請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27729
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光 | |
dc.contributor.author | Chih-Jen Chien | en |
dc.contributor.author | 簡志仁 | zh_TW |
dc.date.accessioned | 2021-06-12T18:17:38Z | - |
dc.date.available | 2013-08-15 | |
dc.date.copyright | 2011-09-08 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-08 | |
dc.identifier.citation | [1] Joseph J. M. Braat, 'Abbe sine condition and related imaging conditions in geometrical optics,' Delft, Netherlands, 1997, pp. 59-64.
[2] Optical Microscopy Primer Introduction, http://micro.magnet.fsu.edu/primer/index.html. [3] Olympus Microscopy Resource Center, 'Resolution Criteria and Performance Issues,' http://www.olympusmicro.com/primer/digitalimaging/deconvolution/deconresolution.html. [4] G. A. Valaskovic, M. Holton, and G. H. Morrison, 'Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,' Appl. Opt., vol. 34, pp. 1215-1228, 1995. [5] Ampere A. Tseng, 'Recent developments in nanofabrication using scanning near-field optical microscope lithography,' Optics & Laser Technology, vol. 39, pp. 514-526, 2007. [6] Eric Betzig and Jay K. Trautman, 'Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,' Science, vol. 257, pp. 189-195, July 10, 1992 1992. [7] G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, 'Near field microscopy and lithography with uncoated fiber tips: a comparison,' Optics Communications, vol. 119, pp. 283-288, 1995. [8] G. Wysocki, J. Heitz, and D. Bauerle, 'Near-field optical nanopatterning of crystalline silicon,' Applied Physics Letters, vol. 84, pp. 2025-2027, 2004. [9] Sangjin Kwon, Wonseok Chang, and Sungho Jeong, 'Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,' Ultramicroscopy, vol. 105, pp. 316-323, 2005. [10] Yuan Wang, Werayut Srituravanich, Cheng Sun, and Xiang Zhang, 'Plasmonic Nearfield Scanning Probe with High Transmission,' Nano Letters, vol. 8, pp. 3041-3045, 2008. [11] Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, 'Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,' Sensors and Actuators A: Physical, vol. 133, pp. 311-316, 2007. [12] Nichlos Murphy-DuBay, Liang Wang, Edward C. Kinzel, Sreemanth M. V. Uppuluri, and X. Xu, 'Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,' Opt. Express, vol. 16, pp. 2584-2589, 2008. [13] H. A. Bethe, 'Theory of Diffraction by Small Holes,' Physical Review, vol. 66, p. 163, 1944. [14] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature, vol. 391, pp. 667-669, 1998. [15] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, 'Surface plasmons enhance optical transmission through subwavelength holes,' Physical Review B, vol. 58, p. 6779, 1998. [16] Tineke Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, 'Surface-plasmon-enhanced transmission through hole arrays in Cr films,' J. Opt. Soc. Am. B, vol. 16, pp. 1743-1748, 1999. [17] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, 'Crucial role of metal surface in enhanced transmission through subwavelength apertures,' Applied Physics Letters, vol. 77, pp. 1569-1571, 2000. [18] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, 'Beaming Light from a Subwavelength Aperture,' Science, vol. 297, pp. 820-822, August 2, 2002. [19] Chin-Kai Chang, Ding-Zheng Lin, Chau-Shioung Yeh, Chih-Kung Lee, Yu-Chia Chang, Ming-Wei Lin, Ji-Tian Yeh, and Jung-Ming Liu, 'Experimental analysis of surface plasmon behavior in metallic circular slits,' Applied Physics Letters, vol. 90, pp. 061113-3, 2007. [20] 林鼎晸, '奈米直寫儀用表面電漿光學元件之理論與實驗,' 博士論文, 應用力學研究所, 國立台灣大學, 台灣台北, 2007. [21] Ding-Zheng Lin, Chih-Hao Chen, Chin-Kai Chang, Tsung-Dar Cheng, Chau-Shioung Yeh, and Chih-Kung Lee, 'Subwavelength nondiffraction beam generated by a plasmonic lens,' Applied Physics Letters, vol. 92, pp. 233106-3, 2008. [22] Yu Yuh-Yan, Lin Ding-Zheng, Huang Long-Sun, and Lee Chih-Kung, 'A Study of the Long Propagation Range Bessel Beam Generated by a Subwavelength Annular Aperture Structure,' 2008, p. JWD37. [23] Tsung-Dar Cheng, Ding-Zheng Lin, Jyi-Tyan Yeh, Jonq-Min Liu, Chau-Shioung Yeh, and Chih-Kung Lee, 'Propagation characteristics of silver and tungsten subwavelength annular aperture generated sub-micron non-diffraction beams,' Opt. Express, vol. 17, pp. 5330-5339, 2009. [24] 鄭琮達, '次波長超長焦深光束直寫儀的研究與開發:從奈米光學元件的理論與製造到系統性能驗證之研究,' 博士論文, 應用力學研究所, 國立台灣大學, 台灣台北, 2009. [25] 游育諺, '次波長圓環元件的設計與製造及其在雷射加工上的應用,' 博士論文, 應用力學研究所, 國立台灣大學, 台灣台北, 2010. [26] M. Kohno, 'Microfabrication and drilling using diffraction-free pulsed laser beam generated with axicon lens,' JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 47, p. 497, 2004. [27] 陳徳薰, '進場光纖微影及延伸石英管奈米直寫儀之前導性研究,' 碩士論文, 工程科學及海洋工程學研究所, 國立台灣大學, 台灣台北, 2010. [28] J. Durnin, J. J. Miceli, and J. H. Eberly, 'Diffraction-free beams,' Physical Review Letters, vol. 58, p. 1499, 1987. [29] J. Durnin, 'Exact solutions for nondiffracting beams. I. The scalar theory,' J. Opt. Soc. Am. A, vol. 4, pp. 651-654, 1987. [30] D. McGloin and K. Dholakia, 'Bessel beams: Diffraction in a new light,' Contemporary Physics, vol. 46, pp. 15 - 28, 2005. [31] John H. McLeod, 'The Axicon: A New Type of Optical Element,' J. Opt. Soc. Am., vol. 44, pp. 592-592, 1954. [32] G. Indebetouw, 'Nondiffracting optical fields: some remarks on their analysis and synthesis,' J. Opt. Soc. Am. A, vol. 6, pp. 150-152, 1989. [33] 方俊傑, '以連續數值孔徑模式陳述次波長圓環光學效應的適切性研究,' 碩士論文, 應用力學研究所, 國立台灣大學, 台灣台北, 2008. [34] Wikipedia, 'Diffraction formalism,' http://en.wikipedia.org/wiki/Diffraction_formalism. [35] Georgia State University Department of Physics and Astronomy, 'Fraunhofer Single Slit,' http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html. [36] Georgia State University Department of Physics and Astronomy, 'Double Slit Diffraction,' http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/mulslid.html. [37] 徐仲凱, '光纖式波導干涉儀之設計與研製,' 碩士論文, 應用力學研究所, 國立台灣大學, 台灣台北, 2007. [38] Wikipedia, 'Optical fiber,' http://en.wikipedia.org/wiki/Optical_fiber. [39] Computer Electrical, and Systems Engineering Department, Rensselaer Polytechnic Institute, 'Illustration of the numerical aperture (NA) of a fiber,' http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap22/F22-06%20NA%20fiber.jpg. [40] Bahaa E. A. Saleh and Malvin Carl Teich, Fundamentals of photonics. Hoboken, N.J.: Wiley-Interscience, 2007. [41] 吳曜東, 光纖原理與應用. 臺北市: 全華, 1997. [42] Sutter Instrument, 'Sutter Catalog,' http://www.sutter.com/PDF/SutterCatalog.pdf. [43] Quorum Technologies, 'K575X Sputter Coater Instruction Manual,' http://www.quorumtech.com/pdf/currentProductInstructionManuals/K575X_Instruction_Manual.pdf. [44] 工業技術研究院奈米共同實驗室, '雙粒子束聚焦式離子束顯微切割儀 (DB-FIB),' http://www.nanolab.itri.org.tw/lab/EquSingledetail.aspx?nano_equno=81077400009. [45] CVI Melles Griot, 'High-Performance Diode Laser Systems, 56 RCS Series,' http://www.cvimellesgriot.com/products/Documents/Downloads/56RCSHigh.pdf. [46] Uniblitz, 'Mechanical Shutter Model LS3Z2,' http://www.uniblitz.com/resources_filelibrary/ls2-3-6_10_16_08.pdf. [47] CHUO Precision Industrial, 'ALS-510-H1P,' http://www.chuo.co.jp/item_e/pdc100189e. [48] 楊金成、柯富祥、盧永坤、黃慧玲、朱鐵吉, 'I-line修飾光阻之熱分析及微影參數粹取之研究,' http://www.ndl.org.tw/cht/ndlcomm/P5_4/44.htm. [49] 國立臺灣大學工學院暨電機資訊學院奈米機電系統研究中心, '物質安全資料表:TMAH,' http://nems.ntu.edu.tw/NEMS-2008/images/stories/sds/TMAH.pdf. [50] Sil-more Industrial Ltd., 'Potting & Encapsulant: Silicone,' http://www.silmore.com.tw/product-app-02PE.htm. [51] Dow Corning, 'SylgardR 184 Silicone Elastomer Kit,' http://www2.dowcorning.com/DataFiles/090007c88020bcca.pdf. [52] Lumerical Solutions Inc., 'Choosing between symmetric and anti-symmetric BCs,' http://www.lumerical.com/fdtd_online_help/user_guide_symmetric_anti_symmetric.php. [53] Michael I. Haftel, Carl Schlockermann, and Girsh Blumberg, 'Role of cylindrical surface plasmons in enhanced transmission,' Applied Physics Letters, vol. 88, pp. 193104-3, 2006. [54] Michael I. Haftel, Carl Schlockermann, and G. Blumberg, 'Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,' Physical Review B, vol. 74, p. 235405, 2006. [55] Jian Fu, Hongtao Dong, and Wei Fang, 'Subwavelength focusing of light by a tapered microtube,' Applied Physics Letters, vol. 97, pp. 041114-3, 2010. [56] Heraeus, 'HSQ 300 Electrically Fused Quartz Glass,' http://base-materials.heraeus-quarzglas.com/media/webmedia_local/media/dokumente/CFQ099_HSQ100_300_700_fusedquartzglass.pdf. [57] Kenneth T. Brown and Dale G. Flaming, Advanced micropipette techniques for cell physiology. New York: Wiley, 1986. [58] Polymicro Technologies, 'Cleaving Procedure,' http://www.polymicro.com/catalog/A_2.htm. [59] Polymicro Technologies, 'Flexible Fused Silica Capillary Tubing,' http://www.polymicro.com/products/capillarytubing/products_capillarytubing_tsp_tsg.htm. [60] Polymicro Technologies, 'Polyimide Removal From Silica Fibers or Tubes,' http://www.polymicro.com/techsupport/techsupport_polyremov.htm. [61] NanoWorld, http://www.nanoworld.com/. [62] Nanosensors, http://www.nanosensors.com/. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27729 | - |
dc.description.abstract | 貝索光束之次波長聚焦能力可望能突破光學系統中焦深與聚焦點大小的連動關係,取代近場光學聚焦點短且操作不易之缺點。近年來產生貝索光束的方法陸續被提出,而Ebbesen等人提出表面電漿效應可增強金屬週期性結構之穿透率,且透過此結構產生之光束具有指向性後,本研究團隊陸續提出不同結構之光學頭。近年提出單圓環孔徑結構製作之光學頭,可產生具有次波長尺度之貝索光束,此光學頭可應用在微影製程及雷射加工上,製作出高深寬比之結構。本研究基於前人之前導性研究,使用拉伸中空毛細管材料之方式,製作穿透率較高之光學頭。此光學頭之製作方式以非微機電製程為主,可降低光學頭之生產成本。
本研究以製作具有次波長聚焦能力之光學頭為主旨,由中空毛細管材料及規格之選擇開始,討論拉伸材料之方式與參數調教,將毫米尺度之中空毛細管,以熱融拉伸之方式,製作出尖端為微米尺寸之光學頭。拉伸完成之光學頭將進行內部及外部之屏閉,確保耦合進入光學頭之光束以波導之形式在光學頭內做傳遞,其屏蔽之材料與方式都經過模擬與實驗測試。為確保光學頭入射光及出射光之品質,此光學頭需進行二端之表面加工來達成表面光學品質之要求。 光學頭之聚焦效應將透過模擬做更多討論,本研究使用時域有限差分法電磁波模擬軟體,對光學頭製作之各種參數進行模擬,討論其最佳之設計方式。接著為光學頭出光之光強分佈實驗,以自製之光學顯微系統觀察其出光距離與光強分佈之關係,討論其聚焦效應,同時與模擬之結果比對。最後嘗試將此光學頭實際使用在微影系統上,使用自製之曝光系統在AZ4620光阻上製作高深寬比之結構,以驗證光學頭長焦深之聚焦能力。為量測光阻高深寬比之結構,本研究嘗試許多不同之量測方式,也將在本論文中進行討論,以便讓未來的研究者能夠依據這些基礎來規劃更合適的量測方法。 | zh_TW |
dc.description.abstract | The sub-wavelength focusing ability of Bessel beam may provide us with a way to circumvent the closely interlocked relationship between the depth of focus and the spot size. In addition, Bessel beam may be able to bypass the short focal length associated with the light spot as well as the drawbacks of hard to manipulate light beams in near-field optics based systems. There are many methods proposed to generate Bessel beams in recent years. Ebbesen et al. found that illuminating a metallic film perforated with periodic subwavelength apertures led to unexpected large transmission and directional beaming effect. Following these studies, our research group proposed different structures of optical head. The subwavelength annular aperture SAA proposed in recent years formed the starting point of the research innovations disclosed in this thesis. The SAA optical head can be applied to micro lithography process and laser machining to produce high aspect ratio structures. After the preliminary study of using tapering capillary tube to produce optical head for better transmission the optical head developed in this thesis was fabricated by using non-MEMS process to reduce the cost.
The subject of this research work is to fabricate the subwavelength focusing optical head. Started from choosing the material and defining the specification, this thesis discussed the way of tapering and the method adapted to set parameters. Heat melting method was implemented to fabricate the optical head with micron sized tips. The optical head’s inner and outer sides were blocked to ensure the tapered structure can act as a waveguide to couple light beam completely through the optical head. The materials used to cover the capillary were identified by using simulation and the methods were verified by experiment. To ensure the quality of incident and injecting light beams, both ends of the optical head were polished to achieve optical quality. The focusing phenomenon will be discussed first with simulations. These studies use finite-difference time-domain method to do the electromagnetic simulation. Different parameters associated with the optical head were then identified to fabricate the optical head. In this work, light intensity profile experiment and lithography experiment were set up to prove the high depth-of-focus property of the optical head generated Bessel beam. A home-made microscope was used to measure the intensity profile at different distances from the optical head tip. The intensity profile will also be discussed by using simulation results. The lithography experiment developed to perform exposures that led to high aspect ratio hole in AZ4620 photoresist. The method tried to measure these holes will also be discussed in this thesis so as to provide a strong basis for future researchers along the requirements of identifying proper metrology methods. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:17:38Z (GMT). No. of bitstreams: 1 ntu-100-R98525081-1.pdf: 7238168 bytes, checksum: 92d5b63bc58c08ce9e69455e2a75c85d (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1 文獻回顧 1 1.1.1 繞射極限 1 1.1.2 拉針技術 2 1.1.3 近場光學微影技術 3 1.1.4 SAA結構與貝索光束微影系統 5 1.2 研究動機 8 1.3 論文架構 9 第二章 原理 10 2.1 貝索光束 10 2.2 狹縫理論 12 2.3 光纖波導與模態 14 第三章 實驗系統與架構 18 3.1 光學頭製作系統 18 3.1.1 拉針機 18 3.1.2 濺鍍機 20 3.1.3 聚焦離子束與電子束顯微系統 21 3.2 光路系統 22 3.2.1 光源 22 3.2.2 光學衰減濾鏡 22 3.2.3 電子快門 22 3.2.4 精密位移平台 23 3.2.5 數位顯微鏡 23 3.2.6 自製顯微鏡 24 3.2.7 自製夾具 25 3.2.8 光纖定位器 25 3.3 黃光製程與試片翻模 26 3.3.1 光阻選擇 26 3.3.2 曝光試片製作與顯影流程 26 3.3.3 PDMS成分與翻模流程 29 3.4 系統架構 31 3.4.1 光強實驗流程 32 3.4.2 曝光實驗流程 34 第四章 光學頭模擬 36 4.1 石英管光學頭實際結構模擬 36 4.2 參數討論 41 4.3 聚焦點分析 49 第五章 實驗結果分析與討論 54 5.1 光學頭製作 54 5.1.1 石英管光學頭 54 5.1.2 中空光纖光學頭 61 5.2 石英管光強實驗結果 66 5.2.1 光強實驗結果 66 5.2.2 光強實驗光點大小與焦長分析 68 5.3 光纖光強實驗結果 70 5.3.1 光強實驗結果 70 5.3.2 光強實驗光點大小與焦長分析及討論 72 5.4 曝光實驗結果 73 5.4.1 石英管光學頭曝光參數與結果 73 5.4.2 中空光纖光學頭曝光結果 76 5.4.3 光阻洞之深度分析 77 5.4.4 曝光結果討論 85 第六章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 87 參考文獻 88 | |
dc.language.iso | zh-TW | |
dc.title | 以拉伸毛細管研製適用於次波長微影系統之長焦深光學頭 | zh_TW |
dc.title | Tapering Capillary to Develop and Fabricate High Depth-of-focus Optical Head for Sub-wavelength Lithography System | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫啟光,林啟萬,李舒昇 | |
dc.subject.keyword | 貝索光束,次波長聚焦,拉伸材料,微影技術, | zh_TW |
dc.subject.keyword | Bessel beam,subwavelength focusing,tapering material,lithography method, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 7.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。