請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27766
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃漢邦 | |
dc.contributor.author | Jia-Yang Wu | en |
dc.contributor.author | 吳佳洋 | zh_TW |
dc.date.accessioned | 2021-06-12T18:19:27Z | - |
dc.date.available | 2007-09-03 | |
dc.date.copyright | 2007-09-03 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-27 | |
dc.identifier.citation | [1] C. K. Ahn, M. C. Lee, and S. J. Go, “Development of a Biped Robot with Toes to Improve Gait Pattern,” Proceedings of the 2003 IEEE/ASME Intl. Conf. on Advanced Intelligent Mechatronics, Kobe, Japan, pp. 729-734, July 20-24, 2003.
[2] K. Akachi, K. Kaneko, and N. Kanehira, “Development of Humanoid Robot HRP-3P,” Proceedings of 2005 5th IEEE-RAS Intl. Conf. on Humanoid Robots, pp. 50-55, 2005. [3] S. Aoi and K. Tsuchiya, “Locomotion Control of a Biped Robot Using Nonlinear Oscillators,” Autonomous Robots, Vol. 19, No. 3, pp. 219-232, 2005. [4] K. Asa, K. Ishimura, and M. Wada, “Adaptive Behavior to Environment of a Humanoid Robot with CPG,” SICE Annual Conf., Sapporo, Japan, pp. 208-213, Aug. 4-6, 2004. [5] S. Behnke, “Human-Like Walking using Toes Joint and Straight Stance Leg,” 3rd Intl. Symposium on Adaptive Motion in Animals and Machines, Ilmenau, Germany, 2005. [6] T. F. Chan and R. V. Dubey, “A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators,” IEEE Trans. On Robotics and Automation, Vol. 11, No. 2, pp. 286-292, April 1995. [7] E. Choong, C. M. Chew, A. N. Poo, and G.. S. Hong, “Mechanical Design of an Anthropomorphic Bipedal Robot,” HNICEM Intl. Conf., Manila, Philippines, Mar. 27-30, 2003. [8] E. V. Cuevas, D. Zaldivar, and R. Rojas, “Bipedal Robot Description,” Techanical Report B-04-19, Jan. 12, 2005. [9] K. Demura, N. Tachi, T. Maekawa, and T. Ueno, “KENSEI-chan: Design of a Humanoid for Running,” RoboCup2001, LANI2377, pp. 331-336, 2002. [10] E. R. Dunn and R.D. Howe, “Foot Placement and Velocity Control in Smooth Bipedal Walking,” Proceedings of the 1996 IEEE Intl. Conf. on Robotics and Automation, Vol. 1, pp. 578-583, April 1996. [11] G. Endo, J. Morimoto, J. Nakanishi, and G. Cheng, “An Empirical Exploration of a Neural Oscillator for Biped Locomotion Control,” Proceedings of the 2004 IEEE Intl. Conf. on Robotics and Automation, New Orleans, LA, pp. 3036-3042, April 2004. [12] G. Endo, J. Nakanishi, J. Morimoto, and G. Cheng, “Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO,” Proceedings of the 2004 IEEE Intl. Conf. on Robotics and Automation, Barcelona, Spain, pp. 596-602, April 2005. [13] B. Espiau, “BIP: A Joint Project for the Development of an Anthropomorphic Biped Robot,” ICAR ‘97, Monterey, CA, pp. 267-272, July 7-9, 1997. [14] A. Fujii, N. Saito, K. Nakahira, and A. Ishiguro, “Generation of an Adaptive Controller CPG for a Quadruped Robot with Neuromodulation Mechanism,” Proceedings of the 2002 IEEE/RSJ Intl. Conf. on the Intelligent Robots and Systems, EPFL, Lausanne, Switzerland, pp. 2619-2624, Oct. 2002. [15] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust Biped Walking with Active Interaction Control between Foot and Ground,” Proceedings of the 1998 IEEE Intl. Conf. on Robotics and Automation, vol. 3, pp. 2030-2035, May 1998. [16] K. Fujiwara, F. Kanehiro, S. Kajita, K. Yokoi, H. Saito, K. Harada, K. Kaneko, and H. Hirukawa, “The First Human-size Humanoid that can Fall Over Safely and Stand-up Again,” Proceedings of the 2003 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 1920-1926, Oct. 2003. [17] Y. Fukuoka, and H. Kimura, “Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts,” The Intl. Journal of Robotics Research, Vol. 22, No. 3-4, pp. 187-202, Mar.-April, 2003. [18] A. Goswami, “Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point,” Intl. Journal of Robotics Research, Vol. 18, No. 6, pp. 523-533, 1999. [19] K. Hirai, “Current and Future Perspective of Honda Humanoid Robot,” Proceedings of the 1997 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 500-508, 1997. [20] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of Honda Humanoid Robot,” Proceedings of the 1998 IEEE Intl. Conf. on Robotics and Automation, Leuven, Belgium, pp. 1321-1326, May 1998. [21] H. P. Huang and C. P. Liu, “A Novel Trajectory Optimization and Workspace Boundary Singularity Solution for Industrial Robots,” Proceedings of Automation the Eighth International Conference on Automation Technology Conference, Taichung, Taiwan, pp. 1-6, 2005. [22] Q. Huang and K. Yokoi, “Balance Control of a Biped Robot Combining Off-line Pattern with Real-time Modification,” Proc. IEEE Intl. Conf. on Robotics and Automation, pp. 3346-3352, 2000. [23] T. W. In and P. Vadakkepat, “Hybrid Controller for Biped Gait Generation,” 2nd Intl. Conf. on Autonomous Robots and Agents, Palmerston North, New Zealand, pp. 452-457, Dec. 13-15, 2004. [24] S. F. Ip, “Development of a Micromanipulator with Multiple Degrees of Freedom,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, June, 2006. [25] S. Jiang, J. Cheng, and J. Chen, “Design of Central Pattern Generator for Humanoid Robot Walking Based on Multi-objective GA,” Proceedings of the 2000 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Takamatsu, Japan, Vol.3, pp. 1930-1935, Oct. 31-Nov. 5, 2000. [26] S. Jiang and F. Nagashima, “Neural Locomotion Controller Design and Implementation for Humainoid Robot HOAP-1,” Proceeding of the 20th Annual Conf. of the Robotics Society of Japan2002, Osaka, Japan, Oct. 12-14, 2002. [27] S. Kagami, K. Nishiwaki, J. Kuffner, K. Okada, Y. Kuniyoshi, M. Inaba, and H. Inoue, “Low-level Autonomy of the Humanoid Robots H6 & H7,” Robotics Research, STAR, pp. 83-97, 2003. [28] S. Kagami, M. Mochimaru, Y. Ehara, N. Miyata, K. Nishiwaki, T. Kanade, and H. Inoue, “Measurement and Comparison of Human and Humanoid Walking,” Proceedings 2003 IEEE Intl. Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan, pp. 918-922, July 16-20, 2003. [29] S. Kajita, F. Kanehiro, and K. Kaneko, “Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum,” Proceedings of the 1993 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, vol. 2, pp. 1644-1650, July 1993. [30] K. Kaneko, S. Kajita, F. Kanehiro, K. Yokoi, K. Fujiwara, H. Hirukawa, T. Kawakaki, M. Hirata, and T. Isozumi, “Design of Advanced Leg Module for Humanoid Robotics Project of METI,” Proceedings of the 2002 IEEE, International Conference on Robotics & Automation, Washington, DC, pp. 38-45, May 2002 [31] K. Kaneko, F. Kamehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, “Design and Prototype Humanoid Robotics Platform for HRP,” Proceedings of the 2002 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, EPFL, Lausanne, Switzerland, pp. 2431-2436, Oct. 2002. [32] J. Y. Kim, I. W. Park, J. Lee, M. S. Kim, B. K. Cho, and J. H. Oh, “System Design and Dynamic Walking of Humanoid Robot KHR-2,” Proceedings of the 2005 IEEE Intl. Conf. on Robotics and Automation, Barcelona, Spain, pp. 1443-1448, April 2005. [33] K. Koganezawa and O. Matsumoto, “Active/Passive Hybrid Walking by the Biped Robot TOKAI ROBO-HABILIS 1,” Proceedings of the 2002 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, EPFL, Lausanne, Switzerland, pp. 2461-2466, Oct. 2002. [34] M. Kumagai and T. Emura, “Sensor-Based Walking of Human Type Biped Robot That Has 14 Degree of Freedoms,” Proceedings of the 4th. Annual Conf. on Mechatronics and Machine Vision in Practice, pp. 112-117, 1997. [35] S. Kuriyama, Y. Kurihara, and T. Kaneko, “Adaptive Gait Generation via Physiological Controls,” Proceedings of the 14th. Conf. on Computer Animation, pp. 42-51, Nov. 7-8, 2001. [36] Q. Li, A. Takanishi, and I. Kato, “A Biped Walking Robot Having a ZMP Measurement System Using Universal Force-Moment Sensors,” IEEE/RSJ Intl. Workshop on Intelligent Robots and Systems IROS ’91, Osaka, Japan, pp. 1568-1573, Nov. 3-5, 1991. [37] H. O. Lim, Y. Ogura, and A. Takanishi, “Mechanism and Motion of New Biped Leg Machine,” ICCAS2005, Gyeonggi-Do, Korea, June 2-5, 2005. [38] H. O. Lim, S. A. Setiawan, and A. Takanishi, “Position-based Impedance Control of a Biped Humanoid Robot,” Advanced Robotics, Vol. 18, No. 4, pp. 415-435, 2004. [39] H. T. Lin, “Mechanical Design and Control of the Humanoid Robot Arm,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, June, 2006. [40] S. W. Lin, “Design and Develop A Robotic Manipulator for Simulating Translational Mobilization Technique,” Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, 2003. [41] L. Liu, M. Zhao, D. Lin, J. Wang, and K. Chen, “Gait Designing of Biped Robot according to Human Walking Based on Six-axis Force Sensors,” Proceedings 2003 IEEE Intl. Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan, pp, 360-365, July 16-20, 2003. [42] K. Loffler, M. Gienger, and F. Pfeiffer, “Sensors and Control Concept of Walking ‘Johnnie’,” The Intl. Journal of Robotics Research, Vol. 22, No. 3-4, pp. 229-239, April 2003. [43] O. Masanori, “Robot Device, Information Processing Method, and Program,” Sony Co., No.EP1609568, Dec. 2005. [44] K. Matsuoka, “Sustained Oscillations Generated by Mutually Inhibiting Neurons with Adaptation,” Biol. Cybern., Vol. 52, pp. 367-376, 1985. [45] K. Matsuoka, “Mechanisms of Frequency and Pattern Control in the Neural Rhythm Generators,” Biol. Cybern., Vol. 56, pp. 345-353, 1987. [46] S. Miyakoshi, G. Taga, Y. Kuniyoshi, and A. Nagakubo, “Three Dimensional Bipedal Stepping Motion using Neural Oscillators - Towards Humanoid Motion in the Real World,” Proceedings of the 1998 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Victoria, B. C., Canada, pp. 84-89, Oct. 1998. [47] Y. Nakamura and H. Hanafusa, “Inverse Kinematics Solutions with Singularity Robustness for Robot Manipulator Control,” ASME Journal of Dynamic Systems, Measurement and Control, 108, pp. 163-171, 1986. [48] Y. Nakamura, T. Mori, and S. Ishii, “Natural Policy Gradient Reinforcement Learning for a CPG Control of a Biped Robot,” Lecture Notes in Computer Science, PPSN VIII, pp. 972-981, 2004. [49] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato, “Learning from Demonstration and Adaptation of Biped Locomotion,” Robotics and Autonomous System, Vol. 47, pp. 79-91, 2004. [50] J. Nicolas, “Artificial Evolution of Controllers Based on Non-linear Oscillators for Bipedal Locomotion,” Master Thesis, Department of Computer and Communication, Biologically Inspired Robotics Group, Dec. 2005. [51] K. Nishiwaki, T. Sugihara, S. Kagami, F. Kanehiro, M.Inaba, and H. Inoue, “Design and Development of Research Platform for Perception-Action Integration in Humanoid Robot: H6,” Proceedings of the 2000 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 1559-1564, 2000. [52] Y. Ogura, H. Aikawa, H. Lim, and A. Takanishi, “Development of a Human-like Walking Robot Having Two 7-DOF Legs and a 2-DOF Waist,” Proceedings of the 2004 IEEE Intl. Conf. on Robotics and Automation, New Orleans, LA, pp. 134-139, April 2004. [53] Jimmy Or, and A. Takanishi, “A Biologically Inspired CPG-ZMP Control System for the Real-time Balance of a Single-Legged Belly Dancing Robot,” Proceedings of the 2000 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Sendai, Japan, pp. 931-936, Sept. 26-Oct. 2, 2004. [54] D. J. Paluska, “Design of a Humanoid Biped for Walking Research,” Master Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Sept. 2000. [55] J. H. Park and H. C. Cho, “An On-line Trajectory Modifier for the Base Link of Biped Robots to Enhance Locomotion Stability,” Proceedings of the 2000 IEEE Intl. Conf. on Robotics and Automation, pp. 3353-3358, 2000. [56] J. H. Park and H. Chung, “Impedance Control and Modulation for Stable Footing in Locomotion of Biped Robots,' Proceedings of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS'99), pp. 1786-1791, Kyungju, Korea, October 1999. [57] F. Pfeiffer, K. Loffler, and M. Gienger, “The Concept of Jogging JOHNNIE,” Proceedings of the 2004 IEEE Intl. Conf. on Robotics and Automation, Washington, DC, pp. 3129-3135, May 2002. [58] L. Righetti and A. J. Ijspeert, “Programmable Central Pattern Generators-An Application to Biped Locomotion Control,” Proceedings of the 2006 IEEE Intl. Conf. on Robotics and Automation, Orlando, Florida, pp. 1585-1590, May 2006. [59] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The Intelligent ASIMO: System Overview and Integration,” Proceedings of the 2002 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, EPFL, Lausanne, Switzerland, pp. 2478-2483, Oct. 2002. [60] P. Sardain, M. Rostami, and G. Bessonnet, “An Anthropomorphic Biped Robot: Dynamic Concepts and Technological Design,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 28, No. 6, pp. 823-838, Nov. 1998. [61] F. M. Silva and J. A. T. Machado, “Kinematic Aspects of Robotics Biped Locomotion Systems,” Proceedings of the 1997 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 266-271, 1997. [62] T. Sugihara, and Y. Nakamura, “Whole-body Cooperative Balancing of Humanoid Robot Using COG Jacobian,” Proceedings of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and System, Vol. 3, pp. 2575 - 2580, 2002. [63] T. Sugihara, “Mobility Enhancement Control of Humanoid Robot based on Reaction Force Manipulation via Whole Body Motion,” Ph.D Dissertation, Department of Mechano-Engineering, University of Tokyo, 2003. [64] G. Taga, “A Model of the Neuro-musculo-skeletal System for Human Locomotion. I. Emergence of Basic Gait,” Biol. Cybern., Vol. 73, pp. 97-111, 1995. [65] G. Taga, “A Model of the Neuro-musculo-skeletal System for Human Locomotion. II. Real-time Adaptability under Various Constraints,” Biol. Cybern., Vol. 73, pp. 113-121, 1995. [66] G. Taga, “A Model of the Neuro-musculo-skeletal System for Anticipatory Adjustment of Human Locomotion during Obstacle Avoidance,” Biol. Cybern., Vol. 78, pp. 9-17, 1998. [67] G. Taga, Y. Yamaguchi, and H. Shimizu, “Self-organized Control of Bipedal Locomotion by Neural Oscillators in Unpredictable Environment,” Biol. Cybern., Vol. 65, pp. 147-159, 1991. [68] R. M. Voyles, J. D. Morrow, and P. K. Khosla, “A Comparison of Force Sensors,” Advanced Manipulators Laboratory, Carnegie Mellon University, July 20, 1994. [69] M. Vukobratovic and O. Timcenko, “Contributions to the Synthesis of Biped Gait,” IEEE Trans. Biomed. Eng. BME-16, pp. 1-6, 1969. [70] M. Vukobratovic, “Zreo-Moment Point – Thirty Five Years of Its Life,” Int. Journal of Humanoid Robotics, Vol. 1, No. 1, pp. 157-173, 2004. [71] M. M. Williamson, “Neural Control of Rhythmic Arm Movements,” Published Paper, MIT AI Lab, May 1998. [72] D. Wollherr, “Design and Control Aspects of Humanoid Walking Robots,” Doctoral Dissertation, Technical University Munich, 2005. [73] W. Wu, W. Yu, L. Feng, and R. Bingyin, “Development of Modular Combinational Gorilla Robot System,” Proceedings of the 2004 IEEE Intl. Conf. on Robotics and Biomimetics, Shenyang, China, pp. 437-440, Aug. 22-26, 2004. [74] J. Yamaguchi, S. Inoue, D. Nishino, and A. Takanishi, “Development of a Bipedal Humanoid Robot Having Antagonistic Driven Joints and Three DOF Trunk,” Proceedings of the 1998 IEEE/RSJ intl. Conference on Intelligent Robots and Systems, Victoria, B.C., Canada, pp. 96-101, October 1998. [75] J. Yamaguchi and A. Takanishi, “Development of a Biped Walking Robot Having Antagonistic Driven Joints Using Nonlinear Spring Mechanism,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, pp. 185-192, April 1997. [76] J. Yamaguchi, A. Takanishi, and I. Kato, “Experiment Development of a Foot Mechanism with Shock Absorbing Material for Acquisition of Landing Surface Position Information and Stabilization od Dynamic Biped Walking,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 2892-2899, 1995. [77] T. Yamasaki, T. Nomura, and S. Sato, “Possible Functional Roles of Phase Resetting during Walking,” Biol. Cybern., Vol. 88, pp. 468-496, 2003. [78] J. L. Yan, and H. P. Huang, “A Fast Smooth Gait Generation Method of Biped Robot with Jacobian Inverse Kinematics,” Unpublished Paper, Department of Mechanical Engineering, National Taiwan University, May 2007. [79] S. W. Yu, “Walking Pattern Analysis and Control of a Humanoid Robot,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, June, 2006. [80] R. Zaier and F. Nagashima, “Recurrent Neural Network Language for Robot Learning,” Proceedings of the 20th Annual Conf. of the Robotics Society of Japan 2002, Osaka, Japan, Oct. 12-14, 2002. [81] H. Zghal, R. V. Dubey, and Euler, “Efficient Gradient Projection Optimization for Manipulators with Multiple Degree of Redundancy,” Proc. IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1006-1011, 1990. [82] “ASIMO Technical Information”, Jan. 2003. [83] http://cp.literature.agilent.com/litweb/pdf/5988-5895EN.pdf [84] http://world.honda.com/ASIMO/ [85] http://www.ati-ia.com/ [86] http://www.atmel.com/dyn/resources/prod_documents/DOC3023.pdf [87] http://www.robot-electronics.co.uk/htm/md03tech.htm [88] http://www.takanishi.mech.waseda.ac.jp/research/wabian/index.htm#mechanism | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27766 | - |
dc.description.abstract | 本文之主要目的,在於設計一台雙足機器人,並搭配適當的演算法及控制電路,來達成機器人於一般路面上穩定行走的成果。
在機構設計部分,以繪圖軟體CATIA以及工程軟體ADAMS去製作並且模擬kinematics與dynamics,進而預先驗證實驗結果。本文亦推導及驗證腳部機構之順向、逆向的運動學及動力學,並應用於腳部機構的運動規劃及控制上。 在步態行走控制器之設計部分,結合了中央軌跡產生器(CPG)以及零矩點指標來產生機器人重心之軌跡,再根據此重心軌跡產生擺動腳的軌跡,最後配合逆向運動學來達成全身性的運動。 在控制部分,使用DSP與FPGA之結合去做多軸馬達控制,並擷取腳踝部位裝設的六軸力規之訊號,實現具阻尼特性的阻抗控制,使機器人對地面有更好的適應性。 最終的整合測試部分,於電腦端人機介面下達控制指令,測試機器人的各種動作。未來期望能應用嵌入式系統的技術,使兩足機器人能夠成為一獨立運作之系統,做全自主運動。 關鍵詞:二足機器人、CPG、ZMP、步態規劃、運動控制 | zh_TW |
dc.description.abstract | The purpose of this thesis is to design a biped robot and realize the stable walking in practical environments with an appropriate trajectory generator and controller.
In the mechanism design, we use CATIA and ADAMS to construct the robot and simulate the kinematics and dynamics. The forward and inverse kinematics are also described and apply to the trajectory planning and control. In the trajectory generator, the combination of central pattern (CPG) and Zero Moment Point (ZMP) is applied to generate the trajectory of center of gravity (COG) of the biped robot. The foot trajectory is produced according to the output of CPG. Finally, the whole-body motion is fulfilled by solving the inverse kinematics. In the controller design, the combination of DSP and FPGA is applied to achieve the multi-motor control. With the information of six-axis force/torque sensor, the impedance control can be applied to the biped robot so that the robot can adapt the environment more easily. In the final integration, trajectories are calculated in PC and send to the robot via GUI to test all kinds of motions. In the future, we expect to bring the technique of embedded system into the biped robot to realize the autonomous motion. Finally, the simulation and experiment results verify that the biped robot can walk on a flat ground stably without falling with the proposed CPG/ZMP system. Key words: Biped Robot, CPG, ZMP, Trajectory Planning, Motion Control | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:19:27Z (GMT). No. of bitstreams: 1 ntu-96-R94522812-1.pdf: 6097984 bytes, checksum: 979df2b3e67649344254a4fba9f71f7c (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | List of Tables v
List of Figures vi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Works 2 1.3 Thesis Organization 5 1.4 Contribution 6 Chapter 2 Mechanism Design of the NTU-Biped Robot 8 2.1 Overview of the Mechanism Design 8 2.2 Motor Selection 11 2.3 Detailed Mechanism Design 16 2.4 Sensor Selection 23 2.5 Summary 26 Chapter 3 Kinematics and Dynamics of the NTU-Biped Robot 29 3.1 Forward Kinematics 29 3.2 Inverse Kinematics 31 3.3 Dynamics 36 3.4 Whole Body Movement 39 Chapter 4 Trajectory Planning 42 4.1 Central Pattern Generator (CPG) 42 4.1.1 Introduction 42 4.1.2 Oscillator 43 4.1.3 Trajectory Generator 45 4.1.4 Feedback Signal 47 4.2 Foot Trajectory Generation 49 4.3 Zero Moment Point (ZMP) 51 4.4 CPG/ZMP Combination 54 4.5 Joint-space Trajectory Planning 56 4.6 Simulation Results 59 Chapter 5 Control of the NTU-Biped Robot 63 5.1 Joint Controller 63 5.1.1 Modeling of a Single Joint 63 5.1.2 Independent Joint Control with Compensation 65 5.2 Integrated Control System 68 5.2.1 Communication Module 69 5.2.2 Motor Control Module 70 5.2.3 Driver Module 73 5.2.4 Force/Torque DAQ 73 5.3 Hardware Implement 74 Chapter 6 Conclusions 76 6.1 Conclusions 76 6.2 Future Work 76 References 78 | |
dc.language.iso | en | |
dc.title | 二足機器人之設計與控制 | zh_TW |
dc.title | Design and Control of a Biped Robot | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施慶隆,蔡清元 | |
dc.subject.keyword | 二足機器人,CPG,ZMP,步態規劃,運動控制, | zh_TW |
dc.subject.keyword | Biped Robot,CPG,ZMP,Trajectory Planning,Motion Control, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 5.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。