrodia, “Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks,” In Proceedings of MobiHoc 2001. [24] Xiuchao Wu, “Simulate 802.11b Channel within NS2,” Project Report. [25] J. Deng, B. Liang, and P. Varshney, “Tuning the carrier sensing range of IEEE 802.11 MAC,” Proc. of IEEE GLOBECOM, November 2004. [26] Javier del Prado Pavon and Sunghyun Choi, “Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement,” ICC. 2003. [27] Proxim. ORiNOCO 11b Client PC Card Specification. 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27900 | - |
dc.description.abstract | 無線多跳網路,例如IEEE802.11b WLAN,為目前廣為應用的無線傳輸技術。然而,由於無線傳輸具有媒體共用、訊號干擾、通道競爭及傳輸錯誤的特性,使無線多跳網路的效能及產出量受到限制。在近來的相關研究中,傳輸速率控制、傳輸功率控制及空間重用為網路實體層及媒體存取層有效提升無線網路產出效能的網路機制。在本篇碩士論文中,我們觀察到:大部分現有的無線網路路由協定缺少同時針對以上傳輸速率、功率、空間重用機制及無線傳輸特性的通盤考量。
本篇碩士論文中提出一跨階層無線網路路由演算法,其中包含1) 傳輸速率及功率控制演算法TXPR,其依照傳輸連線之SINR值調整相對應的傳輸速率及功率;2) 分散式空間重用演算法DSRC,其依據傳輸連線的品質調整實體載波感測的門檻值以提升網路空間利用度並同時維護傳輸連線的品質。另外我們並提出3) 新的無線路由度量演算法 SRIR,經由SRIR路由度量選出具有較高無線媒體存取頻率及較低訊號干擾的路由路徑,將有效的提升其路徑的網路產出效能。在網路模擬的結果中亦顯示本論文中提出之跨階層無線網路路由演算法不僅有效提升網路的產出量;相較於既有的路由度量演算法,SRIR亦具有較佳的產出效能。 | zh_TW |
dc.description.abstract | Multi-hop wireless network, such as IEEE 802.11b WLAN, is one of the popular communication technologies. However, the wireless features such as media sharing, interference, channel contention and link-loss, bound the network performance and cause low aggregate throughput in network. In resent researches, there are three basic PHY/MAC mechanisms improving the network throughput, transmit rate control, transmit power control and spatial reused control. In this thesis, we addressed the problem that there are rare routing protocols take all of the interference, spatial reuse and transmit rate and power control into account in multi-hop wireless network.
We propose an iterative cross-layer routing algorithm which is combined with 1) the transmit power and rate control algorithm: TXPR, which adjusts the transmit rate and power based on the estimated SINR value for each link, 2) the distributed spatial reuse algorithm: DSRC, which adjust the physical carrier sensing threshold based on the link quality for each transmission, and 3) the new routing metric: SRIR which selects high performance routing paths with high channel access frequency and low interference level. And the simulation experiments also show that our cross-layer routing algorithm with SRIR metric has better network performance in aggregate throughput than existing wireless routing metrics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:26:51Z (GMT). No. of bitstreams: 1 ntu-96-R93921144-1.pdf: 735307 bytes, checksum: c08de819a3bfa0cc26c4f5ba815454a7 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 誌謝 III
中文摘要 IV ABSTRACT V CHAPTER 1 INTRODUCTION 1 1.1. WIRELESS MULTI-HOP NETWORKS AND CHALLENGES 1 1.2. IMPROVE THROUGHPUT IN WIRELESS NETWORKS 3 1.2.1. Improve Individual Channel Rate 3 1.2.2. Improve Network Spatial Reuse Level 4 1.3. MOTIVATION 6 1.4. CONTRIBUTION 10 1.5. ORGANIZATION 11 CHAPTER 2 RELATED WORKS 12 1.1. SPATIAL REUSE CONTROL 12 1.2. ROUTING METRICS FOR WIRELESS AD-HOC NETWORK 12 2.2.1. Hop Count (HOP) 13 2.2.2. Expected Transmission Count (ETX) 13 2.2.3. Expected Transmission Time (ETT) 14 2.2.4. Interference-aware Resource Usage (IRU) 14 2.2.5. Bandwidth Distance Product (BDiP) 15 2.2.6. Interference-aware Routing Metric (iAWARE) 15 2.2.7. Other Approaches 17 CHAPTER 3 PROPOSED CROSS-LAYER ROUTING ALGORITHM 18 3.1. SYSTEM MODELS 18 3.1.1. Signal Propagation Model 18 3.1.2. Signal Reception Model 19 3.2. PROPOSED ALGORITHMS 20 3.2.1. Overview of Cross-layer Routing Algorithm 20 3.2.2. Traffic-monitoring Mechanism 22 3.2.3. Transmission Power and Rate Control (TXPR) 24 3.2.4. Distributed Spatial Reuse Control (DSRC) 27 3.2.5. Spatial Reuse and Interference-aware Routing Metric (SRIR) 33 3.2.5.1. InterFerence-Based Routing Metric (IFBR) 36 3.2.5.2. Channel Block Ratio Metric (CBZ) 39 CHAPTER 4 PERFORMANCE EVALUATION 40 4.1. SIMULATION SETUP 40 4.2. SIMULATION RESULTS 45 4.2.1. Behavior of TXPR and DSRC Algorithms 46 4.2.2. Effect of TXPR and DSRC on Different Routing Metrics 48 4.2.3. Combined with SRIR Routing Metric 52 4.2.4. Fairness Among Flows 57 CHAPTER 5 CONCLUSION 59 CHAPTER 6 FUTURE WORK 61 REFERENCES 63 | |
dc.language.iso | en | |
dc.title | 無線多跳網路中考慮網路負載平衡之跨階層路由演算法設計 | zh_TW |
dc.title | Design of a Cross-Layer Routing Algorithm in Multi-hop Wireless Networks with Load-Balancing Consideration | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 逄愛君(Ai-Chun Pang),謝宏昀(Hung-Yun Hsieh),李正帆(JengFarn Lee) | |
dc.subject.keyword | 無線,路由,跨階層,多跳網路,負載平衡, | zh_TW |
dc.subject.keyword | wireless,routing,cross-layer,multi-hop,load-balancing, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 718.07 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。