請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27730
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊文思(Wen-Ssn Chuang) | |
dc.contributor.author | Shu-Fen Wu | en |
dc.contributor.author | 吳淑芬 | zh_TW |
dc.date.accessioned | 2021-06-12T18:17:41Z | - |
dc.date.available | 2007-09-03 | |
dc.date.copyright | 2007-09-03 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-28 | |
dc.identifier.citation | Battisti, D. S., and A. J. Clarke, A simple method for estimating barotropic tidal currents on continental margins with specific application to the M2 tide off the Atlantic and Pacific coasts of the United States. J. Phys. Oceanogr., 12, 8-16. 1982a.
Battisti, D. S., and A. J. Clarke, Estimation of nearshore tidal currents on nonsmooth continental shelves. J. Geophys. Res., 87, 7873-7878. 1982b. Baines, P. G., The generation of internal tides by flat-bump topography. Deep-Sea Res., 20, 179-205, 1973. Baines, P. G., The generation of internal tides over steep continental slopes, Phil. Trans. Roy. Soc. London, A 277, 27–58, 1974. Baines, P. G., On internal tide generation models. Deep-Sea Res., 29 (3A): 307-338, 1982. Bowden, K. F., Physical oceanography of coastal waters. Ellis Horwood Ltd., pp. 16-72, 1983. Bendat, J. S., and A. G. Piersol, Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York, pp. 594, 1971. Benoit Cushman-Roisin, Introduction to Geophysical Fluid Dynamics, Prentice Hall, Englewood Cliffs, New Jersey 07632, pp. 320, 1994. Chuang, W.-S., and D.-P. Wang, Effects of Density Front on the Generation and Propagation of Internal Tides. J. Phys. Oceanogr., 11, 1357-1374, 1981. Chuang, W.-S., and W. J. Wiseman, JR., Coastal Sea Level Response to Frontal Passages on the Louisiana-Texas Shelf. J. Geophys. Res., 88, 2615-2620, 1983. Clarke, A. J., and D.S. Battisti, The effect of the continental shelves on tides. Deep-Sea Res., 28, 665-682, 1981. Clarke, A. J., The dynamics of barotropic tides over the continental shelf and slope (review). Tidal Hydrodynamics, B. B. Parker, ED., National Ocean Service, NOAA, 79-108, 1991. Church, J. A., J.C. Andrews and F.M. Boland, Tidal currents in the central Great Barrier Reef. Cont. Shelf Res., 4, 515-531, 1985. Csanady, G. T., Circulation in the Coastal Ocean. D. Reidel Publishing Company, pp. 174-210, 1982. F. Lefevre, C. Le Provost, and F. H. Lyard, How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea, J. Geophys. Res., vol. 105, no. c4, pp. 8707-8725, 2000. Gill, A. E., Atmosphere-Ocean Dynamics. Academic Press, pp. 622, 1982. G. Fang, Y.-K. Kwok, K. Yu and Y. Zhu, “Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand,” Continental Shelf Res., vol. 19, pp. 845-869, 1999. Holloway, P. E., Tides on the Australia North-west Shelf. Austr J. Mar. Freshw. Res., 34, 213-230, 1983. Kundu P. K. and J. S. Allen, Some Three-Dimensional Characteristics of Low- Frequency Current Fluctuations near the Oregon Coast, J. Phys. Oceanogr., 6, 181-199. 1976. Lentz, S. J., M. Carr and T.H.C. Herbers, Barotropic tides on the North Carolina shelf, J. Phys. Oceanogr., 31, 1843-1859, 2001. M. H. Chang, R.-C. Lien, T. Y. Tang, and E. A. D’Asaro, Energy flux of nonlinear waves in the South China Sea. Geophys. Res. Lett., 33, L05615, doi: 10.1029/2005GL025196, 2006. Phillips, O. M., The Dynamics of the Upper Ocean, 2nd ed., Cambridge University Press, pp. 336, 1977. Pond, S., and G. L. Pickard, Introductory Dynamic Oceanography, 2nd ed., Pergamon Press, pp. 241, 1983. Pugh, D. T., Tides, Surges and Mean Sea-Level. Wiley, Chichester, pp. 471, 1987. R. C. Beardsley, T. F. Duda, J. F. Lynch, J. D. Irish, S. R. Ramp, C.-S. Chiu, T. Y. Tang, Y. J. Yang, and G. Fang, Barotropic Tide in the Northeast South China Sea. IEEE J. Oceanic Eng., Vol. 29, No. 4, 1075-1086 (SCI), 2004. Ramp S. R., Tang T. Y., Duda T. F., Lynch J. F., Liu A. K., et al., Internal solitons in the northeastern South China Sea Part I: sources and deep water propagation. IEEE J. Ocean. Eng. vol. 29, 1157–1181, 2004. Rosenfeld, L. K. and R. C. Beardsley, Barotropic semidiurnal tidal currents off northern California during the Coastal Ocean Dynamics Experiment (CODE). J. Geophys. Res., 92, 1721-1732., 1987. R. H. Weisberg and L. J. Pietrafesa, Kinematics and correlation of the surface wind field in the South Atlantic Bight, J. Geophys. Res., 88, 4593-4610, May 30, 1983. R. Pawlowicz, B. Beardsley, and S. Lentz, Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937, 2002. R.-C. Lien, T. Y. Tang, M. H. Chang, and E. A. D’Asaro, Energy of nonlinear waves in the South China Sea. Geophys. Res. Lett., 32, L05615, doi: 10.1029/2004GL022012, 2005. Sandstrom, H., On topographic generation and coupling of internal waves. Geophys. Fluid Dyn., 7, 231-270, 1976. Tang, T.Y. and D.W. Lee, Semi-diurnal tide on the shelf break in northeast of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 7 (1), 133-148, 1996. T. F. Duda, J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T. Y. Tang, and Y. J. Yang, “Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea,” IEEE J. Oceanic Eng., vol. 29, pp. 1105-1130, Oct. 2004. Wunch, C., Internal tides in the ocean. Rev.Geophys. Space Phys., 13, 167-182, 1975. William J. Emery, and Richard E. Thomson, Data Analysis Methods in the Physical Oceanography, second and revised edition, Elsevier, pp. 619, 2001. Yang, Y. J., T. Y. Tang, M. H. Chang, A. K. Liu, M.-K. Hsu, and S. R. Ramp, Solitons northeast of Tung-Sha Island, during ASIAEX pilot studies. IEEE J. Oceanic Eng., vol. 29, 1182-1199, 2004. Ye, A. L. Robinson, I.S., Tidal dynamics in the South China Sea. Geophysical Journal of the Royal Astronomical Society 72, 691-707, 1983. Y. Niwa and T. Hibiya, Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean, J. Geophys. Res., vol. 106, no. C10, pp. 22 441–22 449, 2001. Y. Niwa and T. Hibiya, Three–dimensional numerical simulation of M2 internal tides in the East China Sea , J. Geophys. Res., vol. 109, no. C04027, doi:10.1029/2003 JC001923, 2004. 梁文德,2002: 南海上層海溫及海流變化之研究,博士論文,國立台灣大學海洋研究所。 林勝豐,2005:台灣海峽海潮流之研究,博士論文,國立台灣大學海洋研究所。 李大偉,1992:臺灣東北海域陸棚邊緣區半日潮垂直結構之研究,碩士論文,國立台灣大學海洋研究所。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27730 | - |
dc.description.abstract | 本論文之研究目的在於:(1)以資料分析及當地模式探討東沙島附近水位與正壓潮流(barotropic tidal current)之間的關係,(2)藉由水位資料來預報正壓潮流。水位與流速的觀測資料分別取自置放於東沙島(DongSha Island)西岸的潮位計(tide gauge)與東沙島東北方約100公里(當地水深350公尺)的ADCP (Acoustic Doppler Current Profiler)流速資料。水位資料涵蓋期間為2004年11月初至2006年3月底,流速資料為2005年7月28日至11月1日,兩者約有3個月的同時(simultaneous)資料。東沙島的水位資料經由調和分析,結果顯示主要的分潮(tidal constituent)為全日潮K1、O1以及半日潮M2、S2,其振幅分別為27、24、14、以及5公分。由深度平均法計算流速的正壓潮分量,經由調和分析結果顯示,K1、O1、M2的流速大小約4 ~ 5公分/秒,而S2的流速約2公分/秒。
利用轉換函數(transfer functions)與調和分析兩種方法,驗證水位預報正壓潮流的可行性,將觀測資料分為等長的兩段時期,藉由第一段時期約45天的正壓潮流與水位的關係,預報下一段時期約45天的正壓潮流,結果顯示半日潮流的觀測值與預報值大致符合,其均方根(root mean square)約在3公分/秒以下;但是全日潮流的觀測值與預報值的差異大,其均方根最大可達到約19公分/秒,推測其原因為斜壓潮分量(internal tide)大而影響潮流,但是不會對水位資料造成影響。 根據一維正壓潮流模式(Clarke and Battisti 1981; Battisti and Clarke 1982 a,b; Clarke 1991),以及M2的能量傳輸(transport)往西北方傳播幾乎不變(nondivergent)(Beardsley, 2004),應用到東沙島的M2潮位資料以及當地模式(local model)推算附近海域的正壓潮流大小,模式結果顯示當底部摩擦係數r = 3×10-2 公尺/秒,半日潮M2的觀測值與模式值大致吻合,而底部摩擦係數的數量級接近於澳洲大堡礁,可能由於兩地皆受到珊瑚礁地形的影響,所以造成底部摩擦係數的數量級大於多數的沿岸地區。全日潮O1、K1的觀測值與模式值的比對結果雖然在可接受的範圍,但是無法比擬半日潮M2觀測值與模式值的吻合結果。 綜合資料分析與模式的結果,皆證實半日潮M2為主要的正壓潮流,可藉由水位資料預報;但是全日潮O1、K1的斜壓分量明顯且非規律,故無法藉由水位資料預報其正壓潮流大小。 關鍵詞: 東沙島,潮流,內潮,正壓,斜壓。 | zh_TW |
dc.description.abstract | The purpose of this thesis is using data analysis to study the relationship between sea level and barotropic tidal current near DongSha Island, and developing a local model to examine the tidal dynamics in a shallow water environment. Right at the coast of the DongSha Island, a tide gauge was deployed from November, 2004 to March, 2006, 100 km offshore in a water depth of 350 m, an ADCP (Acoustic Doppler Current Profiler) was moored to record the current velocity from July 28 to November 1, 2005. There have been simultaneous measurements of both sea level and current for 3 months. Harmonic analysis of the DongSha Island sea level data shows that the most significant tidal constituents in this region are the K1 (amplitude: 27 cm) and O1 (24 cm) diurnal tides and the M2 (14 cm) and S2 (5 cm) semidiurnal tides. The barotropic tidal current was computed using the depth-averaged velocity. Harmonic analysis reveals that the tidal current velocity of K1, O1 and M2 are about 4 ~ 5 cm s-1, and S2 is about 2 cm s-1.
The relationship between barotropic tidal currents and sea level were established for the first 45-day period using the transfer functions and harmonic analysis, and then carry the prediction for the second 45-day period. There is very good agreement between the observed and predicted semidiurnal tidal current, the rms (root mean square) error is less than 3 cm s-1. However, prediction on diurnal tidal current is rather disappointing, the rms error is about 19 cm s-1, suggesting strong baroclinic tidal component (internal tides) may have a significant contribution to the tidal current, which is not registered in the sea level records. Knowing the tides propagate in the northwestward direction (Beardsley, 2004) toward the coast of mainland China, the barotropic tidal current can be computed through a simple one-dimensional, barotropic tidal model (Clarke and Battisti 1981; Battisti and Clarke 1982 a,b; Clarke 1991). Giving the M2 sea level at the DongSha Island and topography, the local model successfully computes the tidal current near the observational site with a bottom friction coefficient r = 3×10-2 m s-1. This friction coefficient is rather large compared with that of most known coastal waters, but closed to what have been found near Great Barrier Reef, Australia, where both have similar coral reef environment. Computed K1 and O1 tidal currents are within acceptable range, but not as good as the M2 component. In essence, both the data analysis and model results confirmed that the M2 semidiurnal tidal current is largely barotropic, and can be predicted through the coastal sea level. However, the baroclinic component of O1 and K1 diurnal tidal current are rather obvious and prohibited us from establishing a tight relationship, and hence, a prediction scheme from the coastal tidal data. Key Words: DongSha, tidal current, internal tides, barotropic, baroclinic. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:17:41Z (GMT). No. of bitstreams: 1 ntu-96-R92241109-1.pdf: 3398430 bytes, checksum: f732b4a93d8e28184660238311dcac48 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書.................................i
誌謝.............................................1 中文摘要.........................................2 英文摘要.........................................4 目錄.............................................6 圖目錄...........................................8 表目錄..........................................11 第一章 緒論.....................................12 1.1 地理位置.............................12 1.2 早期與近期之研究.....................12 1.3 論文研究之目的.......................14 第二章 觀測資料之描述...........................18 2.1 S7錨錠站之流速資料...................18 2.2 東沙島之水位資料.....................19 第三章 資料分析與結果...........................28 3.1 潮流橢圓的垂直分佈...................28 3.2 正壓潮流與斜壓潮流...................29 3.2.1正壓潮流........................29 3.2.2斜壓潮流........................31 3.3預測S7站的正壓潮流....................31 3.3.1轉換函數........................32 3.3.2調和分析........................33 3.4小結..................................34 第四章 當地模式.................................48 4.1模式原理..............................48 4.2當地模式與實測資料比對................51 4.2.1半日潮頻帶.......................51 4.2.2全日潮頻帶.......................52 4.3當地模式結果與討論....................53 4.4小結..................................53 第五章 結論.....................................63 參考文獻........................................65 | |
dc.language.iso | zh-TW | |
dc.title | 東沙島附近之潮流-當地模式模擬 | zh_TW |
dc.title | Tidal Currents near DongSha - a Local Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 唐存勇(Tswen-Yung Tang) | |
dc.contributor.oralexamcommittee | 王冑,曾若玄 | |
dc.subject.keyword | 東沙島,潮流,內潮,正壓,斜壓, | zh_TW |
dc.subject.keyword | DongSha,tidal current,internal tides,barotropic,baroclinic, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-28 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。