請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27885完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 唐牧群 | |
| dc.contributor.author | Pei-Hang Ting | en |
| dc.contributor.author | 丁培涵 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:25:57Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-08 | |
| dc.identifier.citation | Aiello, L. M., Barrat, A., Cattuto, C., Ruffo, G., & Schifanella, R. (2010). Link creation and profile alignment in the aNobii social network. IEEE International Conference on Social Computing/IEEE International Conference on Privacy, Security, Risk and Trust (頁 249–256).
Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 20(4), 644–656. Bettman, J. R., Luce, M. F., & Payne, J. W. (1998). Constructive consumer choice processes. Journal of consumer research, 25(3), 187–217. Chang, S.-J., & Rice, R. E. (1993). Browsing: A Multidimensional Framework. Annual Review of Information Science and Technology (ARIST), 28, 231-76. Dieberger, A., Dourish, P., Hook, K., Resnick, P., & Wexelblat, A. (2000). Social navigation: techniques for building more usable systems. interactions, 7(6), 36–45. Dourish, P., & Chalmers, M. (1994). Running Out of Space: Models of information navigation. HCI, Glasgow. 被取回 從 http://www.dcs.gla.ac.uk/~matthew/papers/hci94.pdf Franke, N., Keinz, P., & Steger, C. J. (2009). Testing the Value of Customization: When Do Customers Really Prefer Products Tailored to Their Preferences? Journal of Marketing, 73(5), 103-121. doi:10.1509/jmkg.73.5.103 Furner, J. (2002). On recommending. Journal of the American Society for Information Science and Technology, 53(9), 747-763. doi:10.1002/asi.10080 Giustini, D., Hooker, D., & Cho, A. (2009). Social cataloguing: an overview for health librarians. Journal of the Canadian Health Libraries Association, 30(4), 133–138. Haubl, G., & Murray, K. B. (2003). Preference construction and persistence in digital marketplaces: The role of electronic recommendation agents. Journal of Consumer Psychology, 75–91. Herlocker, J. L, Konstan, J. A, Terveen, L. G, & Riedl, J. T (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5–53. Herlocker, Jonathan L., Konstan, Joseph A., Terveen, Loren G., & Riedl, John T. (2004). Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1), 5-53. doi:10.1145/963770.963772 Hopper, R. (2005). What are teenagers reading? Adolescent fiction reading habits and reading choices. Literacy (formerly Reading), 39(3), 113-120. doi:10.1111/j.1467-9345.2005.00409.x Kari, J., & Hartel, J. (2007). Information and higher things in life: Addressing the pleasurable and the profound in information science. Journal of the American Society for Information Science and Technology, 58(8), 1131-1147. doi:10.1002/asi.20585 Kramer, T. (2007). The Effect of Measurement Task Transparency on Preference Construction and Evaluations of Personalized Recommendations. Journal of Marketing Research, 44(2), 224-233. doi:10.1509/jmkr.44.2.224 Kwon, K., Cho, J., & Park, Y. (2009). Influences of customer preference development on the effectiveness of recommendation strategies. Electronic Commerce Research and Applications, 8(5), 263-275. doi:10.1016/j.elerap.2009.04.004 Lancaster, F. W. (2003). Indexing & Abstracting in Theory & Practice (3rd 版.). Univ of Illinois Graduate School of. Marchionini, G. (2006). Exploratory search: from finding to understanding. Communications of the ACM, 49(4), 41–46. Pejtersen, A. M., & Austin, J. (1983). FICTION RETRIEVAL: EXPERIMENTAL DESIGN AND EVALUATION OF A SEARCH SYSTEM BASED ON USERS’ VALUE CRITERIA (PART 1). Journal of Documentation, 39(4), 230-246. doi:10.1108/eb026750 Peppers, M., & Rogers, D. (1999). Enterprise One to One: Tools for Competing in the Interactive Age. Currency/ Doubleday. Perugini, S., Goncalves, M. A., & Fox, E. A. (2004). Recommender Systems Research: A Connection-Centric Survey. Journal of Intelligent Information Systems, 23(2), 107-143. doi:10.1023/B:JIIS.0000039532.05533.99 Resnick, Paul, & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. doi:10.1145/245108.245121 Ross, C. S. (1999). Finding without seeking: the information encounter in the context of reading for pleasure. Information Processing & Management, 35(6), 783-799. doi:10.1016/S0306-4573(99)00026-6 Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. The adaptive web (頁 291–324). Simonson, I. (2005). Determinants of Customers’ Responses to Customized Offers: Conceptual Framework and Research Propositions. Journal of Marketing, 69(1), 32-45. doi:10.1509/jmkg.69.1.32.55512 Sinha, R., & Swearingen, K. (2001). Comparing recommendations made by online systems and friends. Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries. Sokvitne, L. O. (2006). Redesigning the OPAC: Moving Outside the ILMS. Australian Academic and Research Libraries, 37(4), 246. Svenonius, E. (2000). The intellectual foundation of information organization. MIT Press. Swanson, D. R., & Smalheiser, N. R. (1997). An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artificial Intelligence, 91(2), 183-203. doi:10.1016/S0004-3702(97)00008-8 Swanson, D. R., Smalheiser, N. R., & Bookstein, A. (2001). Information discovery from complementary literatures: Categorizing viruses as potential weapons. Journal of the American Society for Information Science and Technology, 52(10), 797-812. doi:10.1002/asi.1135.abs Tang, M.-C. (2009). A study of academic library users’ decision-making process: a Lens model approach. Journal of Documentation, 65(6), 938-957. doi:10.1108/00220410910998933 White, R. W., & Roth, R. A. (2009). Exploratory search: Beyond the query-response paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services, 1(1), 1–98. White, R. W., Kules, B., & Drucker, S. M. (2006). Supporting Exploratory Search, Introduction, Special Issue, Communications of the ACM. Communications of the ACM, 49(4), 36–39. Xu, Y. (2007). Relevance judgment in epistemic and hedonic information searches. Journal of the American Society for Information Science and Technology, 58(2), 179-189. doi:10.1002/asi.20461 Zaichkowsky, J. L. (1985). Measuring the Involvement Construct. The Journal of Consumer Research, 12(3), 341-352. 林珊如, & 劉應琳 (2001). 休閒閱讀找書策略與影響因素之探討:以台大BBS Books 版愛書人為例. 資訊傳播與圖書館學, 8(2), 23-37. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27885 | - |
| dc.description.abstract | 本研究以aNobii網路書櫃為研究平台,探討網路書櫃使用者以不同瀏覽管道尋找有興趣的休閒讀物時,其主觀評價與客觀成效表現是否有差異。本研究試圖採用精確性與非精確性概念的評估指標,希望能更貼近休閒讀物尋書之需求。研究中導入行銷學偏好結構的概念,以讀者閱讀的偏好結構作為使用者變項,探討讀者個人偏好結構是否會影響其使用不同推薦工具瀏覽尋書的結果。研究採用準實驗設計,自變項為aNobii上三種導覽工具(朋友書櫃、相似書櫃、同作者書籍)以及受試者個人偏好結構(偏好發展程度、偏好同質性、閱讀涉入程度);依變項為實驗後問卷搜集的受試者主觀評價,以及在實驗中系統自動於背景搜集的客觀檢索成效。
研究結果發現:一、不同導覽工具的確有所差異。使用者認為同作者書籍較符合其偏好,實際檢索成效亦較佳,但瀏覽起來最無趣;而最不符合偏好的朋友書櫃,卻是三者中瀏覽過程最有趣、亦最能擴展讀者閱讀視野的管道。二、讀者對不同導覽工具的主觀評價結果與客觀檢索成效並不完全一致,但若細就精確性與非精確性的概念區分,可發現主觀與客觀的結果有接近的趨勢。三、讀者的個人偏好結構的確會影響其瀏覽尋書的評價與成效,如偏好發展程度與偏好同質性愈高者,使用同作者書籍瀏覽尋書的客觀成效明顯較佳;閱讀涉入程度愈高者,朋友書櫃中愈容易遇到重覆的已知書籍等等。因此,若此類平台未來能建立讀者的個人偏好結構資訊檔,集有足夠的研究資訊,或許對使用者的服務能更切合所需,也能令使用者的偏好結構與其閱讀需求之間的關係更為清晰。 | zh_TW |
| dc.description.abstract | This study aimed to explore how users search books they are interested in with different browsing tools in online bookshelf, aNobii, and whether the performance in subjective perspective and objective results will be different. To meet the demands of users’ leisure reading, we use accuracy and novelty as evaluation indicators. Besides, applying the concept of preference structure widely used in marketing as our independent variable, we attempted to investigate whether readers’ preference structure will influence results of book selection with different recommendation tools.
A quasi-experimental design was adopted where all 40 participants searched alternately with the three book finding tools. There are two independent variables in the research, three browsing tools in aNobii-- friends, similar readers, and the author, and preference structure including preference development, preference homogeneity, and degree of reading involvement. The dependent variables are subjective perspective collected by questionnaires after the experiment and objective search results retrieved by the computer during the experiment. Some major findings are as follows. First, different browsing tools were found to affect users’ book selection behaviors. Users thought that browsing by author could help them find books better matching their reading preference. It produced a higher accuracy. However, users felt it was less interesting when choosing books by authors. On the contrary, users considered browsing friends’ bookshelf to be most interesting. Books found in friends’ bookshelf may not fit their reading preference but helped users broaden their horizon. Second, performance in subjective perspective and objective search results did not align with each other , which suggested they captured different aspects of user experience . Furthermore, readers’ preference structures were found to affect their browsing results. For instances, search results were better when the reader’s preference is highly developed and homogenous. Also, the reader with high reading involvement was found to be more likely to find books they had already known during browsing friends’ bookshelf. Thus, if we can build users’ reading preference profile to collect enough information for research, we can supply service that meet users’ needs in the future. Moreover, it can help us understand the relation between readers’ preference structure and reading needs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:25:57Z (GMT). No. of bitstreams: 1 ntu-100-R97126005-1.pdf: 1796250 bytes, checksum: 752071f0280532f868b6cb379cc7fd8d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 第一章 緒論 1
第一節 研究動機 1 第二節 研究目的與問題 2 第三節 研究範圍與限制 3 第四節 名詞解釋 4 第二章 文獻回顧 6 第一節 休閒閱讀 6 第二節 探索式搜尋與社會性導覽 7 第三節 推薦系統評估 12 第四節 偏好結構與推薦系統 15 第五節 小結 18 第三章 研究設計與實施 20 第一節 研究設計 20 第二節 研究對象與工具 22 第三節 實驗流程 26 第四節 資料搜集與分析 29 第四章 研究結果與討論 34 第一節 受試者基本資料處理 34 第二節 導覽工具尋書效能與評價 37 第二節 偏好結構資料分析 44 第三節 綜合討論 49 第五章 結論與建議 53 第一節 結論 53 第二節 進一步研究建議 56 附錄一:ANOBII網路書櫃研究同意書 58 附錄二:實驗前問卷 59 附錄三:實驗後導覽工具問卷 62 附錄三:實驗後書籍問卷 63 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | recommending system | en |
| dc.subject | leisure reading | en |
| dc.subject | preference structure | en |
| dc.title | 網路書櫃使用者偏好結構與瀏覽尋書行為之研究 | zh_TW |
| dc.title | A Study of ANobii Users’ Preference Structure on Their Leisure Reading Seeking Behavior | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳玲玲,陳光華 | |
| dc.subject.keyword | 偏好結構,休閒閱讀,推薦系統, | zh_TW |
| dc.subject.keyword | preference structure,leisure reading,recommending system, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-08 | |
| dc.contributor.author-college | 文學院 | zh_TW |
| dc.contributor.author-dept | 圖書資訊學研究所 | zh_TW |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
