請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27816
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳秀熙(Tony Hsiu-Hsi Chen),連倚南(I-Nan Lien) | |
dc.contributor.author | Shin-Liang Pan | en |
dc.contributor.author | 潘信良 | zh_TW |
dc.date.accessioned | 2021-06-12T18:22:11Z | - |
dc.date.available | 2007-09-12 | |
dc.date.copyright | 2007-09-12 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-20 | |
dc.identifier.citation | 1.Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Maryland State Medical Journal 1965;14:61-5.
2.Granger CV, Dewis LS, Peters NC, Sherwood CC, Barrett JE. Stroke rehabilitation: analysis of repeated Barthel index measures. Archives of Physical Medicine and Rehabilitation 1979;60:14-7. 3.Collin C, Wade DT, Davies S, Horne V. The Barthel ADL Index: a reliability study. International Disability Studies 1988;10:61-3. 4.D'Olhaberriague L, Litvan I, Mitsias P, Mansbach HH, D'Olhaberriague L, Litvan I et al. A reappraisal of reliability and validity studies in stroke. Stroke 1996;27:2331-6. 5.Uyttenboogaart M, Stewart RE, Vroomen PC, De Keyser J, Luijckx GJ. Optimizing cutoff scores for the Barthel index and the modified Rankin scale for defining outcome in acute stroke trials. Stroke 2005;36:1984-7. 6.Green J, Forster A, Young J. A test-retest reliability study of the Barthel Index, the Rivermead Mobility Index, the Nottingham Extended Activities of Daily Living Scale and the Frenchay Activities Index in stroke patients. Disability and Rehabilitation 2001;23:670-6. 7.Sangha H, Lipson D, Foley N, Salter K, Bhogal S, Pohani G et al. A comparison of the Barthel Index and the Functional Independence Measure as outcome measures in stroke rehabilitation: patterns of disability scale usage in clinical trials. International Journal of Rehabilitation Research 2005;28:135-9. 8.Bonita R. Epidemiology of stroke. Lancet 339:342-4, 1992. 9.O'Mahony PG, Thomson RG, Dobson R, Rodgers H, James OF, O'Mahony PG et al. The prevalence of stroke and associated disability. Journal of Public Health Medicine 1999;21:166-71. 10.Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 2001;32:1279-84. 11.Bonita R, Solomon N, Broad JB, Bonita R, Solomon N, Broad JB. Prevalence of stroke and stroke-related disability. Estimates from the Auckland stroke studies. Stroke 1997;28:1898-902. 12.Pohjasvaara T, Erkinjuntti T, Vataja R, Kaste M. Comparison of stroke features and disability in daily life in patients with ischemic stroke aged 55 to 70 and 71 to 85 years. Stroke 1997;28:729-35. 13.Bagg S, Pombo AP, Hopman W. Effect of age on functional outcomes after stroke rehabilitation. Stroke 2002;33:179-85. 14.Luk JK, Cheung RT, Ho SL, Li L, Luk JKH, Cheung RTF et al. Does age predict outcome in stroke rehabilitation? A study of 878 Chinese subjects. Cerebrovascular Diseases 2006;21:229-34. 15.Bohannon RW, Lee N, Maljanian R. Postadmission function best predicts acute hospital outcomes after stroke. American Journal of Physical Medicine and Rehabilitation 2002;81:726-30. 16.Macciocchi SN, Diamond PT, Alves WM, Mertz T. Ischemic stroke: relation of age, lesion location, and initial neurologic deficit to functional outcome. Archives of Physical Medicine and Rehabilitation 1998;79:1255-7. 17.Pettersen R, Dahl T, Wyller TB. Prediction of long-term functional outcome after stroke rehabilitation. Clinical Rehabilitation 2002;16:149-59. 18.Alexander MP. Stroke rehabilitation outcome. A potential use of predictive variables to establish levels of care. Stroke 1994;25:128-34. 19.Beloosesky Y, Streifler JY, Burstin A, Grinblat J. The importance of brain infarct size and location in predicting outcome after stroke. Age and Ageing 1995;24:515-8. 20.Johnston KC, Connors AF, Jr., Wagner DP, Haley EC, Jr. Predicting outcome in ischemic stroke: external validation of predictive risk models. Stroke 2003;34:200-2. 21.Miyai I, Blau AD, Reding MJ, Volpe BT. Patients with stroke confined to basal ganglia have diminished response to rehabilitation efforts. Neurology 1997;48:95-101. 22.Pantano P, Formisano R, Ricci M, Di P, V, Sabatini U, Di Pofi B et al. Motor recovery after stroke. Morphological and functional brain alterations. Brain 1996;119:1849-57. 23.Chaudhuri G, Harvey RF, Sulton LD, Lambert RW. Computerized tomography head scans as predictors of functional outcome of stroke patients. Archives of Physical Medicine and Rehabilitation 1988;69:496-8. 24.Chen CL, Tang FT, Chen HC, Chung CY, Wong MK. Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients. Archives of Physical Medicine and Rehabilitation 2000;81:447-52. 25.Miller LS, Miyamoto AT. Computed tomography: its potential as a predictor of functional recovery following stroke. Archives of Physical Medicine and Rehabilitation 1979;60:108-9. 26.Saeki S, Ogata H, Hachisuka K, Okubo T, Takahashi K, Hoshuyama T. Association between location of the lesion and discharge status of ADL in first stroke patients. Archives of Physical Medicine and Rehabilitation 1994;75:858-60. 27.Cifu DX, Lorish TR. Stroke rehabilitation. 5. Stroke outcome. Archives of Physical Medicine and Rehabilitation 1994;75:S56-S60. 28.Dromerick AW, Reding MJ. Functional outcome for patients with hemiparesis, hemihypesthesia, and hemianopsia. Does lesion location matter? Stroke 1995;26:2023-6. 29.Weimar C, Ziegler A, Konig IR, Diener HC. Predicting functional outcome and survival after acute ischemic stroke. Journal of Neurology 2002;249:888-95. 30.Aptaker RL, Roth EJ, Reichhardt G, Duerden ME, Levy CE. Serum albumin level as a predictor of geriatric stroke rehabilitation outcome. Archives of Physical Medicine and Rehabilitation 1994;75:80-4. 31.Carod-Artal FJ, Gonzalez-Gutierrez JL, Herrero JA, Horan T, De Seijas EV. Functional recovery and instrumental activities of daily living: follow-up 1-year after treatment in a stroke unit. Brain Injury 2002;16:207-16. 32.Wade DT, Skilbeck CE, Hewer RL. Predicting Barthel ADL score at 6 months after an acute stroke. Archives of Physical Medicine and Rehabilitation 1983;64:24-8. 33.Mayo NE, Wood-Dauphinee S, Cote R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Archives of Physical Medicine and Rehabilitation 2002;83:1035-42. 34.Musicco M, Emberti L, Nappi G, Caltagirone C, Italian Multicenter Study on Outcomes of Rehabilitation of Neurological Patients. Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Archives of Physical Medicine and Rehabilitation 2003;84:551-8. 35.McNaughton H, Weatherall M, Taylor W, McPherson K. Factors influencing rate of Barthel Index change in hospital following stroke. Clinical Rehabilitation 2001;15:422-7. 36.Musicco M, Emberti L, Nappi G, Caltagirone C, Italian Multicenter Study on Outcomes of Rehabilitation of Neurological Patients. Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Archives of Physical Medicine and Rehabilitation 2003;84:551-8. 37.German Stroke SC. Predicting outcome after acute ischemic stroke: an external validation of prognostic models. Neurology 62(4):581-5, 2004. 38.Pettersen R, Dahl T, Wyller TB. Prediction of long-term functional outcome after stroke rehabilitation. Clinical Rehabilitation 2002;16:149-59. 39.Kalbfleisch JD, Lawless JF. The analysis of panel data under a Markov assumption. Journal of the American Statistical Association 1985;80:863-71. 40.Desmond DW, Moroney JT, Sano M, Stern Y. Mortality in patients with dementia after ischemic stroke. Neurology 2002;59:537-43. 41.Chen CD, Yen MF, Wang WM, Wong JM, Chen TH. A case-cohort study for the disease natural history of adenoma-carcinoma and de novo carcinoma and surveillance of colon and rectum after polypectomy: implication for efficacy of colonoscopy. British Journal of Cancer 2003;88:1866-73. 42.Sheikh K, Brennan PJ, Meade TW, Smith DS, Goldenberg E. Predictors of mortality and disability in stroke. Journal of Epidemiology and Community Health 1983;37:70-4. 43.Kuo HS, Chang HJ, Chou P, Teng L, Chen TH. A Markov chain model to assess the efficacy of screening for non-insulin dependent diabetes mellitus (NIDDM). International Journal of Epidemiology 1999;28:233-40. 44.Cook RJ. A mixed model for two-state markov processes under panel observation. Biometrics 1999;55:915-20. 45.Wu HM, Yen MF, Chen TH-H. SAS macro program for non-homogeneous Markov process in modeling multi-state disease progression. Computer Methods and Programs in Biomedicine 2004;75:95-105. 46.Billard L, Zhao Z. Multiple-stage non-homogeneous Markov models for Acquired Immune Deficiency Syndrome epidemic. Journal of the Royal Statistical Society B 1994;56:673-86. 47.Wu HM, Yen MF, Chen TH-H. SAS macro program for non-homogeneous Markov process in modeling multi-state disease progression. Computer Methods and Programs in Biomedicine 2004;75:95-105. 48.Hsieh HJ, Chen TH, Chang SH. Assessing chronic disease progression using non-homogeneous exponential regression Markov models: an illustration using a selective breast cancer screening in Taiwan. Statistics in Medicine 2002;21:3369-82. 49.Longini IM, Jr., Hudgens MG, Halloran ME, Sagatelian K. A Markov model for measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic HIV vaccines. Statistics in Medicine 1999;18:53-68. 50.Lin S, Thompson E, Wijsman E, Lin S, Thompson E, Wijsman E. An algorithm for Monte Carlo estimation of genotype probabilities on complex pedigrees. Annals of Human Genetics 1994;58:343-57. 51.Smith A, Wakefield J, Smith A, Wakefield J. The hierarchical Bayesian approach to population pharmacokinetic modelling. International Journal of Bio-Medical Computing 1994;36:35-42. 52.Raab GM, Yang S, Allardice G, Goldberg DJ, Mcmenamin J, Raab GM et al. Modelling human immunodeficiency virus infection and acquired immune deficiency syndrome cases in Scotland: data sources, prior information and Bayesian estimation. Journal of Royal Statistical Society-Series-A 1998;161:367-84. 53.Ayres KL, Balding DJ. Measuring gametic disequilibrium from multilocus data. Genetics 2001;157:413-23. 54.Sharples LD. Use of the Gibbs sampler to estimate transition rates between grades of coronary disease following cardiac transplantation. Statistics in Medicine 1993;12:1155-69. 55.Welton NJ, Ades AE. Estimation of Markov Chain Transition Probabilities and Rates from Fully and Partially Observed Data: Uncertainty Propagation, Evidence Synthesis, and Model Calibration. Medical Decision Making 2005;25:633-45. 56.Chen TH, Kuo HS, Yen MF, Lai MS, Tabar L, Duffy SW. Estimation of sojourn time in chronic disease screening without data on interval cases. Biometrics 2000;56:167-72. 57.Duffy SW, Chen HH, Tabar L, Day NE. Estimation of mean sojourn time in breast cancer screening using a Markov chain model of both entry to and exit from the preclinical detectable phase. Statistics in Medicine 1995;14:1531-43. 58.Peltonen M, Stegmayr B, Asplund K. Time trends in long-term survival after stroke: the Northern Sweden Multinational Monitoring of Trends and Determinants in Cardiovascular Disease (MONICA) study, 1985-1994. Stroke 29(7):1358-65, 1998. 59.Ocana-Riola R, Ocana-Riola R. Non-homogeneous Markov processes for biomedical data analysis. Biometrical Journal 2005;47:369-76. 60.Dunlop DD, Manheim LM, Sohn MW, Liu X, Chang RW. Incidence of functional limitation in older adults: the impact of gender, race, and chronic conditions. Archives of Physical Medicine and Rehabilitation 2002;83:964-71. 61.Sung M, Soyer R, Nhan N. Bayesian analysis of non-homogeneous Markov chains: Application to mental health data. Statistics in Medicine 2007. 62.Billard L, Zhao Z. Multiple-stage non-homogeneous Markov models for Acquired Immune Deficiency Syndrome epidemic. Journal of the Royal Statistical Society B 1994;56:673-86. 63.Longini IM, Jr., Hudgens MG, Halloran ME, Sagatelian K, Longini IMJ, Hudgens MG et al. A Markov model for measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic HIV vaccines. Statistics in Medicine 1999;18:53-68. 64.Craig BA, Fryback DG, Klein R, Klein BE, Craig BA, Fryback DG et al. A Bayesian approach to modelling the natural history of a chronic condition from observations with intervention. Statistics in Medicine 1999;18:1355-71. 65.Ziegel ER, Gorman JW. Kinetic Modelling with Multiresponse Data. Technometrics 1980;22:139-51. 66.Bates DM, Watts DG. Nonlinear Regression Analysis and Its Applications. New York: John Wiley and Sons; 1988. 67.Viitanen M, Eriksson S, Asplund K, Wester PO, Winblad B. Determinants of long-term mortality after stroke. Acta Medica Scandinavica 1987;221:349-56. 68.Martin BJ, Yip B, Hearty M, Marletta S, Hill R. Outcome, functional recovery and unmet needs following acute stroke. Experience of patient follow up at 6 to 9 months in a newly established stroke service. Scottish Medical Journal 2002;47:136-7. 69.Elneihoum AM, Goransson M, Falke P, Janzon L. Three-year survival and recurrence after stroke in Malmo, Sweden: an analysis of stroke registry data. Stroke 1998;29:2114-7. 70.Vemmos KN, Bots ML, Tsibouris PK, Zis VP, Takis CE, Grobbee DE et al. Prognosis of stroke in the south of Greece: 1 year mortality, functional outcome and its determinants: the Arcadia Stroke Registry. Journal of Neurology, Neurosurgery and Psychiatry 2000;69:595-600. 71.Loor HI, Groenier KH, Limburg M, Schuling J, Meyboom-de Jong B. Risks and causes of death in a community-based stroke population: 1 month and 3 years after stroke. Neuroepidemiology 1999;18:75-84. 72.Salgado AV, Ferro JM, Gouveia-Oliveira A. Long-term prognosis of first-ever lacunar strokes. A hospital-based study. Stroke 1996;27:661-6. 73.Dighe MS, Aparasu RR, Rappaport HM. Factors predicting survival, changes in activity limitations, and disability in a geriatric post-stroke population. Gerontologist 1997;37:483-9. 74.Lee TK, Chan KW, Huang ZS, Ng SK, Lin RT, Po HL et al. Effectiveness of low-dose ASA in prevention of secondary ischemic stroke, the ASA Study Group in Taiwan. Thrombosis Research 1997;87:215-24. 75.Wu TH, Chen HH, Lee TK. Factors affecting the first recurrence of noncardioembolic ischemic stroke. Thrombosis Research 2000;97:95-103. 76.Holloway RG, Benesch CG, Burgin WS, Zentner JB. Prognosis and decision making in severe stroke. JAMA 2005;294:725-33. 77.Salgado AV, Ferro JM, Gouveia-Oliveira A. Long-term prognosis of first-ever lacunar strokes. A hospital-based study. Stroke 1996;27:661-6. 78.Chen TH, Kuo HS, Yen MF, Lai MS, Tabar L, Duffy SW. Estimation of sojourn time in chronic disease screening without data on interval cases. Biometrics 2000;56:167-72. 79.Kessing LV, Olsen EW, Andersen PK. Recurrence in Affective Disorder: Analyses with Frailty Models. American Journal of Epidemiology 1999;149:404-11. 80.Lindesy JK. Chapter 3, Likelihood. Parametric Statistical Inference. Oxford: Clarendon Press; 2006. 81.Spiegelhalter DJ, Thomas A, Best NG, Gilks WR. BUGS: Bayesian inference using Gibbs sampling. Version 0.50. Cambridge, United Kingdom: MRC Biostatistics Unit; 1996. 82.Gilks WR, Spiegelhalter DJ. A language and program for complex Bayesian modeling. Statistician 1994;43:169-78. 83.Spiegelhalter DJ, Best NG, Carlin BP, Linde AD. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B 2002;64:583-640. 84.Johnson VE. A Bayesian chi-square test for goodness of fit. Annals of Statistics 2004;32:2361-84. 85.Aguirre-Hernandez R, Farewell VT. A Pearson-type goodness-of-t test for stationary and time-continuous Markov regression models. Statistics in Medicine 2002;21:1899-911. 86.Chen THH, Chiu YC, Luh DL, Yen MF, Wu HM, Chen LS. Taiwan Community-based Integrated Screening Group. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer 2004;100:1734-43. 87.U.S. Department of health and human services. JNC 7 Express. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. 2003. NIH publication. 88.SAS institue Inc. SAS language: reference, version 8. NC, Cary: 1999. 89.Sawaki L, Yaseen Z, Kopylev L, Cohen LG. Age-dependent changes in the ability to encode a novel elementary motor memory. Annals of Neurology 2003;53:521-4. 90.Patel MD, Coshall C, Rudd AG, Wolfe CD. Cognitive impairment after stroke: clinical determinants and its associations with long-term stroke outcomes. Journal of the American Geriatrics Society 2002;50:700-6. 91.Wang SL, Pan WH, Lee MC, Cheng SP, Chang MC. Predictors of survival among elders suffering strokes in Taiwan: observation from a nationally representative sample. Stroke 2000;31:2354-60. 92.Gordon NF, Gulanick M, Costa F, Fletcher G, Franklin BA, Roth EJ et al. Physical activity and exercise recommendations for stroke survivors: an American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Stroke 2004;35:1230-40. 93.Idler EL, Russell LB, Davis D. Survival, functional limitations, and self-rated health in the NHANES I Epidemiologic Follow-up Study, 1992. First National Health and Nutrition Examination Survey. American Journal of Epidemiology 2000;152:874-83. 94.Woo J, Yuen YK, Kay R, Nicholls MG. Survival, disability, and residence 20 months after acute stroke in a Chinese population: implications for community care. Disability and Rehabilitation 1992;14 :36-40. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27816 | - |
dc.description.abstract | 目的
對於初次中風患者功能的恢復過程很少有研究探討恢復至不同功能狀態所需之時間及預測因子。本論文目的為: (1) 探求初次中風後患者功能隨時間恢復的過程以及預後因子。(2) 提出使用以貝氏法分析含有隨機效應的多階段馬可夫模型以探求初次中風病人的功能恢復過程,量化功能恢復所需之時間與功能轉移機率,並處理個體間異質性以及估計與預測的不確定性,建構以機率為基礎的動態功能恢復模型。(3)探討非均質性馬可夫模型在生物醫學的應用,並發展新的分析方法,包括應用Kologormov differential equation與應用compartmental analysis以處理非均質性的時間連續性馬可夫模型。 材料與方法 (1) 資料來源 (A) 中風後功能恢復過程的資料是來自先前一個多中心隨機對照試驗。其中一家大型醫學中心對於其所收納111位中風病患進行功能狀態的長期追蹤。(B)高血壓資料取自基隆地區的整合式篩檢計畫(KCIS),該樣本涵蓋18,120名50歲以上第一次於1999年及2002年之間參KCIS者。 (2)分析模式 對於中風後功能長期追蹤的資料,先使用線性混合模型進行時間相依的分析,以瞭解功能隨時間的變化。但該線性混合模型僅能描繪二階段之變化,故進一步使用多階段均質馬可夫模型分析中風後功能進步的動態過程,並以貝氏方法加入隨機效應以處理個體間異質性,並有效解決估計參數與預測時的不確定性。其次再以貝氏法結合Kologormov differential equation分析連續時間非均質馬可夫模型以應用於中風後的功能恢復過程。最後發展以分室分析(compartmental analysis)為基礎,具有高運算效率的連續時間非均質馬可夫模型之分析方法,並應用於大型資料庫以建立高血壓自然史。 結果 (1) 中風後功能恢復的動態過程 首先以線性混合模型分析中風後功能恢復的預後因子,結果與功能恢復的顯著預後因子包括年齡、初始功能狀態、時間、梗塞位置、梗塞大小。其次,應用貝氏法分析含有隨機效應的時間均質性馬可夫迴歸模型,發現在較差功能到中間功能(PFS->MFS)的轉移機率方面,年齡僅有邊界顯著的效應;而在中間功能到良好功能(MFS->GFS)轉移機率70歲以下病患的轉移速率為70歲以上病患的4.5倍。小於1 cm的梗塞在PFS->MFS轉移上相對於大於1cm者有10倍的轉移速率,但梗塞大小在MFS->GFS的轉移則無顯著效果。應用多階段功能恢復模型可以估計各階段之間功能恢復所需要的時間,由PFS進步到GFS所需要的時間(即total recovery time)平均為3.1個月。如果考慮預後因子年齡與梗塞大小,其平均total recovery time的範圍為1到11個月。此外,並且可以將total recovery time分解成PFS->MFS與MFS->GFS兩段,以PFS->MFS而言,其平均recovery time範圍為一周到四個月,而以 MFS->GFS而言,其平均 recovery time範圍為一至七個月,取決於年齡與梗塞大小。我們並依據年齡及梗塞大小分類的4個族群中,不同時間的轉移機率估計。結果亦顯示梗塞大小為PFS->MFS轉移的重要因素,而年齡主要影響MFS->GFS的轉移。 另外,本研究亦發展非均質性馬可夫模型應用於中風的功能恢復,以貝氏法與Kologormov differential equation分析, 由PFS->MFS轉移速率以Weibull分佈呈現,其shape parameter估計為0.45 (95% CI: 0.35-0.61)這表示PFS->MFS轉移速率會顯著的隨著時間而下降,而其它預後因子對於功能轉移的作用與均質性模型所估計的結果接近,年齡主要影響MFS->GFS,而梗塞大小主要影響PFS->MFS的轉移。 (2)貝氏分析與Kologormov differential equation分析具有可逆性轉移之連續時間非均質性馬可夫模型 以兒童戒煙之行為治療為例,轉移速率的Weibull分佈的shape參數r的估計值為0.65 (95% CI:0.41-0.92),由於r < 1,表示轉移速率會隨著時間而降低。此外,高危險群的學童從抽菸到戒菸的轉移機率較低。 (3)以分室分析為基礎發展高運算效率的非均質性馬可夫模型的分析法,應用於高血壓自然史的分析 結果由正常進展至高血壓前期的發生率之Weibll分佈的shape parameter在每一個年齡性別分層下都顯著的大於1,顯示高血壓的發生率隨年齡增加而增加。此外,我們發現由高血壓前期至第一期高血壓的轉移速率隨年齡層增加而增加,顯示年紀大的個案有較大的危險性發生高血壓。另一方面,由高血壓前期返回正常血壓的轉移速率隨年紀增加而減少。 結論 本研究建立中風後功能恢復的多階段模型,可以定量各預後因子在中風後功能逐步恢復的過程的角色,並且可以估計功能恢復所需要的時間以及預測功能恢復的機率,這些訊息對於中風相關的病生理研究以及臨床決策等都有很大的應用價值。本研究並有下列分析方法的創新發展:(1)將貝氏分析應用於多階段模式,以處理個體間異質性以及估計與預測的不確定性。(2)應用Kologormov differential equation與發展基於compartmental analysis的分析方法,有效處理可逆性的時間連續非均質馬可夫模型,並且有較高的運算效率,這將有助於擴大非均多階段質馬可夫模型在生物醫學的應用。 | zh_TW |
dc.description.abstract | Purpose
Few attempts have been made to model the time needed for functional recovery after stroke and the related prognostic factors for functional outcomes. This study aimed to (1) investigate the dynamic process and predictors of function recovery after first-time stroke. (2) propose a multistate Markov regression model with random effects under the Bayesian framework to model the step-by-step process of functional recovery, to quantify the dwelling time and probabilities of functional transitions, and to tackle the individual heterogeneity and uncertainty in estimation and prediction. (3) develop novel analytic methods for non-homogeneous Markov process, including the application of Kologromov differential equations and compartmental analysis. These approaches are flexible and computationally efficient for modeling non-homogeneous Markov process in biomedical research. Material and methods (1)Data source The stroke data used in this study were derived from an already completed randomized controlled trial for stroke. A total of 111 patients with first stroke were recruited between October 1992 and April 1995. A series of Barthel index of each patient was assessed at six time points after stroke. The hypertension data used in this study were part of the Keelung Community-based Integrated Screening (KCIS) program. This sample represented 18120 subjects aged greater than 50 years at the time of first participating KCIS between 1999 and 2002. (2) Analytic methods For modeling the dynamic process of functional recovery after stroke, the generalized linear mixed model was first used for time-dependent analyses. A three state homogeneous Markov regression model with random effects was then developed to estimate transition parameters and mean time to functional recovery, and to predict the probability of functional recovery by using Bayesian approach with Gibbs sampling technique. We further applied Kolmogorov differential equation and compartmental analysis to modeling continuous time non-homogeneous Markov process. Results (1)Dynamic process of functional recovery after stroke. The mean total recovery time to good functional state (GFS) was 3.1 months for patients with poor functional state (PFS) at baseline and 1.3 months for patients with moderate functional state (MFS) at baseline. Age predominantly affected the probabilities of MFS-to-GFS transitions, younger patients had 4.5-fold faster transition; but age had only borderline effects on PFS-to-MFS transitions. In contrast, infarct size exerted substantial effects on PFS-to-MFS transitions; small-size infarct was correlated with a 10-fold higher transition rate, whereas only a borderline effect on MFS-to-GFS transitions was found. The baseline functional state significantly affected the MFS-to-GFS transitions. The results of non-homogeneous Markov regression analysis showed that the estimated shape parameter of the Weibull distribution for PFS-to-MFS transition was 0.45 (95% CI: 0.35-0.61). This suggests that the PFS-to-MFS transition rate decreased with time. (2)Non-homogeneous Markov model with Kologromov differential equation solution The estimated shape parameter of the Weibull distribution for the transition rate was 0.65 (95% CI: 0.41-0.92). The shape parameter less than one suggests that the transition rate decreases with time and reflects the non-homogeneous property. (3)Non-homogeneous Markov process for modeling natural history of hypertension using compartmental analysis The estimated shape parameter in each age subgroup was significantly higher than one, indicating that the transition rate from normal to prehypertension increases with time. The transition rate from prehypertension to stage 1 hypertension showed a tendency to increase with age. In contrast, the regression rate from prehypertension to normal tended to decline with age. Conclusions We developed a multi-state Markov random effects model under the Bayesian framework, and used it to analyze the dynamic process of functional recovery after stroke. The mean time to functional recovery to different functional states can be estimated and the effect of clinical predictors on step-by-step functional transitions can be precisely quantified. In addition, two novel analytic methods for non-homogeneous Markov process on the basis of Kologromov differential equations and compartmental analysis were proposed. The application of the methodology developed in the present study can be extended to other application fields in biomedical sciences. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:22:11Z (GMT). No. of bitstreams: 1 ntu-96-F90846012-1.pdf: 1171603 bytes, checksum: da749e5bc2ec0957664f00b925cdb568 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
I. 前言 6 II. 文獻回顧 7 II.1. 中風後功能恢復的預後因子 7 II.1.1. 中風後功能狀態的測量 7 II.1.2. 中風之後失能的盛行率 8 II.1.3. 中風後功能恢復的預後因子 8 II.2. 分析長期追蹤資料的方法學 10 II.2.1. 臨床的問題與需求 10 II.2.2. 廣義線性混和模型(generalized linear mixed model, GLMM) 10 II.2.3. 廣義估計方程式 (generalized estimating equation, GEE) 11 II.2.4. 多階段模型應用在長期追蹤資料分析 11 II.2.5. 時間非均質性多階段馬可夫過程(time non-homogeneous multistate model, NHMP) 14 II.3. 缺血性中風後的失能對於長期存活的影響 17 III. 材料與方法 18 III.1. 初次缺血性中風後功能狀態長期追蹤資料分析 18 III.1.1. 資料來源 18 III.1.2. 應用線性混和模型分析初次梗塞中風其功能表現的預後因子 19 III.1.3. 應用貝氏法分析含有隨機效應的時間均質性馬可夫迴歸模型:初次梗塞中風其功能表現的預後因子 19 III.2. 連續時間的非均質馬可夫過程(CONTINUOOUS TIME NHMP)的建構與分析 24 III.2.1. 以貝氏法與FKDE微分方程組分析進行性(progressive)之連續時間NHMP:以中風後功能恢復為例 24 III.2.2. 以貝氏分析與FKDE微分方程分析具有可逆性(reversible)轉移之連續時間NHMP:以兒童戒煙之行為治療為例 28 III.2.3. 以分室模型分析(compartmental analysis)估計具有可逆性轉移之連續時間NHMP:高血壓自然史的應用 31 III.3. 初次中風後的失能對於長期存活的影響 36 IV. 結果 37 IV.1. 初次缺血性中風後功能狀態長期追蹤資料分析 37 IV.1.1. 以線性混合模型分析中風後功能恢復的預後因子 37 IV.1.2. 應用貝氏法分析含有隨機效應的時間均質性馬可夫迴歸模型 37 IV.2. 進行性與可逆性的連續時間NHMP之分析 39 IV.2.1. 以貝氏法與FKDE微分方程組分析進行性之連續時間NHMP:以中風後功能恢復為例 39 IV.2.2. 以貝氏分析與FKDE微分方程組分析具有可逆性轉移之連續時間NHMP:以兒童戒煙之行為治療為例 40 IV.2.3. 以分室分析(compartmental analysis)估計具有可逆性轉移之連續時間NHMP:高血壓自然史的應用 41 IV.3. 初次中風後的失能的減少對於長期存活的影響 42 V. 討論 43 V.1. 以含有隨機效應的多階段馬可夫模式分析中風後功能恢復過程 43 V.1.1. 含有隨機效應的多階段模型在中風功能恢復的應用價值 43 V.1.2. 使用貝式法在多階段分析的優點 44 V.1.3. 預後因子的作用討論 45 V.1.4. 研究限制 45 V.2. 進行性與可逆性的連續時間PARAMETRIC NHMP之建構 45 V.2.1. 以Forward Kolmogorov differential equation(FKDE)於Bayesian架構下分析parametric NHMP 46 V.2.2. 以compartmental analysis分析parametric NHMP 47 V.3. 初次中風後的失能的減少對於長期存活的影響 48 VI. 結論 49 VII. 參考文獻 50 VIII. 圖 67 IX. 表 80 圖目錄 圖 1:中風區域的分類,包括 ANTERIOR CEREBRAL ARTERY TERRITORY, MIDDLE CEREBRAL ARTERY TERRITORY, POSTERIOR CEREBRAL ARTERY TERRITORY, BASAL GANGLION, CORONA RADIATA, THALAMUS, AND BRAIN STEM. 67 圖 2:中風後功能恢復的多階段轉移模型圖說 68 圖 3: 無隨機效應的三階段馬可夫功能轉移模型之ACYCLIC GRAPHIC MODEL 69 圖 4:含有隨機效應的三階段馬可夫功能轉移模型之ACYCLIC GRAPHIC MODEL 70 圖 5:中風後功能狀態隨在各時間點的分佈 71 圖 6:在不同年齡與梗塞大小分組估算由不良功能(PFS)到較佳功能狀態的轉移機率 72 圖 7:在不同年齡與梗塞大小分組估算由中間功能(MFS)到良好功能狀態(GFS)的轉移機率 73 圖 8:在不同年齡與梗塞大小分組估算由不良功能(PFS)到較佳功能狀態的轉移機率分佈。 74 圖 9: 估計的轉移速率,由狀態2 (目前吸煙) 到狀態 3 (戒煙) 75 圖 10:估計的高危險群的轉移機率,由狀態1 (未曾吸煙) 到狀態 2或3 (曾經吸煙) 76 圖 11:估計的低危險群轉移機率,由狀態1 (未曾吸煙) 到狀態 2或3 (曾經吸煙) 77 圖 12: 由正常到各血壓狀態的三年轉移機率 78 圖 13: 依照巴氏量表進步分數分組的存活曲線 79 表目錄 表 1:巴氏量表 80 表 2: 在各時間點的巴氏量表,以平均值(標準差)表示 81 表 3: 以線性混和模型分析影響功能表現的預後因子 82 表 4:以線性混和模型分析影響功能表現的預後因子,不包括基礎的巴氏量表值. 83 表 5: 影響中風後各功能狀態之間轉移速率的單因子分析 84 表 6: 影響中風後功能轉移速率的多變項因子分析 85 表 7: 含有隨機效應的指數迴歸分析結果 86 表 8: 比較固定效應與隨機效應模型的DIC 87 表 9: 依據預後因子分組估計的功能恢復時間(月) 88 表 10: 使用不含隨機效應的非均質馬可夫模型分析影響中風後功能轉移的預後因子 89 表 11:使用含隨機效應的非均質馬可夫模型分析影響中風後功能轉移的預後因子 90 表 12: 比較各種中風功能恢復的多階段模型的DIC與BAYESIAN CHI-SQUARE 統計值 91 表 13:使用數種非均質馬可夫模型分析戒煙行為介入的資料 92 表 14: 比較戒煙研究之數種非均質馬可夫模型的DIC值 93 表 15: 各種轉移的觀察值與預測值之比較 94 表 16: 高血壓狀態的分佈,依照JNC 7 的分類方式,KCIS 1999-2002 95 表 17: 高血壓自然史轉移參數之估計結果 96 表 18: 由PREHYPERTENSION進行到STATE 1 HYPERTENSION的平均停留時間 97 表 19: 各年齡與性別分層的DEVIANCE STATISTICS 98 表 20: 影響缺血性中風後的長期存活的單因子分析 99 表 21:影響缺血性中風後的長期存活的多因子分析 100 | |
dc.language.iso | zh-TW | |
dc.title | 多階段模型於中風患者功能恢復的應用 | zh_TW |
dc.title | Application of Multistate Model to Functional Recovery in Patients with Stroke | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.advisor-orcid | ,連倚南(lieninan@ntuh.gov.tw) | |
dc.contributor.oralexamcommittee | 戴政(John Jen Tai),吳淑瓊(Shwu-Chong Wu),張淑惠(Shu-Hui Chang),王顏和(Yen-Ho Wang),王亭貴(Tyng-Guey Wang) | |
dc.subject.keyword | 馬可夫鍊,隨機過程,貝式理論,蒙地卡羅方法,日常生活活動,腦中風,危險因子, | zh_TW |
dc.subject.keyword | Markov Chains,Stochastic Processes,Bayes Theorem,Monte Carlo Method,Activities of Daily Living,Cerebrovascular Accident,Risk factors, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-21 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。