請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27718完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
| dc.contributor.author | Shih-Hao Zhan | en |
| dc.contributor.author | 詹世豪 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:17:05Z | - |
| dc.date.available | 2014-08-16 | |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-08-08 | |
| dc.identifier.citation | 1. Slock, J. A., and Stahly, D. P. (1974) J Bacteriol 120, 399-406
2. Thiebaud, D., Schutz, Y., Acheson, K., Jacot, E., Defronzo, R. A., Felber, J. P., and Jequier, E. (1983) Am J Physiol 244, E216-E221 3. Leoff, C., Saile, E., Rauvolfova, J., Quinn, C. P., Hoffmaster, A. R., Zhong, W., Mehta, A. S., Boons, G. J., Carlson, R. W., and Kannenberg, E. L. (2009) Glycobiology 19, 665-673 4. Nishiyama, Y. (2009) J Wood Sci 55, 241-249 5. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C., and Lasa, I. (2002) Mol Microbiol 43, 793-808 6. Brown, R. M. (2004) J Polym Sci Pol Chem 42, 487-495 7. Deshpande, M. V., ODonnell, R., and Gooday, G. W. (1997) Fems Microbiology Letters 152, 327-332 8. Buleon, A., Colonna, P., Planchot, V., and Ball, S. (1998) Int J Biol Macromol 23, 85-112 9. Copeland, L., Blazek, J., Salman, H., and Tang, M. C. M. (2009) Food Hydrocolloid 23, 1527-1534 10. Schnaar, R. L. (2004) Arch Biochem Biophys 426, 163-172 11. Grossi, I. M., Hatfield, J. S., Fitzgerald, L. A., Newcombe, M., Taylor, J. D., and Honn, K. V. (1988) FASEB J 2, 2385-2395 12. Swann, D. A., Slayter, H. S., and Silver, F. H. (1981) J Biol Chem 256, 5921-5925 13. Biondo-Simoes Mde, L., Petrauskas, R., Dobrowolski, A. G., Godoy, G., Kaiber, F., and Ioshii, S. O. (2007) Acta Cir Bras 22 Suppl 1, 29-33 14. Stephen, A. M., Phillips, G. O., and Williams, P. A. (2006) CRC Press, 676 15. Chen, X., Hu, Z. P., Yang, X. X., Huang, M., Gao, Y. H., Tang, W. B., Chan, S. Y., Dai, X. H., Ye, J. X., Ho, P. C. L., Duan, W., Yang, H. Y., Zhu, Y. Z., and Zhou, S. F. (2006) Int Immunopharmacol 6, 499-508 16. Hsiao, G., Shen, M. Y., Lin, K. H., Lan, M. H., Wu, L. Y., Chou, D. S., Lin, C. H., Su, C. H., and Sheu, J. R. (2003) J Agric Food Chem 51, 3302-3308 17. Munarin, F., Petrini, P., Fare, S., and Tanzi, M. C. (2010) J Mater Sci-Mater M 21, 365-375 18. d'Ayala, G. G., Malinconico, M., and Laurienzo, P. (2008) Molecules 13, 2069-2106 19. Howling, G. I., Dettmar, P. W., Goddard, P. A., Hampson, F. C., Dornish, M., and Wood, E. J. (2001) Biomaterials 22, 2959-2966 20. Schiller, R. N., Barrager, E., Schauss, A. G., and Nichols, E. J. (2001) The Journal of the American Nutraceutical Association 4, 34-41 21. Chang, T. T., and Chou, W. N. (1995) Mycol Res 99, 756-758 22. Geethangili, M., and Tzeng, Y. M. (2009) Evid Based Complement Alternat Med 23. Zang, M., and Su, Q. (1990) Acta Bot Yun 12, 395-396 24. Wu, S. H., Ryvarden, L., and Chang, T. T. (1997) Bot Bull Acad Sinica 38, 273-275 25. Wu, S. H., Yu, Z. H., Dai, Y. C., Chen, C. T., Su, C. H., Chen, L. C., Hsu, W. C., and Hwang, G. Y. (2004) Fungal Science 19, 109-116 26. Chang, T. T., and Chou, W. N. (2004) Bot Bull Acad Sinica 45, 347-352 27. Wang, W. N., Wu, R. Y., and Ko, W. H. (2005) Bot Bull Acad Sinica 46, 217-222 28. Wang, G. J., Tseng, H. W., Chou, C. J., Tsai, T. H., Chen, C. T., and Lu, M. K. (2003) Life Sci 73, 2769-2783 29. Cherng, I. H., Wu, D. P., and Chiang, H. C. (1996) Phytochemistry 41, 263-267 30. Yang, S. W., Shen, Y. C., and Chen, C. H. (1996) Phytochemistry 41, 1389-1392 31. Nakamura, N., Hirakawa, A., Gao, J. J., Kakuda, H., Shiro, M., Komatsu, Y., Sheu, C. C., and Hattori, M. (2004) J Nat Prod 67, 46-48 32. Chen, J. J., Lin, W. J., Liao, C. H., and Shieh, P. C. (2007) J Nat Prod 70, 989-992 33. Wu, D. P., and Chiang, H. C. (1995) J Chin Chem Soc-Taip 42, 797-800 34. Ao, Z. H., Xu, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., and Dou, W. F. (2009) J Ethnopharmacol 121, 194-212 35. Lee, I. H., Huang, R. L., Chen, C. T., Chen, H. C., Hsu, W. C., and Lu, M. K. (2002) FEMS Microbiol Lett 209, 63-67 36. Chen, C. C., Shiao, Y. J., Lin, R. D., Shao, Y. Y., Lai, M. N., Lin, C. C., Ng, L. T., and Kuo, Y. H. (2006) J Nat Prod 69, 689-691 37. Lu, M. C., Hwang, S. L., Chang, F. R., Chen, Y. H., Chang, T. T., Hung, C. S., Wang, C. L., Chu, Y. H., Pan, S. H., and Wu, Y. C. (2009) Food Chem 113, 1049-1057 38. Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S., and Ho, C. K. (1997) Int J Cancer 70, 699-705 39. Cheng, P. C., Hsu, C. Y., Chen, C. C., and Lee, K. M. (2008) Toxicol Appl Pharm 227, 291-298 40. Russell, R., and Paterson, M. (2006) Phytochemistry 67, 1985-2001 41. Gao, Y. H., Gao, H., Chan, E., Tang, W. B., Xu, A. L., Yang, H. Y., Huang, M., Lan, J., Li, X. T., Duan, W., Xu, C. J., and Zhou, S. F. (2005) Immunol Invest 34, 171-198 42. Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., and Smith, F. (1951) Nature 168, 167 43. Waeghe, T. J., Darvill, A. G., Mcneil, M., and Albersheim, P. (1983) Carbohyd Res 123, 281-304 44. Wasser, S. P. (2002) Appl Microbiol Biot 60, 258-274 45. Wang, Y. Y., Khoo, K. H., Chen, S. T., Lin, C. C., Wong, C. H., and Lin, C. H. (2002) Bioorgan Med Chem 10, 1057-1062 46. Lin, M. H., Yang, Y. L., Chen, Y. P., Hua, K. F., Lu, C. P., Sheu, F., Lin, G. H., Tsay, S. S., Liang, S. M., and Wu, S. H. (2011) J Biol Chem 286, 17736-17745 47. Hua, K. F., Yang, F. L., Yang, Y. L., Liao, P. C., Chou, J. C., Tsai, K. C., Yang, A. S., Sheu, F., Lin, T. L., Hsieh, P. F., Wang, J. T., and Wu, S. H. (2011) Journal of Biological Chemistry 286, 21041-21051 48. Chen, H. S., Tsai, Y. F., Lin, S., Lin, C. C., Khoo, K. H., Lin, C. H., and Wong, C. H. (2004) Bioorg Med Chem 12, 5595-5601 49. Cheng, J. J., Huang, N. K., Chang, T. T., Wang, D. L., and Lu, M. K. (2005) Life Sciences 76, 3029-3042 50. Sherwood, E. R., Williams, D. L., McNamee, R. B., Jones, E. L., Browder, I. W., and Di Luzio, N. R. (1987) Int J Immunopharmacol 9, 261-267 51. Williams, D. L., Browder, I. W., and Di Luzio, N. R. (1983) Surgery 93, 448-454 52. Browder, W., Williams, D., Sherwood, E., McNamee, R., Jones, E., and DiLuzio, N. (1987) Surgery 102, 206-214 53. Muller, A., Rice, P. J., Ensley, H. E., Coogan, P. S., Kalbfleisch, J. H., Kelley, J. L., Love, E. J., Portera, C. A., Ha, T. Z., Browder, I. W., and Williams, D. L. (1996) J Immunol 156, 3418-3425 54. Chihara, G., Maeda, Y., Hamuro, J., Sasaki, T., and Fukuoka, F. (1969) Nature 222, 687-688 55. Bao, X. F., Liu, C. P., Fang, J. N., and Li, X. Y. (2001) Carbohyd Res 332, 67-74 56. Wagner, H., Stuppner, H., Schafer, W., and Zenk, M. (1988) Phytochemistry 27, 119-126 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27718 | - |
| dc.description.abstract | 牛樟芝傳統上多用來做為中藥用,先前的研究也指出,牛樟芝多醣體擁有免疫調節上的活性,而對於它的多醣的結構鑑定尚未明瞭。
首先利用氰化甲烷以及冷熱水來萃取牛樟芝菌絲體,之後將水層所得到的多醣再經由膠體過濾層析法來分離,得到了三個不同分子量大小的多醣體,依序為 HMPS、LT70和GT70。根據生物活性以及多醣產量的結果,我們選擇了LT70並利用離子交換樹脂層析法來做進一步的純化萃取並且獲得了三部分的多醣樣本(QA、QB和QC)。 在本篇研究中,牛樟芝多醣刺激了一氧化氮(NO)產生,並且也進一步測試了牛樟芝參與老鼠巨噬細胞在腫瘤壞死因子-α(TNF-α)以及細胞介質素-6(IL-6)的產生。由氣相層析質譜儀的分析結果上,QB的主要醣類成分組成為甘露糖和半乳糖且兩者比例約為4:1。同時也利用氣相層析質譜儀分析在QB樣本中含有:鍵結terminal mannopyranose,1,2 linked galactopyranose,1,3 linked mannopyranose,以及 1,2,6 linked mannopyrnose。同時並利用化學以及光譜分析來鑑定由牛樟芝所分離出的活性多醣QB結構,初步推測應為: 而單醣D應是接在A或C的6號位置的一個分支醣基。然而完整的結構待需進一步的分析來鑑定。 | zh_TW |
| dc.description.abstract | Antrodia cinnamomea is used as traditional Chinese medicine. In previous studies, polysaccharides from A. cinnamomea possess immune-modulating activity, and the structure determination is still not clear.
Mycelia of A. cinnamomea were first extracted with acetonitrile and followed with hot and cold water, in which the extract was further separated by gel filtration chromatography to give three fractions containing polysaccharides HMPS, LT70, and GT70. Due to the biological activities and amounts of polysaccharides, LT70 was selected for further purification and identification. By using ion exchange chromatography, LT70 was separated into three polysaccharide fractions; QA, QB, and QC. In the present study, A. cinnamomea polysaccharides participated in the stimulation of nitric oxide(NO) production and stimulation of murine wild-type macrophages predominantly in tumor necrosis factor-α (TNF-α) and interleukin-6(IL-6) production. From sugar analysis by gas-chromatography mass spectrum(GC-MS), the major components of A. cinnamomea polysaccharides QB are mannose and galactose in the molar ratio of 4:1. The main glycosidic linkages were also characterized by GC-MS. The results showed that there are terminal mannopyranose, 1,2 linked galactopyranose, 1,3 linked mannopyranose, and 1,2,6 linked mannopyranose. The structures of bioactive polysaccharides from A. cinnamomea were determined by chemical and NMR methods, and we preliminarily presume that the structure is as following: And D might be a 6 linked monosaccharide to A or C as a branched terminal residue.The completed structure must be determined by further analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:17:05Z (GMT). No. of bitstreams: 1 ntu-99-R98b46028-1.pdf: 986521 bytes, checksum: a988ac739eab04f71c87094fec492a98 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 謝誌 ii
中文摘要 iii Abstract v Chapter 1 Introduction 1 1-1 Polysaccharides 1 1-1-1 Structural polysaccharides 1 1-1-2 Storage polysaccharides 2 1-2 Application of polysaccharides- as Food and Biomedicals 3 1-2-1 Food polysaccharides 3 1-2-2 Biomedical polysaccharides 4 1-3 Antrodia cinnamomea 4 1-3-1 Characteristic of Antrodia cinnamomea 4 1-3-2 Origination of Antrodia cinnamomea 5 1-3-3 Circumstance of Antrodia cinnamomea 6 1-3-4 Usages and bioactive effects of Antrodia cinnamomea 7 1-4 Fungal studies: Polysaccharides in stimulation of biological 7 activities and immune system 7 Chapter 2 Materials and Methods 10 2-1 Extraction of Polysaccharides 10 2-2 Chemicals and Antibodies 10 2-3 Purification of Antrodia cinnamomea polysaccharides 11 2-4 Sugar compositions and Linkages 11 2-5 Nuclear magnetic resonance spectroscopy 12 2-6 Cell Cultures 13 2-7 Nitric oxide detection 13 2-8 ELISA 13 Chapter 3 Results 15 3-1 Extraction of Antrodia cinnamomea polysaccharides 15 3-2 Separation of Antrodia cinnamomea polysaccharides 15 3-3 Purification by ion exchange chromatography Mono-Q 16 3-4 Immunoactive analysis of Antrodia cinnamomea polysaccharides 16 3-5 Sugar compositions and linkage analysis 17 3-6 NMR analysis 19 Chapter 4 Discussion 21 4-1 Immunoactive properties in Antrodia cinnamomea 21 4-2 Structure determination of immunoactive Antrodia cinnamomea polysaccharides 23 Figure 25 Figure.1 Gel filtration chromatography 25 Figure. 2 Result of Reflex Index detector 26 Figure.3 Purified polysaccharides LT70 visualized by TLC 27 Figure.4 NO production of extracted Antrodia cinnamomea mycelia polysaccharides 28 Figure.5 TNF-α production of extracted Antrodia cinnamomea mycelia polysaccharides 29 Figure.6 IL-6 production of extracted Antrodia cinnamomea mycelia polysaccharides 30 Figure.7 TNF-α production of purified Antrodia cinnamomea polysaccharides 31 Figure.8-(A) 1H NMR spectrum of Antrodia cinnamomea polysaccharides LT70 32 Figure.8-(B) 1H NMR spectrum of Antrodia cinnamomea polysaccharides GT70 33 Figure.9 1H NMR spectrum of Antrodia cinnamomea polysaccharides QA, QB, and QC 34 Figure.10 1H NMR spectrum of Antrodia cinnamomea polysaccharides QB at five different temperatures 35 Figure.11 1H NMR spectrum of Antrodia cinnamomea polysaccharides QB at 308K 36 Figure.12 13C NMR spectrum of Antrodia cinnamomea polysaccharides QB 37 Figure.13 DEPT-135 NMR spectrum compared with 13C NMR spectrum of Antrodia cinnamomea polysaccharides QB 38 Figure.14-A 1H/1H COSY correlation of Antrodia cinnamomea polysaccharides QB 39 Figure.14-B Chemical shifts 3.5 to 4.4 enlarged drawing of COSY spectrum 40 Figure.15 1H/13C HSQC correlation of Antrodia cinnamomea polysaccharides QB 41 Figure. 16 1H/13C HMBC correlation of Antrodia cinnamomea polysaccharides QB 42 Figure.17 1D TOCSY spectra of Antrodia cinnamomea polysaccharides QB 43 Figure.18 Preliminary presumed structure of Antrodia cinnamomea polysaccharides QB 44 Table 45 Table. 1 Extraction flow chart of Antrodia cinnamomea polysaccharides and the yields 45 Table.2 Sugar content percentage of extracted Antrodia cinnamomea polysaccharides 46 Table.3 Results of linkage analysis of extracted Antrodia cinnamomea polysaccharides 47 Table.4 Chemical shift assignments of 1H NMR and 13C NMR spectra of QB on the basis of HSQC, HMBC, COSY and TOCSY 49 References 51 | |
| dc.language.iso | en | |
| dc.subject | 腫瘤壞死因子 | zh_TW |
| dc.subject | 多醣 | zh_TW |
| dc.subject | 一氧化氮 | zh_TW |
| dc.subject | 牛樟芝 | zh_TW |
| dc.subject | 免疫活性 | zh_TW |
| dc.subject | 膠體過濾 | zh_TW |
| dc.subject | 氣相層析質譜儀 | zh_TW |
| dc.subject | NO | en |
| dc.subject | Antrodia cinnamomea | en |
| dc.subject | polysaccharides | en |
| dc.subject | immunoactivity | en |
| dc.subject | gel filtraton | en |
| dc.subject | GC-MS | en |
| dc.subject | TNF | en |
| dc.title | 牛樟芝多醣體之免疫活性分析及結構鑑定 | zh_TW |
| dc.title | Structural determination of immunoactive polysaccharides from Antrodia cinnamomea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 花國鋒(Kuo-Feng Hua),趙國評(Louis Kuo-Ping Chao),廖志中(Chih-Chuang Liaw),王賢達(Hsin-Ta Wang) | |
| dc.subject.keyword | 牛樟芝,多醣,免疫活性,膠體過濾,氣相層析質譜儀,腫瘤壞死因子,一氧化氮, | zh_TW |
| dc.subject.keyword | Antrodia cinnamomea,polysaccharides,immunoactivity,gel filtraton,GC-MS,TNF,NO, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-08 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 963.4 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
