Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27840
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振宇
dc.contributor.authorKuang-Liang Luen
dc.contributor.author盧光亮zh_TW
dc.date.accessioned2021-06-12T18:23:28Z-
dc.date.available2014-08-11
dc.date.copyright2011-08-11
dc.date.issued2011
dc.date.submitted2011-08-08
dc.identifier.citationAbraham, J., 1998. Spatial distribution of major and trace elements in shallow reservoir sediments: an example from Lake Waco, Texas. Environ. Geol. 36, 349-363.
Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anawar, H.M., Akai, K., 2004. Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh, Appl. Geochem. 19, 215-230.
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S., Kato, K., 2003. Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J. Geochem. Explor. 77, 109-131.
APHA, 1998. Standard methods for the examination of water and water waste, 20th ed. American Public Health Assoc., Washington, DC, 413-426.
Appelo, C.A.J., Van der Weiden, M.J.J., Tournassat, C., Charlet, L., 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36, 3096-3103.
Artinger, R., Buckau, G., Geyer, S., Fritz, P., Wolf, M., Kim, J.I., 2000. Characterization of groundwater humic substances: influence of sedimentary organic carbon. Appl. Geochem. 15, 97-116.
Berg, M., Stengel, C., Trang, P.T.K., Viet, P.H., Sampson, M.L., Leng, M., Samreth, S., Fredericks, D., 2007. Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Sci. Total Environ. 372, 413-425.
BGS and DPHE, 2001. Arsenic Contamination of Groundwater in Bangladesh (ed. D. G. Kinniburgh and P. L. Smedley) Vol. 2, Technical Report WC/00./19, British Geological Survey.
BGS and DPHE, 2002. In: Kinniburgh, D.G., Smedley, P.L., editors. Arsenic in groundwater in Bangladesh. BGS Technical Report.
Bhattacharya, P., Welch, A.H., Ahmed, K.M., Jacks, G., Naidu, R., 2004. Arsenic in groundwater of sedimentary aquifers. Appl. Geochem. 19, 163–167.
Bonneville, S., Van Cappellen, P., Behrends, T., 2004. Microbial reduction of iron(III) oxyhydroxides : effects of mineral solubility and availability. Chem. Geo. 212, 255-268.
Buschmann, J., Berg, M., Stengel, C., Sampson, M.L., 2007. Arsenic and manganese contamination of drinking water resources in Cambodia: coincidence of risk areas with low relief topography. Environ. Sc. Technol. 41, 2146-2152.
Caccavo, Jr.F., Blakemore, R.P., Lovley, D.R., 1992. A hydrogen-oxidizing, iron(III)-reducing microorganism from the Great Bay estuary, New Hampshire. Appl. Environ. Microbiol. 58, 3211-3216.
Central Geological Survey, 1999. Project of groundwater monitoring network in Taiwan during first stage-research report of Chou-Shui River alluvial fan; Water Resources Bureau: Taiwan.
Chauhan, V.S., Nickson, R.T., Chauhan, D., Iyengar, L., Sankararamakrishnan, N., 2009. Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere 75, 83-91.
Chen, S.L., Dzeng, S.R., Yang, M.H., Chlu, K.H., Shieh, G.M., Wai, C.M., 1994. Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environ. Sci. Technol. 28, 877-881.
Chen, W.F., Liu, T.K., 2003. Dissolved oxygen and nitrate of groundwater in Choushui Fan-Delta, western Taiwan. Environ. Geol. 44, 731–737.
Cherry, J.A., Shaik, A.U., Tallmann, D.E., Nicholson, R.V., 1979. Arsenic species as an indicator of redox conditions in groundwater. J. Hydrol. 43, 373-392.
Dixit, S., Hering, J.G., 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182-4189.
Fendorf, S., Michael, H.A., van Geen, A., 2010. Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science 328, 1123-1127.
Fuller, C.C., Davis, J.A., Waychunas, G.A., 1993. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and co-precipitation. Geochim. Cosmochim. Acta 57, 2271-2282.
Gallagher, P.A., Schwegel, C.A., Parks, A., Gamble, B.M., Wymer, L., Creed, J.T., 2004. Preservation of As(III) and As(V) in drinking water supply samples from across the United States using EDTA and acetic acid as a means of minimizing iron-arsenic coprecipitation. Environ. Sci. Technol. 38, 2919-2927.
Ghosh, A., Eduardo Saez, A., Ela, W., 2006. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals. Sci. Total Environ. 363, 46-59.
Guo, H., Yang, S., Tang, X., Li, Y., Shen, Z., 2008. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci. Total Environ. 393, 131-144.
Halim, M.A., Majumder, R.K., Nessa, S.A., Oda, K., Hiroshiro, Y., Saha, B.B., Hassain, S.M., Latif, S.K.A., Islam, M.A., Jinno, K., 2009. Groundwater contamination with arsenic in Sherajdikhan, Bangladesh: geochemical and hydrological implications. Environ. Geol. 58, 73-84.
Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., Keon-Blute, N., Niedan, V. Brabander, D., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F., Ahmed, M.F., 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602-1606.
Hasan, M.A., Ahmed, K.M., Sracek, O., Bhattacharya, P., von Bromssen, M., Broms, S., Fogelstrom, J., Mazumder, M.L., Jacks, G., 2007. Arsenic in shallow groundwater of Bangladesh: investigations from three different physiographic settings. Hydrogeol. J., 1507-1522.
Helgeson, H.C., Brown, T.H., Leeper, R.H., 1994. Mineral equilibria II: chemical potential diagrams, in: D.K. Nordstrom, J.L. Munoz (Eds.), Geochemical Thermodynamics, Blackwell, Cambridge, pp. 247-283.
Herbel, M., Fendorf, S., 2006. Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem. Geo. 228, 16-32.
Hery, M., Gault, A.G., Rowland, H.A.L., Lear, G., Polya, D.A., 2008. Molecular and cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilization in south-east asian aquifer. Appl. Geochem. 23, 3215-3223.
Huang, C.Y., 1996. Foraminiferal analysis and stratigraphic correlation on the subsurface geology of the Choushuichi alluvial fan. p. 55–66. In Conf. on Groundwater and Hydrogeology of Choushui River Alluvial Fan, Taipei, Taiwan. 8–9 Feb. 1996. Water Resources Bureau, Taipei.
Huang, Y.K., Lin, K.H., Chen, H.W., Chang, C.C., Liu, C.W., Yang, M.H., Hsueh, Y.M., 2003. As species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in BFD hyperendemic areas. Food Chem. Toxicol. 41, 1491-1500.
Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., Lloyd, J.R., 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68-71.
Islam, F.S., Pederick, R.L., Gault, A.G., Adams, L.K., Polya, D.A., Charnock, J.M., Lloyd, J.R., 2005. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl. Environ. Microbiol. 71, 8642-8648.
Jackson, M.L., 1979. Soil Chemical Analysis, Advanced Course, 2nd Ed. University of Wisconsin, Madison, WI.
Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C., Hemond, H.F., 2001. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ. Sci. Technol. 35, 2778-2784.
Kim, M.J., Nriagu, J., Haack, S., 2000. Carbonate ions and arsenic dissolution by groundwater. Environ. Sci. Technol. 34, 3094-3100.
Klein, C., Hurlbut, Jr.C.S., 1999. Oxides, Hydroxides, and Halides. Chapter 11, Manual of Mineralogy (21st Ed.). John Wiley & Sons, New York, 372-402.
Kocar, B.D., Herbel, M.J., Tufano, K.J., Fendorf, S., 2006. Contrasting effects if dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ. Sci. Technol. 40, 6715-6721.
Kocar, B.D., Polizzotto, M.L., Benner, S.G., Ying, S.C., Ung, M., Ouch, K., Samreth, S., Suy, Bunseang, Phan, K., Sampson, M., Fendorf, S., 2008. Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of Mekong delta. Appl. Geochem. 23, 3059-3071.
Kolling, M., 2000. Comparison of different methods for redox potential determination in nature waters, in: J. Schuring, H.D. Schulz, W.R. Fischer, J. Bottcher, W.H.M. Duijnisveld (Eds.), Redox-Fundamentals, Processes and Applications, Springer, New York, pp. 42-54.
Kouras, A., Katsoyiannis, I., Voutsa, A., 2007. Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. J. Hazard. Mater. 147, 890-899.
Krishna, A.K., Satyanarayanan, M., Govil, P.K., 2009. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. J. Hazard. Mater. 167, 366-373.
Kuo, Y.M., Chang, F.J., 2010. Dynamic factor analysis for evaluating groundwater arsenic trends. J. Environ. Qual. 39, 176-184.
Langner, H.W., Inskeep, W.P., 2000. Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 34, 3131-3136.
Lee, J.J., Jang, C.S., Wang, S.W., Liu, C.W., 2007. Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model. Sci. Total Environ. 384, 151-162.
Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., Bollinger, J.C., 2002. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid and Interface Sci. 255, 52-58.
Lin, Y.B., Lin, Y.P., Liu, C.W., Tan, Y.C., 2006. Mapping of Spatial Multi-scale Sources of Arsenic Variation in Groundwater on ChiaNan Floodplain of Taiwan. Sci. Total Environ. 370, 168-181.
Liu, C.W., 1999. Compilation “Groundwater in Taiwan-Choushuichi Alluvial Plain”; Water Resources Bureau: Taiwan.
Liu, C.W., Lin, K.H., Kuo, Y.M., 2003a. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 313, 77-89.
Liu, C.W., Lin, K.H., Chen, S.Z., Jang, C.S., 2003b. Aquifer salinization in the Yun-Lin Coastal Area, Taiwan. J. Am. Water Res. Ass. 39, 817-827.
Liu, C.W., Wang, S.W., Jang, C.S., Lin, K.H., 2006. Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan. J. Environ. Qual. 35, 68-75.
Lovley, D.R., Phillips, E.J.P., 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53, 1536-1540.
Lovley, D.R., 1997. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol. Rev. 20, 305-313.
Mandal, B.K., Chowdhury, T.R., Samanta, G., Basu, G.K., Chowdhury, P.P., Chanda, C.R., Lodh, D., Karan, N.K., Dhar, R.K., Tamili, D.K., Das, D., Saha, K.C., Chakraborti, D., 1996. Arsenic in groundwater in seven districts of West Bengal, India-The biggest arsenic calamity in the world. Curr. Sci. 70, 976-986.
McArthur, J.M., Ravenscroft, P., Safiulla, S., Thirlwall, M.F., 2001. Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37, 109-117.
Moore, W.S., 1999. The subterranean estuary: a reaction zone of groundwater and seawater. Mar. Chem. 65, 111-125.
Nevin, K.P., Lovley, D.R., 2002. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68, 2294-2299.
Nickson, R.T., McArthur, J.M., Burgess, W.G., Ahmed, K.M., Ravenscroft, P., Rahman, M., 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G., Ahmed, K.M., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403-413.
Nickson, R.T., McArthur, J.M., Shrestha, B., Kyaw-Myint, T.O., Lowry, D., 2005. Arsenic and other drinking water quality issues, Muzaffargarh district, Pakistan. Appl. Geochem. 20, 55–68.
Oremland, R.S., Stolz, J.F., 2003. The ecology of arsenic. Science 300, 939-944.
Oremland, R.S., Stolz, J.F., 2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 13, 45-49.
Pal, T., Mukherjee, P.K., Sengupte, S., 2002. Nature of arsenic pollutants in groundwater of Bengal Delta – a case study from Baruipur area, West Bengal, India. Curr. Sci. 82, 554-561.
Papaioannou, A., Mavridou, A., Hadjichristodoulou, C., Papastergiou, P., Pappa, O., Dovriki, E., Rigas, I., 2010. Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health. Environ. Monit. Assess. 170, 87-97.
Polizzotto, M.L., Harvey, C.F., Li, G., Badruzzman, B., Ali, A., Newville, M., Sutton, S., Fendorf, S., 2006. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem. Geol. 228, 97-111.
Polya, D.A., Gault, A.G., Diebe, N., Feldmann, P., Rosenboom, J.W., Gilligan, E., Fredericks, D., Milton, A.H., Sampson, M., Rowland, H.A.L., Lytggoe, P.R., Jones, J.C., Middleton, C., Cooke, D.A., 2005. Arsenic hazard in shallow Cambodian groundwaters. Mineral. Mag. 69, 807-823.
Radloff, K.A., Cheng, Z., Rahman, M.W., Ahmed, K.M., Mailloux, B.J., Juhl, A.R., Schlosser, P., van Geen, A., 2007. Mobilization of arsenic during one-year incubations of grey aquifer sands from Araihazar, Bangladesh. Environ. Sci. Technol. 41, 3639-3645.
Ravel, B., Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537-541.
Reyment, R.A., Joreskog, K.H., 1993. Applied Factor Analysis in the Natural Sciences, Cambridge University Press, New York.
Schulze, D.G., Dixon, J.B., 1979. High gradient magnetic separation of iron oxides and other magnetic minerals from soil clay. Soil Sci. Soc. Am. J. 43, 793-799.
Schwertmann, U., Cornell, R.M., 1991. Iron Oxides in the Laboratory: Preparation and Characterization. VCH, Weinheim. 137 pp.
Sharma, S., 1996. Applied Multivariate Techniques, Wiley & Sons, New York.
Sherman, D.M., Randall, S.R., 2003. Surface complexation of arsenate(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 67, 4223-4230.
Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behavior, and distribution of arsenic in nature water. Appl. Geochem. 17, 517-568.
Smedley, P.L., Zhang, M., Zhang, G., Luo, Z., 2003. Mobilization of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 18, 1453-1477.
SPSS Inc. 1998. SPSS BASE 8.0 - Application Guide. SPSS Inc, Chicago, USA.
Stollenwerk, K.G., Breit, G.N., Welch, A.H., Yount, J.C., Whitney, J.W., Foster, A.L., Uddin, M.N., Majumder, R.K., Ahmed, N., 2007. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci. Total Environ. 379, 133–150.
Stumm, W., 1984. Interpretation and measurement of redox intensity in natural waters. Schweiz. Z. Hydrol. 46, 291-296.
Stute, M., Zheng, Y., Schlosser, P., Horneman, A., Dhar, R.K., Datta, S., Hoque, M.A., Seddique, A.A., Shamsudduha Ahmed, K.M., van Geen, A., 2007. Hydrological control of As concentrations in Bangladesh groundwater. Water Resour. Res. 43, W09417.
Su, C., Pulse, R.W., 2001. Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulphate, chromate, molybdate and nitrate, relative to chloride. Environ. Sci. Technol. 35, 4562-4568.
Sundaray, S.K., 2010. Application of multivariate statistical techniques in hydrogeochemical studies-a case study: Brahmani-Koel River (India). Environ. Monit. Assess. 164, 297-310.
Swartz, C.H., Blute, N.K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., Besancon, J., Islam, S., Hemond, H.F., Harvey, C.F., 2004. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochim. Cosmochim. Acta 68, 4539-4557.
Taiwan Sugar Company, 2006. Analysis and evaluation of the groundwater quality survey in Taiwan area. Water Resource Bureau: Taiwan.
Tseng, W.P., 1977. Effects and dose–response relationships of skin cancer and blackfoot disease with arsenic. Environ. Health Perspect. 19, 109–119.
Tufano, K.J., Reyes, C., Saltikov, C.W., Fendorf, S., 2008. Reductive processes controlling arsenic retention : revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 42, 8283-8289.
USEPA, 1997. Acid digestion of sediments, sledges and soils. EPA 3050b, USEPA, Athens, Georgia, USA (<http://www.epa.gov>).
van Geen, A., Zheng, Y., Cheng, Z., Aziz, Z., Horneman, A., Dhar, R.K., Mailloux, B., Stute, M., Weinman, B., Goodbred, S., Seddique, A.A., Hoque, M.A., Ahmed, K.M., 2006. A transect of groundwater and sediment properties in Araihazar, Bangladesh: further evidence of decoupling between As and Fe mobilization. Chem. Geol. 228, 85-96.
Wang, Y.X., Guo, H.M., Yan, S.L., Wang, R.F., Li, Y.L., 2004. Geochemical evolution of shallow groundwater systems and their vulnerability to contaminants: A case study at Datong Basin, Shanxi province, China; Science Press: Beijing, China, 102 pp. (in Chinese, with English abstract).
Wang, S.W., Liu, C.W., Jang, C.S., 2007. Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Appl. Geochem. 22, 460-467.
Weber, K.A., Urrutia, M.M., Churchill, P.F., Kukkadapu, R.K., Roden, E.E., 2006a. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbial. 8, 100-113.
Weber, K.A., Achenbach, L.A., Coates, J.D., 2006b. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Rev. Microbial. 4, 752-764.
Yang, Y.H., Zhou, F., Guo, H.C., Sheng, H., Liu, H., Dao, X., He, C.J., 2010. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ. Monit. Assess. 170, 407-416.
Zachara, J.M., Fredrickson, J.K., Smith, S.C., Gassman, P.L., 2001. Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochim. Cosmochim. Acta 65, 75-93.
Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H.J., Schlosser, P., Ahmed, K.M., 2004. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19, 201-214.
Zobrist, J., Dowdle, P.R., Davis, J.A., Oremland, R.S., 2000. Mobilization of arsenite by dissimiliatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34, 4747-4753.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27840-
dc.description.abstract本研究進行詳細生物地質化學分析以了解影響台灣西南沿海地區含水層中砷分布特徵及循環。此區地下水主要為鈉-鈣-碳酸氫根型態,碳酸氫根為主要陰離子,地下水中砷濃度最高可達562.7 μg/L,且以三價砷為主。遭受鹽化的水樣集中於淺層含水層並含有高砷濃度,然而統計分析或實驗結果皆無法證明鹽化與高砷濃度之相關性。利用因子分析可將本區地下水水質分為四個主要因子,包含鹽化、鐵還原溶解、砷還原及化學潛勢。黏土礦物為本區地層中砷最主要的儲源,而連續萃取結果指出於扇尾地區固相砷平均分布於不同操作相別,扇央地區則集中於鐵氧化合物中,鐵氧化合物及含砷硫化物為此區最主要含砷化合物。本研究使用的鐵還原菌能同時還原固相砷及鐵化合物,並進一步證實鐵化合物之生物可利用性對於地層中砷釋出的重要性。利用孵育實驗證實,添加有機碳可改變砷與鐵的還原序列,而含砷鐵化合物的螯合溶解為另一種現地環境中造成砷釋出的可能機制。由脫附實驗結果得知,土樣中砷的價數及不同添加陰離子,皆可影響砷的脫附行為,於添加相同濃度時,磷酸根較碳酸氫根造成較多砷脫附至溶液中,但於現地環境中,因碳酸氫根濃度遠高於磷酸根濃度,故碳酸氫根對於砷脫附影響將遠大於磷酸根,此結果也可用於解釋水質分析中砷與鐵濃度之不一致性。總而言之,微生物驅動的鐵化合物溶解為造成此區地下水中高砷濃度之主要原因。利用區別分析所得之結果,可藉由簡單現地量測項目(pH和Eh)可初步評估此區地下水中砷濃度是否超過飲用水標準(10 μg/L)。zh_TW
dc.description.abstractComprehensive biogeochemical studies have been carried out to elucidate the controlling factors on the partition and the cycling of arsenic (As) within coastal aquifers in the southwestern part of Taiwan. Most groundwater samples were characterized as Na-Ca-HCO3 with HCO3- as the dominant anion. Total arsenic (As) concentration, predominantly as As3+, ranged from <1.0-562.7 μg/L. Saline water type, which was mostly concentrated in the uppermost aquifer in the study area, generally retained highly dissolved As concentrations, albeit no correlation was observed among the analyzed parameters and leaching experimental data. Factor analysis proposed a four-factor model, comprising salination, reductive dissolution of Fe/Mn oxyhydroxides, As reduction and chemical potential factor, and explained 89.94% of total variance in groundwater. Clay minerals were evidenced as the main pools for sedimentary As. Sequential extraction data indicated the partitions of As in the distal-fan were distributed evenly, independently of the weakly adsorbed As phase, but high As fractions were concentrated in amorphous and less crystalline Fe hydroxides phase in the mid-fan. Iron oxyhydroxides were regarded as the dominant sinks sorbed As as well as As-bearing sulfides in the well screen level. Stable cultures of iron-reducing bacteria (IRB) were capable of reducing both Fe and As within sediments, and further shed light on the influence of bioavailable Fe minerals. While suspending in a non-sterile, in-situ groundwater, addition of acetate as carbon source would affect the reactive pathways of Fe and As, resulting in the decoupled processes of these two redox couples. At this circumstance, solubilizing Fe(III) accompanied a significant increase of As(III) concentration implicated another release pathway for converting sedimentary As into groundwater during the onset of reducing environment. Desorption behaviors of As were relevant to its valence in the sediments and the co-existence of anions. Although bicarbonate addition resulted in less As desorption than that of phosphate on a molar basis, the contribution of bicarbonate to the total release of As was still greater than phosphate due to the much higher concentration of bicarbonate in groundwater. This result also in part explained the poor correlation between Fe and As concentrations in groundwater. As a consequence, the dissolution of As-related Fe oxyhydroxides mediated by microbial activities was the prerequisite for elevated concentration of As in the subsurface. Two-parameter (pH and Eh) model derived from discriminant analysis can be used for preliminary assessment to determine whether the As concentration exceeds 10 μg/L with simple field measurements in this area.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:23:28Z (GMT). No. of bitstreams: 1
ntu-100-D96622002-1.pdf: 1830616 bytes, checksum: 1d10ebd84f0462c61ddf23feb77ca6c5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Contents V
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
1.1 Study motivation 1
1.2 Literature review 4
1.2.1 Arsenic contamination in the Asia sedimentary basin 4
1.2.2 Release mechanisms of As in groundwater 6
1.2.3 Application of multivariate statistics in assessing groundwater quality 8
1.3 Objectives and framework 9
Chapter 2 Study area 12
Chapter 3 Materials and methods 15
3.1 Sampling 15
3.1.1 Groundwater 15
3.1.2 Core samples 19
3.2 Analytical methods 21
3.2.1 Aqueous phase 21
3.2.2 Solid phase 23
3.3 Microcosm experiments 26
3.3.1 Batch tests of co-existence ions 26
3.3.2 Microorganism experiments 27
3.3.2.1 Source and cultivation of bacterial cultures 27
3.3.2.2 Incubation conditions 29
3.3.2.3 Sampling and analyses 30
3.4 Redox potential calculations 32
3.5 Multivariate analysis 34
3.5.1 Factor analysis (FA) 34
3.5.2 Cluster analysis (CA) 35
3.5.3 Discriminant analysis (DA) 36
Chapter 4 Results and discussion 38
4.1 Hydrochemistry of groundwater 38
4.1.1 General description of aqueous chemistry 38
4.1.2 Distribution of As species and redox potential 41
4.1.3 Factor and cluster analyses 46
4.2 Lithological, mineralogical and geochemical characterization of core samples 53
4.2.1 Sediment characteristics and distribution of elements 53
4.2.2 Geochemical profiles of sedimentary aquifer 61
4.3 Primary sinks of As 69
4.3.1 Implication from sediments 69
4.3.2 Implication from solid profiles of As, Fe and OC 72
4.4 Release mechanisms of As in groundwater 74
4.4.1 Importance of reducing bacteria 74
4.4.2 Effects of salination and anionic competition 82
4.4.3 Implication for in-situ environment 87
4.5 A parsimonious predicting model for the As contamination in groundwater 89
Chapter 5 Conclusions and suggestions 92
5.1 Conclusions 92
5.2 Suggestions 96
References 97
dc.language.isoen
dc.title台灣西南沿海地區地下水砷之生物地化特徵及循環zh_TW
dc.titleBiogeochemical Characterization and Cycling of Arsenic in Groundwater of the Littoral Area in the Southwestern Part of Taiwanen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee王明光,陳主惠,陳瑞昇,林立虹
dc.subject.keyword砷,地下水,還原菌,多變量統計方法,鐵氫氧化合物,zh_TW
dc.subject.keywordArsenic,Groundwater,Reducing bacteria,Multivariate statistical techniques,Iron oxyhydroxides,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2011-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved