Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賈景山
dc.contributor.authorChia-Jung Changen
dc.contributor.author張家榮zh_TW
dc.date.accessioned2021-06-12T18:19:13Z-
dc.date.available2017-08-27
dc.date.copyright2007-09-12
dc.date.issued2007
dc.date.submitted2007-08-27
dc.identifier.citationAjdic, D., McShan, W. M., McLaughlin, R. E., Savic, G., Chang, J., Carson, M. B. et al. (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99: 14434-14439.
Al-Okla, S., Chatenay-Rivauday, C., Klein, J. P., and Wachsmann, D. (1999) Involvement of α5β1 integrins in interleukin-8 production induced by oral viridans streptococcal protein I/IIf in cultured endothelial cells. Cell Microbiol 1: 157-168.
Alter, P., Hoeschen, J., Ritter, M., and Maisch, B. (2002) Usefulness of cytokines interleukin-6 and interleukin-2R concentrations in diagnosing active infective endocarditis involving native valves. Am J Cardiol 89: 1400-1404.
Ando, T., Tsumori, H., Shimamura, A., Sato, Y., and Mukasa, H. (2003) Classification of oral streptococci by two-dimensional gel electrophoresis with direct activity stain for glycosyltransferases. Oral Microbiol Immunol 18: 171-175.
Arefieva, T. L. and Krasnikova, T. L. (2001) Monocytic cell adhesion to intact and plasmin-modified fibrinogen: possible involvement of Mac-1 (CD11b/CD18) and ICAM-1 (CD54). J Cell Physiol 188: 403-409.
Bancsi, M. J., Veltrop, M. H., Bertina, R. M., and Thompson, J. (1998) Role of monocytes and bacteria in Staphylococcus epidermidis endocarditis. Infect Immun 66: 448-450.
Banks, J., Poole, S., Nair, S. P., Lewthwaite, J., Tabona, P., McNab, R. et al. (2002) Streptococcus sanguis secretes CD14-binding proteins that stimulate cytokine synthesis: a clue to the pathogenesis of infective (bacterial) endocarditis? Microb Pathog 32: 105-116.
Bayles, K. W., Wesson, C. A., Liou, L. E., Fox, L. K., Bohach, G. A., and Trumble, W. R. (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66: 336-342.
Becker, B. F., Heindl, B., Kupatt, C., and Zahler, S. (2000) Endothelial function and hemostasis. Z Kardiol 89: 160-167.
Bradfield, P. F., Amft, N., Vernon-Wilson, E., Exley, A. E., Parsonage, G., Rainger, G. E. et al. (2003) Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis Rheum 48: 2472-2482.
Bratthall, D. (1969) Immunodiffusion studies on the serological specificity of streptococci resembling Streptococcus mutans. Odontol Revy 20: 231-243.
Buckley, C. D., Pilling, D., Lord, J. M., Akbar, A. N., Scheel-Toellner, D., and Salmon, M. (2001) Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol 22: 199-204.
Camerer, E., Kolsto, A. B., and Prydz, H. (1996) Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res 81: 1-41.
Chang, S. C., Luh, K. T., Deng, L. J., and Hsieh, W. C. (1987) Bacteriology of viridans streptococcal bacteremia. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 20: 311-318.
Cherla, R. P. and Ganju, R. K. (2001) Stromal cell-derived factor 1 alpha-induced chemotaxis in T cells is mediated by nitric oxide signaling pathways. J Immunol 166: 3067-3074.
Chia, J. S., Lien, H. T., Hsueh, P. R., Chen, P. M., Sun, A., and Chen, J. Y. (2002) Induction of cytokines by glucosyltransferases of Streptococcus mutans. Clin Diagn Lab Immunol 9: 892-897.
Chia, J. S., Lin, Y. L., Lien, H. T., and Chen, J. Y. (2004) Platelet aggregation induced by serotype polysaccharides from Streptococcus mutans. Infect Immun 72: 2605-2617.
Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159.
Douglas, C. W., Heath, J., Hampton, K. K., and Preston, F. E. (1993) Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol 39: 179-182.
Douglas, M. R., Morrison, K. E., Salmon, M., and Buckley, C. D. (2002) Why does inflammation persist: a dominant role for the stromal microenvironment? Expert Rev Mol Med 2002: 1-18.
Drake, T. A. and Pang, M. (1989) Effects of interleukin-1, lipopolysaccharide, and streptococci on procoagulant activity of cultured human cardiac valve endothelial and stromal cells. Infect Immun 57: 507-512.
Durack, D. T. (1975) Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol 115: 81-89.
Durack, D. T. (1995) Prevention of infective endocarditis. N Engl J Med 332: 38-44.
Durack, D. T. and Beeson, P. B. (1972) Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol 53: 44-49.
Ebihara, N., Yamagami, S., Yokoo, S., Amano, S., and Murakami, A. (2007) Involvement of C-C chemokine ligand 2-CCR2 interaction in monocyte-lineage cell recruitment of normal human corneal stroma. J Immunol 178: 3288-3292.
Erickson, P. R. and Herzberg, M. C. (1993) The Streptococcus sanguis platelet aggregation-associated protein. Identification and characterization of the minimal platelet-interactive domain. J Biol Chem 268: 1646-1649.
Figueiredo, K. A., Mui, A. L., Nelson, C. C., and Cox, M. E. (2006) Relaxin stimulates leukocyte adhesion and migration through a relaxin receptor LGR7-dependent mechanism. J Biol Chem 281: 3030-3039.
Forte, W. C., Mario, A. C., da, C. A., Henriques, L. S., Gonzales, C. L., and Franken, R. A. (2001) Immunologic evaluation in infective endocarditis. Arq Bras Cardiol 76: 43-52.
Fowler, V. G. and Durack, D. T. (1994) Infective endocarditis. Curr Opin Cardiol 9: 389-400.
Furey, W. F., Robbins, A. H., Clancy, L. L., Winge, D. R., Wang, B. C., and Stout, C. D. (1986) Crystal structure of Cd, Zn metallothionein. Science 231: 704-710.
Gao, P., Wange, R. L., Zhang, N., Oppenheim, J. J., and Howard, O. M. (2005) Negative regulation of CXCR4-mediated chemotaxis by the lipid phosphatase activity of tumor suppressor PTEN. Blood 106: 2619-2626.
Gauduchon, V., Benito, Y., Celard, M., Mouren, C., Delorme, V., Philippe-Bert, J. et al. (2001) Molecular diagnosis of recurrent Streptococcus mutans endocarditis by PCR amplification and sequencing. Clin Microbiol Infect 7: 36-37.
Gould, K., Ramirez-Ronda, C. H., Holmes, R. K., and Sanford, J. P. (1975) Adherence of bacteria to heart valves in vitro. J Clin Invest 56: 1364-1370.
Hafizi, S., Wharton, J., Morgan, K., Allen, S. P., Chester, A. H., Catravas, J. D. et al. (1998) Expression of functional angiotensin-converting enzyme and AT1 receptors in cultured human cardiac fibroblasts. Circulation 98: 2553-2559.
Hahn, C. L., Best, A. M., and Tew, J. G. (2007) Rapid tissue factor induction by oral streptococci and monocyte-IL-1beta. J Dent Res 86: 255-259.
Hahn, C. L., Schenkein, H. A., and Tew, J. G. (2005) Endocarditis-associated oral streptococci promote rapid differentiation of monocytes into mature dendritic cells. Infect Immun 73: 5015-5021.
Herzberg, M. C. (1996) Platelet-streptococcal interactions in endocarditis. Crit Rev Oral Biol Med 7: 222-236.
Herzberg, M. C., MacFarlane, G. D., Gong, K., Armstrong, N. N., Witt, A. R., Erickson, P. R. et al. (1992) The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect Immun 60: 4809-4818.
Heying, R., van de, G. J., Que, Y. A., Moreillon, P., and Beekhuizen, H. (2007) Fibronectin-binding proteins and clumping factor A in Staphylococcus aureus experimental endocarditis: FnBPA is sufficient to activate human endothelial cells. Thromb Haemost 97: 617-626.
Honda, O., Kato, C., and Kuramitsu, H. K. (1990) Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol 136: 2099-2105.
Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H., Murakami, K., Miyake, Y. et al. (2005) CXCL12 and CXCR4 expression by human gingival fibroblasts in periodontal disease. Clin Exp Immunol 141: 467-474.
Jefferson, K. K., Smith, M. F., Jr., and Bobak, D. A. (1999) Roles of intracellular calcium and NF-kappa B in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. J Immunol 163: 5183-5191.
Jenkinson, H. F. (1994) Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett 121: 133-140.
Kacimi, R., Karliner, J. S., Koudssi, F., and Long, C. S. (1998) Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia. Circ Res 82: 576-586.
Kumar, A., Humphreys, T. D., Kremer, K. N., Bramati, P. S., Bradfield, L., Edgar, C. E. et al. (2006) CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25: 213-224.
Latif, N., Sarathchandra, P., Thomas, P. S., Antoniw, J., Batten, P., Chester, A. H. et al. (2007) Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis 16: 56-66.
Lo, S. K., Cheung, A., Zheng, Q., and Silverstein, R. L. (1995) Induction of tissue factor on monocytes by adhesion to endothelial cells. J Immunol 154: 4768-4777.
Loesche, W. J. (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50: 353-380.
Lowrance, J. H., Baddour, L. M., and Simpson, W. A. (1990) The role of fibronectin binding in the rat model of experimental endocarditis caused by Streptococcus sanguis. J Clin Invest 86: 7-13.
Lowy, F. D. (1998) Staphylococcus aureus infections. N Engl J Med 339: 520-532.
Mantovani, A., Bussolino, F., and Dejana, E. (1992) Cytokine regulation of endothelial cell function. FASEB J 6: 2591-2599.
Marin, V., Montero-Julian, F. A., Gres, S., Boulay, V., Bongrand, P., Farnarier, C. et al. (2001) The IL-6-soluble IL-6Ralpha autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. J Immunol 167: 3435-3442.
Matloubian, M., David, A., Engel, S., Ryan, J. E., and Cyster, J. G. (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1: 298-304.
McGowan, D. A. and Gillett, R. (1980) Scanning electron microscopic observations of the surface of the initial lesion in experimental streptococcal endocarditis in the rabbit. Br J Exp Pathol 61: 164-171.
Mitani, H., Katayama, N., Araki, H., Ohishi, K., Kobayashi, K., Suzuki, H. et al. (2000) Activity of interleukin 6 in the differentiation of monocytes to macrophages and dendritic cells. Br J Haematol 109: 288-295.
Monchois, V., Willemot, R. M., and Monsan, P. (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23: 131-151.
Moreillon, P. and Que, Y. A. (2004) Infective endocarditis. Lancet 363: 139-149.
Moreillon, P., Que, Y. A., and Bayer, A. S. (2002) Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am 16: 297-318.
Munro, C. L. and Macrina, F. L. (1993) Sucrose-derived exopolysaccharides of Streptococcus mutans V403 contribute to infectivity in endocarditis. Mol Microbiol 8: 133-142.
Mylonakis, E. and Calderwood, S. B. (2001) Infective endocarditis in adults. N Engl J Med 345: 1318-1330.
Nanki, T. and Lipsky, P. E. (2000) Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164: 5010-5014.
Neff, L., Zeisel, M., Druet, V., Takeda, K., Klein, J. P., Sibilia, J. et al. (2003) ERK 1/2- and JNKs-dependent synthesis of interleukins 6 and 8 by fibroblast-like synoviocytes stimulated with protein I/II, a modulin from oral streptococci, requires focal adhesion kinase. J Biol Chem 278: 27721-27728.
Neff, L., Zeisel, M., Sibilia, J., Scholler-Guinard, M., Klein, J. P., and Wachsmann, D. (2001) NF-kappaB and the MAP kinases/AP-1 pathways are both involved in interleukin-6 and interleukin-8 expression in fibroblast-like synoviocytes stimulated by protein I/II, a modulin from oral streptococci. Cell Microbiol 3: 703-712.
Omura, T., Yoshiyama, M., Kim, S., Matsumoto, R., Nakamura, Y., Izumi, Y. et al. (2004) Involvement of apoptosis signal-regulating kinase-1 on angiotensin II-induced monocyte chemoattractant protein-1 expression. Arterioscler Thromb Vasc Biol 24: 270-275.
Pietrocola, G., Schubert, A., Visai, L., Torti, M., Fitzgerald, J. R., Foster, T. J. et al. (2005) FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood 105: 1052-1059.
Poddar, R., Sivasubramanian, N., DiBello, P. M., Robinson, K., and Jacobsen, D. W. (2001) Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103: 2717-2723.
Ringquist, S. and Parma, D. (1998) Anti-L-selectin oligonucleotide ligands recognize CD62L-positive leukocytes: binding affinity and specificity of univalent and bivalent ligands. Cytometry 33: 394-405.
Sakai, N., Wada, T., Furuichi, K., Shimizu, K., Kokubo, S., Hara, A. et al. (2006) MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J Leukoc Biol 79: 555-563.
Sapna, S. and Shivakumar, K. (2007) Substance P enhances soluble ICAM-1 release from adult rat cardiac fibroblasts by a p42/44. Cell Biol Int 31: 856-859.
Scheld, W. M., Valone, J. A., and Sande, M. A. (1978) Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J Clin Invest 61: 1394-1404.
Shun, C. T., Lu, S. Y., Yeh, C. Y., Chiang, C. P., Chia, J. S., and Chen, J. Y. (2005) Glucosyltransferases of viridans streptococci are modulins of interleukin-6 induction in infective endocarditis. Infect Immun 73: 3261-3270.
Sica, A., Saccani, A., Borsatti, A., Power, C. A., Wells, T. N., Luini, W. et al. (1997) Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes. J Exp Med 185: 969-974.
Soderquist, B., Sundqvist, K. G., Jones, I., Holmberg, H., and Vikerfors, T. (1995) Interleukin-6, C-reactive protein, lactoferrin and white blood cell count in patients with S. aureus septicemia. Scand J Infect Dis 27: 375-380.
Spoelstra, F. M., Postma, D. S., Hovenga, H., Noordhoek, J. A., and Kauffman, H. F. (1999) Interferon-gamma and interleukin-4 differentially regulate ICAM-1 and VCAM-1 expression on human lung fibroblasts. Eur Respir J 14: 759-766.
Sullam, P. M., Bayer, A. S., Foss, W. M., and Cheung, A. L. (1996) Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect Immun 64: 4915-4921.
Suttorp, N., Seeger, W., Zucker-Reimann, J., Roka, L., and Bhakdi, S. (1987) Mechanism of leukotriene generation in polymorphonuclear leukocytes by staphylococcal alpha-toxin. Infect Immun 55: 104-110.
Ueda, S., Shiroza, T., and Kuramitsu, H. K. (1988) Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene 69: 101-109.
Ullman, R. F., Miller, S. J., Strampfer, M. J., and Cunha, B. A. (1988) Streptococcus mutans endocarditis: report of three cases and review of the literature. Heart Lung 17: 209-212.
Vacca-Smith, A. M., Jones, C. A., Levine, M. J., and Stinson, M. W. (1994) Glucosyltransferase mediates adhesion of Streptococcus gordonii to human endothelial cells in vitro. Infect Immun 62: 2187-2194.
Veltrop, M. H., Bancsi, M. J., Bertina, R. M., and Thompson, J. (2000) Role of monocytes in experimental Staphylococcus aureus endocarditis. Infect Immun 68: 4818-4821.
Veltrop, M. H., Beekhuizen, H., and Thompson, J. (1999) Bacterial species- and strain-dependent induction of tissue factor in human vascular endothelial cells. Infect Immun 67: 6130-6138.
Viscount, H. B., Munro, C. L., Burnette-Curley, D., Peterson, D. L., and Macrina, F. L. (1997) Immunization with FimA protects against Streptococcus parasanguis endocarditis in rats. Infect Immun 65: 994-1002.
Vose, J. M., Smith, P. W., Henry, M., and Colan, D. (1987) Recurrent Streptococcus mutans endocarditis. Am J Med 82: 630-632.
Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., and Leinwand, L. A. (2004) Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res 95: 253-260.
Warny, M., Keates, A. C., Keates, S., Castagliuolo, I., Zacks, J. K., Aboudola, S. et al. (2000) p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J Clin Invest 105: 1147-1156.
Waters, C. E., Shi-Wen, X., Denton, C. P., Abraham, D. J., and Pearson, J. D. (2006) Signaling pathways regulating intercellular adhesion molecule 1 expression by endothelin 1: comparison with interleukin-1beta in normal and scleroderma dermal fibroblasts. Arthritis Rheum 54: 649-660.
Wells, V. D., Munro, C. L., Sulavik, M. C., Clewell, D. B., and Macrina, F. L. (1993) Infectivity of a glucan synthesis-defective mutant of Streptococcus gordonii (Challis) in a rat endocarditis model. FEMS Microbiol Lett 112: 301-305.
Weyrich, A. S., Lindemann, S., and Zimmerman, G. A. (2003) The evolving role of platelets in inflammation. J Thromb Haemost 1: 1897-1905.
Whittaker, C. J., Klier, C. M., and Kolenbrander, P. E. (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50: 513-552.
Wilbanks, A., Zondlo, S. C., Murphy, K., Mak, S., Soler, D., Langdon, P. et al. (2001) Expression cloning of the STRL33/BONZO/TYMSTR ligand reveals elements of CC, CXC, and CX3C chemokines. J Immunol 166: 5145-5154.
Wilson, W. R., Thompson, R. L., Wilkowske, C. J., Washington, J. A., Giuliani, E. R., and Geraci, J. E. (1981) Short-term therapy for streptococcal infective endocarditis. Combined intramuscular administration of penicillin and streptomycin. JAMA 245: 360-363.
Wren, B. W., Russell, R. R., and Tabaqchali, S. (1991) Antigenic cross-reactivity and functional inhibition by antibodies to Clostridium difficile toxin A, Streptococcus mutans glucan-binding protein, and a synthetic peptide. Infect Immun 59: 3151-3155.
Xiao, J. and Chodosh, J. (2005) JNK regulates MCP-1 expression in adenovirus type 19-infected human corneal fibroblasts. Invest Ophthalmol Vis Sci 46: 3777-3782.
Yamauchi, R., Tanaka, M., Kume, N., Minami, M., Kawamoto, T., Togi, K. et al. (2004) Upregulation of SR-PSOX/CXCL16 and recruitment of CD8+ T cells in cardiac valves during inflammatory valvular heart disease. Arterioscler Thromb Vasc Biol 24: 282-287.
Yeaman, M. R. (1997) The role of platelets in antimicrobial host defense. Clin Infect Dis 25: 951-968.
Yeh, C. Y., Chen, J. Y., and Chia, J. S. (2006) Glucosyltransferases of viridans group streptococci modulate interleukin-6 and adhesion molecule expression in endothelial cells and augment monocytic cell adherence. Infect Immun 74: 1273-1283.
Yin, X., Knecht, D. A., and Lynes, M. A. (2005) Metallothionein mediates leukocyte chemotaxis. BMC Immunol 6: 21.
吳淑惠. 2005. 篩選體內表現基因載體的建立與心內膜炎免疫反應之特徵. 碩士 國立臺灣大學醫學院口腔生物科學研究所碩士論文
葉秋月. 2006. 草綠色鏈球菌葡萄糖傳遞酶與內皮細胞的交互作用參與感染性心內膜炎的免疫致病機制. 博士 國立臺灣大學醫學院微生物學研究所博士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27761-
dc.description.abstract轉糖鏈球菌(Streptococcus mutans)是屬於草綠色鏈球菌的一群,並是容易造成亞急性心內膜炎的伺機性病原菌。心內膜炎的致病過程主要是由於血液中的病原菌聚集到受傷瓣膜表面,並分泌細菌毒力因子造成瓣膜慢性發炎反應的形成。草綠色鏈球菌葡萄糖傳遞酶(glucosyltransferase)是引起心臟瓣膜發炎一個相當重要的細菌性調節素,其具有刺激人類周邊血液單核細胞及人類臍帶靜脈內皮細胞產生大量IL-6的能力。由於心臟瓣膜主要由外層的內皮細胞及內層的纖維母細胞構成;因此,本實驗利用純化的葡萄糖傳遞酶刺激心臟移植病人瓣膜所培養的纖維母細胞,探討在人類瓣膜初級培養的細胞是否會受到葡萄糖傳遞酶刺激而引起發炎反應,藉以找尋草綠色鏈球菌造成感染性心內膜炎的致病機轉。
葡萄糖傳遞酶具有刺激人類瓣膜纖維母細胞產生IL-6、IL-8、及MCP-1,並可以造成細胞內AKT、MAPKs及IκB-α的磷酸化,及NF-κB的細胞核轉位。利用PI3K、MAPK及NF-κB的抑制劑可有效抑制葡萄糖傳遞酶所誘導之IL-6、IL-8及MCP-1的產生。顯示其可透過活化人類瓣膜纖維母細胞的PI3K-AKT-MAPK-NF-κB訊息路徑,促進發炎反應的發生。此外葡萄糖傳遞酶可以促使人類單核球細胞株(THP-1及U937)進行趨化性移動(Chemotaxis),並藉由活化人類瓣膜纖維母細胞表現ICAM-1,促進趨化的單核球黏附;同時藉由產生大量的CXCR4專一性配體,導致大量人類初級T淋巴球及T淋巴球細胞株Jurkat的趨化性移動趨化。
由於葡萄糖傳遞酶也會活化人類單核白血球產生高量的IL-1β,因此,當活化的單核白血球浸潤至瓣膜組織中,其分泌的IL-1β可能會加劇發炎反應的發生。因此本研究中利用IL-1β刺激人類瓣膜纖維母細胞發現的確會促使IL-6、IL-8、及MCP-1的產生,並活化人類瓣膜纖維母細胞表現ICAM-1;同時會造成大量人類單核球細胞株U937進行趨化性移動及黏附。
經由以上實驗結果推論,在草綠色鏈球菌引起的感染性心內膜炎中,葡萄糖傳遞酶會刺激人類瓣膜纖維母細胞產生大量的細胞激素和趨化激素,誘發白血球的浸潤;受活化的浸潤單核白血球會分泌IL-1β,促進瓣膜纖維母細胞更進一步的活化,導致心臟瓣膜慢性且持續性發炎反應的發生。
zh_TW
dc.description.abstractStreptococcus mutans is a member of viridans group streptococci and one of the opportunistic pathogens causing subacute infective endocarditis (IE). The major process in the pathogenesis of IE is initiated when pathogens circulating in the bloodstream colonize to damaged valves and then secrete virulence factors to induce a chronic inflammatory response. Glucosyltransferases (GTFs) of viridans streptococci are the important bacterial modulins and potent inducers of interleukin-6 (IL-6) synthesis and release from human PBMC and HUVEC. Because the heart valves were constituted primary by meshes of fibroblasts, we investigated the primary culture of valvular fibroblasts from heart transplant patients to study the immune response stimulated by GTFs and to define the mechanism of IE triggered by the viridans streptococci.
We reported that GTFs attached to human primary valvular fibroblasts triggered the release of IL-6, IL-8 and MCP-1, and enhanced the phosphorylation of AKT, MAPKs and IκB-α and the nuclear translocation of NF-κB. The increase in IL-6, IL-8 and MCP-1 was abrogated by addition of PI3K, MAPKs, and NF-κB inhibitors, suggesting that the up-regulation of IL-6, IL-8 and MCP-1 was mediated through PI3K, MAPKs, and NF-κB signaling pathways. We also demonstrated that valvular fibroblasts treated by GTFs promoted the chemotaxis and adhesion of monocytic cell lines. In addition, GTFs-stimulated valvular fibroblasts could induce the release of CXCR4-specific ligand to enhance the recruitment of T lymphocyte.
Because GTFs could stimulate human mononuclear cells to produce interleukin-1β(IL-1β), we hypothesized that the infiltration of GTFs-activated mononuclear cells could play a role in enhancing inflammatory response. We found that exogenous IL-1β could activate valvular fibroblasts, trigger the release of IL-6, IL-8 and MCP-1, and up-regulate the expression of ICAM-1. In addition, IL-1β-stimulated fibroblasts could promote the chemotaxis and adhesion of monocytic cell lines.
Taken together, these results indicate that GTFs could induce the synthesis and release of inflammatory cytokine and chemokine to trigger the infiltration of leukocytes a characteristic in the pathogenesis of IE caused by viridans group streptococci. Furthermore, GTFs-activated mononuclear cells could secrete IL-1β to further stimulate valvular fibroblasts and sustain the formation of chronic endocardial inflammation.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:19:13Z (GMT). No. of bitstreams: 1
ntu-96-R94450005-1.pdf: 1920116 bytes, checksum: 988c3763f972707bcec0e38734771dfa (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
中文摘要------------------------------------------------------------I
英文摘要-----------------------------------------------------------II
目錄---------------------------------------------------------------III
圖目錄-------------------------------------------------------------V
第壹章、緒論
一、轉糖鏈球菌-----------------------------------------------------1
二、感染性心內膜炎-------------------------------------------------2
三、感染性心內膜炎之免疫調控因子-----------------------------------4
四、細菌毒力因子與心內膜炎的關聯性---------------------------------7
五、轉糖鏈球菌葡萄糖傳遞酶與心內膜炎的關聯性----------------------10
六、研究方向及實驗設計--------------------------------------------11
第貳章、實驗材料與方法
一、細胞培養------------------------------------------------------15
二、瓣膜纖維母細胞鑑定--------------------------------------------16
三、葡萄糖傳遞酶純化----------------------------------------------16
四、純化葡萄糖傳遞酶的細菌脂多醣體含量測定------------------------17
五、瓣膜纖維母細胞的細胞激素及白血球趨化激素之表現測定------------18
六、葡萄糖傳遞酶黏附瓣膜纖維母細胞--------------------------------19
七、核糖核酸萃取和反轉錄聚合酶連鎖反應----------------------------20
八、人類白血球趨化實驗--------------------------------------------21
九、瓣膜纖維母細胞表面黏附分子的測量------------------------------21
十、人類單核球細胞株趨化黏附瓣膜纖維母細胞實驗--------------------22
十一、訊息傳遞蛋白偵測--------------------------------------------23
十二、NF-κB免疫螢光染色------------------------------------------23
十三、聚丙烯胺膠體電泳法------------------------------------------24
十四、西方墨點法--------------------------------------------------24
第參章、結果
一、人類心臟瓣膜纖維母細胞之鑑定----------------------------------26
二、轉糖鏈球菌葡萄糖傳遞酶之純化鑑定及細菌脂多醣體的抑制----------26
三、轉糖鏈球菌葡萄糖傳遞酶黏附心臟瓣膜纖維母細胞------------------27
四、葡萄糖傳遞酶活化瓣膜纖維母細胞IL-6、IL-8及MCP-1的mRNA表現--28
五、葡萄糖傳遞酶活化心臟瓣膜纖維母細胞產生IL-6、IL-8、及MCP-1------28
六、探討葡萄糖傳遞酶活化瓣膜纖維母細胞產生IL-6、IL-8、及MCP-1的訊息傳遞路徑-------------------------------------------------------30
七、葡萄糖傳遞酶刺激瓣膜纖維母細胞產生MCP-1,並促進人類單核球細胞株THP-1及U937趨化----------------------------------------------31
八、葡萄糖傳遞酶刺激瓣膜纖維母細胞產生T細胞趨化因子,並透過表面受體CXCR4促進T淋巴球趨化----------------------------------------32
九、IL-1β活化瓣膜纖維母細胞IL-6、IL-8、及MCP-1的mRNA表現---------35
十、IL-1β活化心臟瓣膜纖維母細胞產生IL-6、IL-8、及MCP-1-------------35
十一、葡萄糖傳遞酶及IL-1β刺激瓣膜纖維母細胞後,會促進趨化的人類單核球細胞株U937黏附至瓣膜纖維母細胞表面----------------------------36
第肆章、討論
一、感染性心內膜炎中,轉糖鏈球菌葡萄糖傳遞酶誘發瓣膜組織慢性發炎的機轉---------------------------------------------------------------38
二、葡萄糖傳遞酶活化細胞產生發炎介質及細胞黏附因子的訊息傳遞路徑--43
第伍章、參考文獻----------------------------------------------------45
第陸章、附圖
附圖一、口腔鏈球菌中引起感染性心內膜炎的表面專一性胞外基質結合蛋--67
dc.language.isozh-TW
dc.subject趨化作用zh_TW
dc.subject轉糖鏈球菌zh_TW
dc.subject葡萄糖傳遞&#37238zh_TW
dc.subject人類瓣膜纖維母細胞zh_TW
dc.subjecthuman valvular fibroblastsen
dc.subjectchemotaxisen
dc.subjectStreptococcus mutansen
dc.subjectglucosyltransferaseen
dc.title人類心臟瓣膜纖維母細胞受草綠色鏈球菌葡萄糖傳遞酶活化引發白血球趨化作用之研究zh_TW
dc.titleActivation of human valvular fibroblasts by
glucosyltransferases of viridans streptococci to induce chemotaxis of leukocytes
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭彥彬,江伯倫,黃麗華,孫家棟
dc.subject.keyword轉糖鏈球菌,葡萄糖傳遞&#37238,人類瓣膜纖維母細胞,趨化作用,zh_TW
dc.subject.keywordStreptococcus mutans,glucosyltransferase,human valvular fibroblasts,chemotaxis,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2007-08-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved