請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27894完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊雅倩 | |
| dc.contributor.author | Chen-Syuan Huang | en |
| dc.contributor.author | 黃晨烜 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:26:28Z | - |
| dc.date.available | 2007-08-24 | |
| dc.date.copyright | 2007-08-24 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-10 | |
| dc.identifier.citation | 1. Department of Health, E.Y., Republic of China: Cancer Registry Annual report 1986.
2. http://www.doh.gov.tw/statistic/index.htm. 3. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-67. 4. Piard, F., C. Chapusot, A. Ecarnot-Laubriet, T. Ponnelle, and L. Martin, Molecular markers of heterogeneity in colorectal cancers and adenomas. Eur J Cancer Prev, 2002. 11(1): p. 85-97. 5. Souza, R.F., R. Appel, J. Yin, S. Wang, K.N. Smolinski, J.M. Abraham, T.T. Zou, Y.Q. Shi, J. Lei, J. Cottrell, K. Cymes, K. Biden, L. Simms, B. Leggett, P.M. Lynch, M. Frazier, S.M. Powell, N. Harpaz, H. Sugimura, J. Young, and S.J. Meltzer, Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet, 1996. 14(3): p. 255-7. 6. Parsons, R., L.L. Myeroff, B. Liu, J.K. Willson, S.D. Markowitz, K.W. Kinzler, and B. Vogelstein, Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res, 1995. 55(23): p. 5548-50. 7. Rampino, N., H. Yamamoto, Y. Ionov, Y. Li, H. Sawai, J.C. Reed, and M. Perucho, Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 1997. 275(5302): p. 967-9. 8. http://www.uicc.org/. 9. Sobin, L. and C. Wittekind, UICC TNM Classification on malignant tumours, 6th edn. New York: Wiley-Lis. 2002. 10. http://www.cancerstaging.org/. 11. Cancer, A.J.C.o., Colon and Rectum. In: AJCC Cancer Staging Manual. 6th ed. New York: Springer.: p. 113-124. 12. Dukes, C., The classification of cancer of the rectum. . Journal of Pathological Bacteriology 1932. 35: p. 323. 13. http://training.seer.cancer.gov/module_staging_cancer/unit03_sec04_part02_duke.html. 14. de la Chapelle, A., Genetic predisposition to colorectal cancer. Nat Rev Cancer, 2004. 4(10): p. 769-80. 15. Miklos, G.L. and B. John, Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet, 1979. 31(3): p. 264-80. 16. Cawood, A.H., DNA fingerprinting. Clin Chem, 1989. 35(9): p. 1832-7. 17. Weissenbach, J., Microsatellite polymorphisms and the genetic linkage map of the human genome. Curr Opin Genet Dev, 1993. 3(3): p. 414-7. 18. Ellegren, H., Microsatellites: simple sequences with complex evolution. Nat Rev Genet, 2004. 5(6): p. 435-45. 19. Strand, M., T.A. Prolla, R.M. Liskay, and T.D. Petes, Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, 1993. 365(6443): p. 274-6. 20. Queller, D.C., Strassman, J.E., and C.R. Hughes, Microsatellites and Kinship. Trends in Ecology and Evolution 1993. 8: p. 285 – 288. 21. Kovatich, A., D.M. Friedland, T. Druck, P. Hadaczek, K. Huebner, R.L. Comis, W. Hauck, and P.A. McCue, Molecular alterations to human chromosome 3p loci in neuroendocrine lung tumors. Cancer, 1998. 83(6): p. 1109-17. 22. Losi, L., C. Di Gregorio, M. Pedroni, G. Ponti, L. Roncucci, A. Scarselli, M. Genuardi, S. Baglioni, M. Marino, G. Rossi, P. Benatti, S. Maffei, M. Menigatti, B. Roncari, and M. Ponz de Leon, Molecular genetic alterations and clinical features in early-onset colorectal carcinomas and their role for the recognition of hereditary cancer syndromes. Am J Gastroenterol, 2005. 100(10): p. 2280-7. 23. Litt, M. and J.A. Luty, A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 1989. 44(3): p. 397-401. 24. De Angelis, P.M., T. Stokke, M. Beigi, O. Mjaland, and O.P. Clausen, Prognostic significance of recurrent chromosomal aberrations detected by comparative genomic hybridization in sporadic colorectal cancer. Int J Colorectal Dis, 2001. 16(1): p. 38-45. 25. Solomon, E., R. Voss, V. Hall, W.F. Bodmer, J.R. Jass, A.J. Jeffreys, F.C. Lucibello, I. Patel, and S.H. Rider, Chromosome 5 allele loss in human colorectal carcinomas. Nature, 1987. 328(6131): p. 616-9. 26. Meijer, G.A., M.A. Hermsen, J.P. Baak, P.J. van Diest, S.G. Meuwissen, J.A. Belien, J.M. Hoovers, H. Joenje, P.J. Snijders, and J.M. Walboomers, Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol, 1998. 51(12): p. 901-9. 27. Paredes-Zaglul, A., J.J. Kang, Y.P. Essig, W. Mao, R. Irby, M. Wloch, and T.J. Yeatman, Analysis of colorectal cancer by comparative genomic hybridization: evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res, 1998. 4(4): p. 879-86. 28. Ried, T., R. Knutzen, R. Steinbeck, H. Blegen, E. Schrock, K. Heselmeyer, S. du Manoir, and G. Auer, Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer, 1996. 15(4): p. 234-45. 29. Sanz-Ortega, J., F. Roig, M.M. Al-Mousa, M.C. Saez, A. Munoz, J. Sanz-Esponera, and L. Callol, 17p13 (p53 locus), 5q21 (APC locus) and 9p21 (p16 locus) allelic deletions are frequently found in oral exfoliative cytology cells from smoker patients with non-small-cell lung cancer. Histol Histopathol, 2007. 22(5): p. 541-5. 30. Perttu, M.C., P.M. Martikainen, H.S. Huhtala, M. Blauer, T.L. Tammela, P.J. Tuohimaa, and H. Syvala, Altered levels of Smad2 and Smad4 are associated with human prostate carcinogenesis. Prostate Cancer Prostatic Dis, 2006. 9(2): p. 185-9. 31. Yokota, J., M. Wada, Y. Shimosato, M. Terada, and T. Sugimura, Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci U S A, 1987. 84(24): p. 9252-6. 32. Dahiya, R., J. McCarville, W. Hu, C. Lee, R.M. Chui, G. Kaur, and G. Deng, Chromosome 3p24-26 and 3p22-12 loss in human prostatic adenocarcinoma. Int J Cancer, 1997. 71(1): p. 20-5. 33. Bronner, C.E., S.M. Baker, P.T. Morrison, G. Warren, L.G. Smith, M.K. Lescoe, M. Kane, C. Earabino, J. Lipford, and A. Lindblom, Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 1994. 368(6468): p. 258-61. 34. Cao, J., X.P. Chen, W.L. Li, J. Xia, H. Du, W.B. Tang, H. Wang, X.W. Chen, H.Q. Xiao, and Y.Y. Li, Decreased fragile histidine triad expression in colorectal cancer and its association with apoptosis inhibition. World J Gastroenterol, 2007. 13(7): p. 1018-26. 35. Hidaka, S., T. Yasutake, M. Fukushima, H. Yano, M. Haseba, T. Tsuji, T. Sawai, H. Yamaguchi, T. Nakagoe, H. Ayabe, and Y. Tagawa, Chromosomal imbalances associated with acquired resistance to fluoropyrimidines in human colorectal cancer cells. Eur J Cancer, 2003. 39(7): p. 975-80. 36. Cawkwell, L., F.A. Lewis, and P. Quirke, Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer, 1994. 70(5): p. 813-8. 37. http://www.ncbi.nlm.nih.gov/. 38. http://tpmd.nhri.org.tw/php-bin/index_en.php. 39. Ellegren, H., Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet, 2000. 24(4): p. 400-2. 40. Maitra, A., Wistuba, II, C. Washington, A.K. Virmani, R. Ashfaq, S. Milchgrub, A.F. Gazdar, and J.D. Minna, High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol, 2001. 159(1): p. 119-30. 41. Maestro, M.L., V. del Barco, M.T. Sanz-Casla, J. Moreno, E. Adrover, L. Izquierdo, I. Zanna, C. Fernandez, E. Redondo, J. Blanco, and L. Resel, Loss of heterozygosity on the short arm of chromosome 3 in renal cancer. Oncology, 2000. 59(2): p. 126-30. 42. Louhelainen, J., H. Wijkstrom, and K. Hemminki, Multiple regions with allelic loss at chromosome 3 in superficial multifocal bladder tumors. Int J Oncol, 2001. 18(1): p. 203-10. 43. Liang, L., M. Zhao, Z. Xu, K.K. Yokoyama, and T. Li, Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J, 2003. 370(Pt 1): p. 195-203. 44. Ren, Y., L. Cheng, Z. Rong, Z. Li, Y. Li, H. Li, Z. Wang, and Z. Chang, hSef co-localizes and interacts with Ras in the inhibition of Ras/MAPK signaling pathway. Biochem Biophys Res Commun, 2006. 347(4): p. 988-93. 45. Darby, S., K. Sahadevan, M.M. Khan, C.N. Robson, H.Y. Leung, and V.J. Gnanapragasam, Loss of Sef (similar expression to FGF) expression is associated with high grade and metastatic prostate cancer. Oncogene, 2006. 25(29): p. 4122-7. 46. Kholodnyuk, I.D., S. Kozireva, M. Kost-Alimova, V. Kashuba, G. Klein, and S. Imreh, Down regulation of 3p genes, LTF, SLC38A3 and DRR1, upon growth of human chromosome 3-mouse fibrosarcoma hybrids in severe combined immunodeficiency mice. Int J Cancer, 2006. 119(1): p. 99-107. 47. Dejmek, J., A. Safholm, C. Kamp Nielsen, T. Andersson, and K. Leandersson, Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol, 2006. 26(16): p. 6024-36. 48. Zeng ZY, Z.Y., Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, Cao L, Tang K, Qian J, Shen SR, Li GY., Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol. , 2007. 38(1): p. 120-33. 49. Cavazzoni, A., P.G. Petronini, M. Galetti, L. Roz, F. Andriani, P. Carbognani, M. Rusca, C. Fumarola, R. Alfieri, and G. Sozzi, Dose-dependent effect of FHIT-inducible expression in Calu-1 lung cancer cell line. Oncogene, 2004. 23(52): p. 8439-46. 50. Vecchione, A., C. Sevignani, E. Giarnieri, N. Zanesi, H. Ishii, R. Cesari, L.Y. Fong, L.G. Gomella, C.M. Croce, and R. Baffa, Inactivation of the FHIT gene favors bladder cancer development. Clin Cancer Res, 2004. 10(22): p. 7607-12. 51. Guler, G., A. Uner, N. Guler, S.Y. Han, D. Iliopoulos, P. McCue, and K. Huebner, Concordant loss of fragile gene expression early in breast cancer development. Pathol Int, 2005. 55(8): p. 471-8. 52. Xiao, W., Q. Zhang, F. Jiang, M. Pins, J.M. Kozlowski, and Z. Wang, Suppression of prostate tumor growth by U19, a novel testosterone-regulated apoptosis inducer. Cancer Res, 2003. 63(15): p. 4698-704. 53. Varga, A.E., L. Leonardos, P. Jackson, A. Marreiros, and P.A. Cowled, Methylation of a CpG island within the uroplakin Ib promoter: a possible mechanism for loss of uroplakin Ib expression in bladder carcinoma. Neoplasia, 2004. 6(2): p. 128-35. 54. Watanabe, T., T. Suda, T. Tsunoda, N. Uchida, K. Ura, T. Kato, S. Hasegawa, S. Satoh, S. Ohgi, H. Tahara, Y. Furukawa, and Y. Nakamura, Identification of immunoglobulin superfamily 11 (IGSF11) as a novel target for cancer immunotherapy of gastrointestinal and hepatocellular carcinomas. Cancer Sci, 2005. 96(8): p. 498-506. 55. Chen, J., W.O. Lui, M.D. Vos, G.J. Clark, M. Takahashi, J. Schoumans, S.K. Khoo, D. Petillo, T. Lavery, J. Sugimura, D. Astuti, C. Zhang, S. Kagawa, E.R. Maher, C. Larsson, A.S. Alberts, H.O. Kanayama, and B.T. Teh, The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell, 2003. 4(5): p. 405-13. 56. Lunter, P.C., J.W. van Kilsdonk, H. van Beek, I.M. Cornelissen, M. Bergers, P.H. Willems, G.N. van Muijen, and G.W. Swart, Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. Cancer Res, 2005. 65(19): p. 8801-8. 57. Verma, A., N.K. Shukla, S.V. Deo, S.D. Gupta, and R. Ralhan, MEMD/ALCAM: a potential marker for tumor invasion and nodal metastasis in esophageal squamous cell carcinoma. Oncology, 2005. 68(4-6): p. 462-70. 58. Goel, A., C.N. Arnold, D. Niedzwiecki, D.K. Chang, L. Ricciardiello, J.M. Carethers, J.M. Dowell, L. Wasserman, C. Compton, R.J. Mayer, M.M. Bertagnolli, and C.R. Boland, Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res, 2003. 63(7): p. 1608-14. 59. Brantley, D.M., N. Cheng, E.J. Thompson, Q. Lin, R.A. Brekken, P.E. Thorpe, R.S. Muraoka, D.P. Cerretti, A. Pozzi, D. Jackson, C. Lin, and J. Chen, Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene, 2002. 21(46): p. 7011-26. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27894 | - |
| dc.description.abstract | 針對第3號染色體的癌症研究方面,在前列腺癌發現3p12-22和3p24-26兩個區域經常有基因缺失的現象,在小細胞肺癌則發現3p14-21和3q28兩個區域有高頻率的基因缺失。進一步的研究中發現3p14.2的區域有一個FHIT ( fragile histidine triad )是肺癌相關的抑癌基因。而在大腸直腸癌方面,染色體3p21.3區域的hMLH1基因屬於DNA錯誤配對修復系統的一員,此基因的異常與遺傳性非息肉性大腸直腸癌( hereditary nonpolyposis colon cancer )的發生有相關,另外在肺癌中所發現的FHIT基因,對於大腸直腸癌的細胞分化、病程發展、淋巴轉移和5年存活率也有相關。本論文的研究目的:定義偶發性大腸直腸癌在第3號染色體之高頻率刪除區域,並分析DNA刪除與病人臨床結果之相關性,以了解是否有大腸直腸癌相關的抑癌基因。研究中,利用分佈在第3號染色體的23個微衛星標記,針對112對不同分期的大腸直腸癌檢體,以螢光-聚合酶鏈鎖反應( fluorescent-polymerase chain reaction )及自動DNA片段分析儀,檢測各微衛星標記在腫瘤DNA的變化。研究發現:112例腫瘤中有58例至少有一標記發生失異合性( Loss of heterozygosity,LOH )變化,其中3例可能為一整條第3號染色體缺失,因此在統計分析時剔除。利用各微衛星標記之LOH結果,定義出3p14.2-21.1、3p25-26和3q13三個區域有較高頻率的基因缺失現象,分別稱為最小刪除區域( minimal deletion region,MDR ) I、II、III。分別將23個微衛星標記之變異與病人的年齡、性別、腫瘤發生位置、腫瘤分化程度、癌症分期做單變項統計分析,結果為:(1)於 D3S1297、D3S1263、D3S2338、D3S1266和D3S1300發生缺失的病人,其發現癌症的年齡較年輕( p 值依序為0.01、0.037、0.033、0.047和0.029);(2) D3S1614和D3S1311發生LOH的頻率,男性病人高於女性病人(p 值分別為0.029和0.028);(3)D3S1300和D3S1311發生LOH變化之大腸直腸癌的發生位置多位於右側大腸( p 值分別為0.033和0.051 );(4) D3S1297的LOH變化,與存活有相關( p 值為0.018)。而針對MDR I、II及III與臨床資料的統計分析結果顯示:腫瘤發生MDR I及II刪除的病人,年齡較年輕,其它對於性別、腫瘤分化程度、腫瘤發生位置、癌症分期及存活分析都無顯著影響,而腫瘤發生MDR III刪除之病人,在癌症分期早期( Dukes’ A及B )佔較高的比例( p值為0.022),其它對於病人的年齡、性別、腫瘤發生位置、腫瘤分化程度及存活分析都無顯著影響。以multivariable Cox’s proportional hazards model分析disease-free survival rate及overall survival rate,發現D3S3681發生LOH變化對病人的disease-free survival rate較差( HR:3.22, 95% CI:0.89 – 11.66, p值為0.023 ),但年齡越大的病人,其disease-free survival rate較好( HR:0.966, 95% CI:0.935 – 0.999, p值小於0.0001 ),但再進一步分析時,年齡越大的病人在剛完成手術後的存活率較差,但是隨著時間的增加,其影響漸減 ( HR:1.35, 95% CI:1.172 – 1.569, p值小於0.0001 )。對overall survival rate的分析中,顯示Dukes’ D及疾病復發之病人,其存活率較差( HR分別為2.03 x 108及1.49 x 108 , 95% CI:1.8 * 105 – 2.32 * 108及1.3 * 105 – 1.64 * 108, p值都小於0.0001 )。 | zh_TW |
| dc.description.abstract | The research of cancer on chromosome 3 : the regions on 3p12-22 and 3p24-26 usually had allele loss in prostatic adenocarcinoma. And the regions 3p14-21 and 3q28 had high frequency allele loss in small cell lung cancer. To go deeper into the region 3p14.2, there was a lung tumor suppressor gene called FHIT ( fragile histidine triad ). In colorectal cncer ( CRC ), the region on 3p21.3 found hMLH1, which was a part of DNA mismatch repair system. When the hMLH1 is abnormal, it was related to hereditary non-polyposis colon cancer happened. FHIT also influenced differentiation grades, pathological stages, lymph node metastases and 5-year survival rate in CRC. The purpose of this study is to identify the high frequency deletion region on chromosome 3 in CRC. Then to analyze the relationship between DNA deletion and the patients’ clinical data, to discusses whether there are tumor suppressor gene on chromosome 3 in CRC. In this study, using 23 microsatellite markers spread on chromosome 3 analyzes different stage of CRC cases. Then to use fluorescent-polymerase chain reaction amplifies 23 microsatellite markers. After that, using capillary array electrophoresis analyzies the change of the microsatellite markers in CRC. The result : there are 58 cases at least one microsatellite marker had LOH change, and there are three cases which may identify to be monosomy in site. The three monosomy cases will reject before comparing with clinical data. Using the LOH change of microsatellite markers, there are three regions of high frequency allele loss 3p14.2-21.1, 3p25-26 and 3q13 and name minimal deletion region I, II, III. Then to use 23 microsatellite markers combine with 109 CRC cases’ age, gender, tumor location, tumor differentiation and pathological stage to analyze. (1) LOH at D3S1297, D3S1263, D3S2338, D3S1266, D3S1300, the CRC patients are related to younger onset-age of CRC ( p -value = 0.01, 0.037, 0.033, 0.047, 0.029 ). (2) The frequency of LOH change at D3S1614 and D3S1311 in male patients are higher than female ones ( p -value = 0.029, 0.028 ). (3) When D3S1300 or D3S1311 has LOH change, the tumor is more easy to grow on right colon. ( p -value = 0.033, 0.051 ) (4) LOH at D3S1297, the patients’ overall survival rate is lower ( p – value = 0.018 ). After that, to analyze the minimal deletion region ( MDR ) I, II, III combine with patients’ age, gender, tumor location, tumor differentiation and pathological stage. The MDR I & II are related to younger onset-age of CRC. Then gender, tumor location, tumor differentiation and pathological stage are no significance in statistics, and the patients of the deletion on the MDR III are more high frequency in Dukes’ A & B ( p – value = 0.022 ). But the deletion on the MDR III is no significance with the age, gender, tumor location and tumor differentiation. In multivariable Cox’s proportional hazard model, to analyze disease-free survival rate find that the LOH at D3S3681 is lower survival rate in CRC patients ( HR:3.22, 95% CI:0.89 – 11.66, p -value = 0.075 ), and the patients of older age is higher survival rate (HR:0.966, 95% CI:0.935 –0.999, p -value < 0.0001 ). Then to interact with the time, the age is higher risk factor after operation, but, however years as followed the risk of the age is lower ( HR:1.35, 95% CI:1.172 – 1.569, p – value < 0.0001 ). Then to analyze overall survival rate, the Duke’s D and relapse are higher risk factors in CRC patients ( HR: 2.03 x 108 & 1.49 x 108 , 95% CI:1.8 * 105 – 2.32 * 108 & 1.3 * 105 – 1.64 * 108, p -value < 0.0001 ). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:26:28Z (GMT). No. of bitstreams: 1 ntu-96-R94424011-1.pdf: 1412499 bytes, checksum: 81035b8bf67763c7aa2642da2faa34ee (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 第一章 緒論 1 第一節 大腸直腸癌簡介 1 1.1 大腸的位置及功能 1 1.2 臺灣地區大腸直腸癌現況 1 1.3 大腸直腸癌的形成 1 1.4 大腸直腸癌的診斷 4 1.5 大腸直腸癌的分期 5 1.6 大腸直腸癌的治療 7 第二節 微衛星標記簡介 7 2.1 微衛星標記的定義 7 2.2 微衛星標記的多型性及應用 8 第三節 大腸直腸癌之染色體刪除研究 9 第四節 癌症於第三號染色體的相關研究 9 第五節 本論文研究目的 10 第二章 材料與方法 第一節 實驗材料 11 1.1 大腸直腸組織 11 1.2 ABI Linkage Mapping Set V2.5試劑組 11 第二節 微衛星標記分析 11 2.1 微衛星標記之PCR反應 11 2.2 ABI PRISM 3100-Avant之電泳 12 2.3 ABI PRISM 377 DNA sequencer之電泳分析 12 2.4 LOH之定義 13 2.5 MSI之定義 13 第三節 最小刪除區域之定義 13 第四節 基因刪除與臨床資料之統計分析 14 第三章 結果 第一節 微衛星標記之分析圖 15 第二節 大腸直腸癌檢體之微衛星標記分析 15 2.1 23個微衛星標記之異合子頻率 15 2.2 23個微衛星標記之LOH頻率 15 2.3 檢體發生LOH個數及頻率 16 2.4 23個微衛星標記之MSI發生率 16 2.5 最小刪除區域之定義 17 第三節 基因刪除與臨床資料之單變項統計分析 18 第四節 最小刪除區域與臨床資料之單變項分析 19 第五節 影響病人存活的多變項分析 19 第四章 討論 21 圖目錄 圖一、23個微衛星標記在第三號染色體的分布 26 圖二、Loss of heterozygosity之定義 27 圖三、微衛星標記電泳圖形 28 圖四、Panel 5 微衛星標記分析圖形 29 圖五、Panel 6 微衛星標記分析圖形 30 圖六、Panel 7 微衛星標記分析圖形 31 圖七、第3號染色體之最小刪除區域 32 圖八、38例至少有一標記MSI之腫瘤的23個微衛星標記分析結果 33 圖九、單一標記發生LOH變化對大腸直腸癌病患之Kaplan-Meier存活 分析 34 表目錄 表一、112例大腸直腸癌病人之臨床資料 35 表二、112例大腸直腸癌正常組織檢體之23個微衛星標記異合子頻率與 其它資料庫之比對 36 表三、112例大腸直腸癌檢體之23個微衛星標記的LOH發生率 37 表四、109例大腸直腸癌檢體之23個微衛星標記的LOH發生率 38 表五、55例大腸直腸癌檢體之23個微衛星標記的LOH發生率 39 表六、112例大腸直腸癌之23個微衛星標記的MSI發生率 40 表七、109例大腸直腸癌病人臨床資料與微衛星標記發生之LOH之統 計分析 41 表八、109例大腸直腸癌病人臨床資料與最小刪除區域之統計分析 46 表九、針對disease-free survival rate的多變項分析 47 表十、針對disease-free survival rate加入時間反應的多變項分析 48 表十一、針對overall survival rate的多變項分析 49 參考文獻 50 附錄一:附表 56 附錄二:實驗步驟 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | colorectal cancer | en |
| dc.title | 偶發性大腸直腸癌在第三號染色體之刪除圖譜繪製 | zh_TW |
| dc.title | Deletion mapping of chromosome 3 in sporadic colorectal cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 方偉宏,俞松良,蔡明宏 | |
| dc.subject.keyword | 大腸直腸癌, | zh_TW |
| dc.subject.keyword | colorectal cancer, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
