Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳世雄(Shih-Hsiung Wu)
dc.contributor.authorShih-Hao Zhanen
dc.contributor.author詹世豪zh_TW
dc.date.accessioned2021-06-12T18:17:05Z-
dc.date.available2014-08-16
dc.date.copyright2011-08-16
dc.date.issued2010
dc.date.submitted2011-08-08
dc.identifier.citation1. Slock, J. A., and Stahly, D. P. (1974) J Bacteriol 120, 399-406
2. Thiebaud, D., Schutz, Y., Acheson, K., Jacot, E., Defronzo, R. A., Felber, J. P., and Jequier, E. (1983) Am J Physiol 244, E216-E221
3. Leoff, C., Saile, E., Rauvolfova, J., Quinn, C. P., Hoffmaster, A. R., Zhong, W., Mehta, A. S., Boons, G. J., Carlson, R. W., and Kannenberg, E. L. (2009) Glycobiology 19, 665-673
4. Nishiyama, Y. (2009) J Wood Sci 55, 241-249
5. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C., and Lasa, I. (2002) Mol Microbiol 43, 793-808
6. Brown, R. M. (2004) J Polym Sci Pol Chem 42, 487-495
7. Deshpande, M. V., ODonnell, R., and Gooday, G. W. (1997) Fems Microbiology Letters 152, 327-332
8. Buleon, A., Colonna, P., Planchot, V., and Ball, S. (1998) Int J Biol Macromol 23, 85-112
9. Copeland, L., Blazek, J., Salman, H., and Tang, M. C. M. (2009) Food Hydrocolloid 23, 1527-1534
10. Schnaar, R. L. (2004) Arch Biochem Biophys 426, 163-172
11. Grossi, I. M., Hatfield, J. S., Fitzgerald, L. A., Newcombe, M., Taylor, J. D., and Honn, K. V. (1988) FASEB J 2, 2385-2395
12. Swann, D. A., Slayter, H. S., and Silver, F. H. (1981) J Biol Chem 256, 5921-5925
13. Biondo-Simoes Mde, L., Petrauskas, R., Dobrowolski, A. G., Godoy, G., Kaiber, F., and Ioshii, S. O. (2007) Acta Cir Bras 22 Suppl 1, 29-33
14. Stephen, A. M., Phillips, G. O., and Williams, P. A. (2006) CRC Press, 676
15. Chen, X., Hu, Z. P., Yang, X. X., Huang, M., Gao, Y. H., Tang, W. B., Chan, S. Y., Dai, X. H., Ye, J. X., Ho, P. C. L., Duan, W., Yang, H. Y., Zhu, Y. Z., and Zhou, S. F. (2006) Int Immunopharmacol 6, 499-508
16. Hsiao, G., Shen, M. Y., Lin, K. H., Lan, M. H., Wu, L. Y., Chou, D. S., Lin, C. H., Su, C. H., and Sheu, J. R. (2003) J Agric Food Chem 51, 3302-3308
17. Munarin, F., Petrini, P., Fare, S., and Tanzi, M. C. (2010) J Mater Sci-Mater M 21, 365-375
18. d'Ayala, G. G., Malinconico, M., and Laurienzo, P. (2008) Molecules 13, 2069-2106
19. Howling, G. I., Dettmar, P. W., Goddard, P. A., Hampson, F. C., Dornish, M., and Wood, E. J. (2001) Biomaterials 22, 2959-2966
20. Schiller, R. N., Barrager, E., Schauss, A. G., and Nichols, E. J. (2001) The Journal of the American Nutraceutical Association 4, 34-41
21. Chang, T. T., and Chou, W. N. (1995) Mycol Res 99, 756-758
22. Geethangili, M., and Tzeng, Y. M. (2009) Evid Based Complement Alternat Med
23. Zang, M., and Su, Q. (1990) Acta Bot Yun 12, 395-396
24. Wu, S. H., Ryvarden, L., and Chang, T. T. (1997) Bot Bull Acad Sinica 38, 273-275
25. Wu, S. H., Yu, Z. H., Dai, Y. C., Chen, C. T., Su, C. H., Chen, L. C., Hsu, W. C., and Hwang, G. Y. (2004) Fungal Science 19, 109-116
26. Chang, T. T., and Chou, W. N. (2004) Bot Bull Acad Sinica 45, 347-352
27. Wang, W. N., Wu, R. Y., and Ko, W. H. (2005) Bot Bull Acad Sinica 46, 217-222
28. Wang, G. J., Tseng, H. W., Chou, C. J., Tsai, T. H., Chen, C. T., and Lu, M. K. (2003) Life Sci 73, 2769-2783
29. Cherng, I. H., Wu, D. P., and Chiang, H. C. (1996) Phytochemistry 41, 263-267
30. Yang, S. W., Shen, Y. C., and Chen, C. H. (1996) Phytochemistry 41, 1389-1392
31. Nakamura, N., Hirakawa, A., Gao, J. J., Kakuda, H., Shiro, M., Komatsu, Y., Sheu, C. C., and Hattori, M. (2004) J Nat Prod 67, 46-48
32. Chen, J. J., Lin, W. J., Liao, C. H., and Shieh, P. C. (2007) J Nat Prod 70, 989-992
33. Wu, D. P., and Chiang, H. C. (1995) J Chin Chem Soc-Taip 42, 797-800
34. Ao, Z. H., Xu, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., and Dou, W. F. (2009) J Ethnopharmacol 121, 194-212
35. Lee, I. H., Huang, R. L., Chen, C. T., Chen, H. C., Hsu, W. C., and Lu, M. K. (2002) FEMS Microbiol Lett 209, 63-67
36. Chen, C. C., Shiao, Y. J., Lin, R. D., Shao, Y. Y., Lai, M. N., Lin, C. C., Ng, L. T., and Kuo, Y. H. (2006) J Nat Prod 69, 689-691
37. Lu, M. C., Hwang, S. L., Chang, F. R., Chen, Y. H., Chang, T. T., Hung, C. S., Wang, C. L., Chu, Y. H., Pan, S. H., and Wu, Y. C. (2009) Food Chem 113, 1049-1057
38. Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S., and Ho, C. K. (1997) Int J Cancer 70, 699-705
39. Cheng, P. C., Hsu, C. Y., Chen, C. C., and Lee, K. M. (2008) Toxicol Appl Pharm 227, 291-298
40. Russell, R., and Paterson, M. (2006) Phytochemistry 67, 1985-2001
41. Gao, Y. H., Gao, H., Chan, E., Tang, W. B., Xu, A. L., Yang, H. Y., Huang, M., Lan, J., Li, X. T., Duan, W., Xu, C. J., and Zhou, S. F. (2005) Immunol Invest 34, 171-198
42. Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., and Smith, F. (1951) Nature 168, 167
43. Waeghe, T. J., Darvill, A. G., Mcneil, M., and Albersheim, P. (1983) Carbohyd Res 123, 281-304
44. Wasser, S. P. (2002) Appl Microbiol Biot 60, 258-274
45. Wang, Y. Y., Khoo, K. H., Chen, S. T., Lin, C. C., Wong, C. H., and Lin, C. H. (2002) Bioorgan Med Chem 10, 1057-1062
46. Lin, M. H., Yang, Y. L., Chen, Y. P., Hua, K. F., Lu, C. P., Sheu, F., Lin, G. H., Tsay, S. S., Liang, S. M., and Wu, S. H. (2011) J Biol Chem 286, 17736-17745
47. Hua, K. F., Yang, F. L., Yang, Y. L., Liao, P. C., Chou, J. C., Tsai, K. C., Yang, A. S., Sheu, F., Lin, T. L., Hsieh, P. F., Wang, J. T., and Wu, S. H. (2011) Journal of Biological Chemistry 286, 21041-21051
48. Chen, H. S., Tsai, Y. F., Lin, S., Lin, C. C., Khoo, K. H., Lin, C. H., and Wong, C. H. (2004) Bioorg Med Chem 12, 5595-5601
49. Cheng, J. J., Huang, N. K., Chang, T. T., Wang, D. L., and Lu, M. K. (2005) Life Sciences 76, 3029-3042
50. Sherwood, E. R., Williams, D. L., McNamee, R. B., Jones, E. L., Browder, I. W., and Di Luzio, N. R. (1987) Int J Immunopharmacol 9, 261-267
51. Williams, D. L., Browder, I. W., and Di Luzio, N. R. (1983) Surgery 93, 448-454
52. Browder, W., Williams, D., Sherwood, E., McNamee, R., Jones, E., and DiLuzio, N. (1987) Surgery 102, 206-214
53. Muller, A., Rice, P. J., Ensley, H. E., Coogan, P. S., Kalbfleisch, J. H., Kelley, J. L., Love, E. J., Portera, C. A., Ha, T. Z., Browder, I. W., and Williams, D. L. (1996) J Immunol 156, 3418-3425
54. Chihara, G., Maeda, Y., Hamuro, J., Sasaki, T., and Fukuoka, F. (1969) Nature 222, 687-688
55. Bao, X. F., Liu, C. P., Fang, J. N., and Li, X. Y. (2001) Carbohyd Res 332, 67-74
56. Wagner, H., Stuppner, H., Schafer, W., and Zenk, M. (1988) Phytochemistry 27, 119-126
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27718-
dc.description.abstract牛樟芝傳統上多用來做為中藥用,先前的研究也指出,牛樟芝多醣體擁有免疫調節上的活性,而對於它的多醣的結構鑑定尚未明瞭。
  首先利用氰化甲烷以及冷熱水來萃取牛樟芝菌絲體,之後將水層所得到的多醣再經由膠體過濾層析法來分離,得到了三個不同分子量大小的多醣體,依序為 HMPS、LT70和GT70。根據生物活性以及多醣產量的結果,我們選擇了LT70並利用離子交換樹脂層析法來做進一步的純化萃取並且獲得了三部分的多醣樣本(QA、QB和QC)。
  在本篇研究中,牛樟芝多醣刺激了一氧化氮(NO)產生,並且也進一步測試了牛樟芝參與老鼠巨噬細胞在腫瘤壞死因子-α(TNF-α)以及細胞介質素-6(IL-6)的產生。由氣相層析質譜儀的分析結果上,QB的主要醣類成分組成為甘露糖和半乳糖且兩者比例約為4:1。同時也利用氣相層析質譜儀分析在QB樣本中含有:鍵結terminal mannopyranose,1,2 linked galactopyranose,1,3 linked mannopyranose,以及 1,2,6 linked mannopyrnose。同時並利用化學以及光譜分析來鑑定由牛樟芝所分離出的活性多醣QB結構,初步推測應為:
  而單醣D應是接在A或C的6號位置的一個分支醣基。然而完整的結構待需進一步的分析來鑑定。
zh_TW
dc.description.abstractAntrodia cinnamomea is used as traditional Chinese medicine. In previous studies, polysaccharides from A. cinnamomea possess immune-modulating activity, and the structure determination is still not clear.
Mycelia of A. cinnamomea were first extracted with acetonitrile and followed with hot and cold water, in which the extract was further separated by gel filtration chromatography to give three fractions containing polysaccharides HMPS, LT70, and GT70. Due to the biological activities and amounts of polysaccharides, LT70 was selected for further purification and identification. By using ion exchange chromatography, LT70 was separated into three polysaccharide fractions; QA, QB, and QC.
In the present study, A. cinnamomea polysaccharides participated in the stimulation of nitric oxide(NO) production and stimulation of murine wild-type macrophages predominantly in tumor necrosis factor-α (TNF-α) and interleukin-6(IL-6) production.
From sugar analysis by gas-chromatography mass spectrum(GC-MS), the major components of A. cinnamomea polysaccharides QB are mannose and galactose in the molar ratio of 4:1. The main glycosidic linkages were also characterized by GC-MS. The results showed that there are terminal mannopyranose, 1,2 linked galactopyranose, 1,3 linked mannopyranose, and 1,2,6 linked mannopyranose. The structures of bioactive polysaccharides from A. cinnamomea were determined by chemical and NMR methods, and we preliminarily presume that the structure is as following:
And D might be a 6 linked monosaccharide to A or C as a branched terminal residue.The completed structure must be determined by further analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:17:05Z (GMT). No. of bitstreams: 1
ntu-99-R98b46028-1.pdf: 986521 bytes, checksum: a988ac739eab04f71c87094fec492a98 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝誌 ii
中文摘要 iii
Abstract v
Chapter 1 Introduction 1
1-1 Polysaccharides 1
1-1-1 Structural polysaccharides 1
1-1-2 Storage polysaccharides 2
1-2 Application of polysaccharides- as Food and Biomedicals 3
1-2-1 Food polysaccharides 3
1-2-2 Biomedical polysaccharides 4
1-3 Antrodia cinnamomea 4
1-3-1 Characteristic of Antrodia cinnamomea 4
1-3-2 Origination of Antrodia cinnamomea 5
1-3-3 Circumstance of Antrodia cinnamomea 6
1-3-4 Usages and bioactive effects of Antrodia cinnamomea
7
1-4 Fungal studies: Polysaccharides in stimulation of biological 7
activities and immune system 7
Chapter 2 Materials and Methods 10
2-1 Extraction of Polysaccharides 10
2-2 Chemicals and Antibodies 10
2-3 Purification of Antrodia cinnamomea polysaccharides
11
2-4 Sugar compositions and Linkages 11
2-5 Nuclear magnetic resonance spectroscopy 12
2-6 Cell Cultures 13
2-7 Nitric oxide detection 13
2-8 ELISA 13
Chapter 3 Results 15
3-1 Extraction of Antrodia cinnamomea polysaccharides 15
3-2 Separation of Antrodia cinnamomea polysaccharides 15
3-3 Purification by ion exchange chromatography Mono-Q 16
3-4 Immunoactive analysis of Antrodia cinnamomea polysaccharides 16
3-5 Sugar compositions and linkage analysis 17
3-6 NMR analysis 19
Chapter 4 Discussion 21
4-1 Immunoactive properties in Antrodia cinnamomea 21
4-2 Structure determination of immunoactive Antrodia cinnamomea polysaccharides 23
Figure 25
Figure.1 Gel filtration chromatography 25
Figure. 2 Result of Reflex Index detector 26
Figure.3 Purified polysaccharides LT70 visualized by TLC
27
Figure.4 NO production of extracted Antrodia cinnamomea mycelia polysaccharides 28
Figure.5 TNF-α production of extracted Antrodia cinnamomea mycelia polysaccharides 29
Figure.6 IL-6 production of extracted Antrodia cinnamomea mycelia polysaccharides 30
Figure.7 TNF-α production of purified Antrodia cinnamomea polysaccharides 31
Figure.8-(A) 1H NMR spectrum of Antrodia cinnamomea polysaccharides LT70 32
Figure.8-(B) 1H NMR spectrum of Antrodia cinnamomea polysaccharides GT70 33
Figure.9 1H NMR spectrum of Antrodia cinnamomea polysaccharides QA, QB, and QC 34
Figure.10 1H NMR spectrum of Antrodia cinnamomea polysaccharides QB at five different temperatures 35
Figure.11 1H NMR spectrum of Antrodia cinnamomea polysaccharides QB at 308K 36
Figure.12 13C NMR spectrum of Antrodia cinnamomea polysaccharides QB 37
Figure.13 DEPT-135 NMR spectrum compared with 13C NMR spectrum of Antrodia cinnamomea polysaccharides QB 38
Figure.14-A 1H/1H COSY correlation of Antrodia cinnamomea polysaccharides QB 39
Figure.14-B Chemical shifts 3.5 to 4.4 enlarged drawing of COSY spectrum 40
Figure.15 1H/13C HSQC correlation of Antrodia cinnamomea polysaccharides QB 41
Figure. 16 1H/13C HMBC correlation of Antrodia cinnamomea polysaccharides QB 42
Figure.17 1D TOCSY spectra of Antrodia cinnamomea polysaccharides QB 43
Figure.18 Preliminary presumed structure of Antrodia cinnamomea polysaccharides QB 44
Table 45
Table. 1 Extraction flow chart of Antrodia cinnamomea polysaccharides and the yields 45
Table.2 Sugar content percentage of extracted Antrodia cinnamomea polysaccharides 46
Table.3 Results of linkage analysis of extracted Antrodia cinnamomea polysaccharides 47
Table.4 Chemical shift assignments of 1H NMR and 13C NMR spectra of QB on the basis of HSQC, HMBC, COSY and TOCSY
49
References 51
dc.language.isoen
dc.subject腫瘤壞死因子zh_TW
dc.subject多醣zh_TW
dc.subject一氧化氮zh_TW
dc.subject牛樟芝zh_TW
dc.subject免疫活性zh_TW
dc.subject膠體過濾zh_TW
dc.subject氣相層析質譜儀zh_TW
dc.subjectNOen
dc.subjectAntrodia cinnamomeaen
dc.subjectpolysaccharidesen
dc.subjectimmunoactivityen
dc.subjectgel filtratonen
dc.subjectGC-MSen
dc.subjectTNFen
dc.title牛樟芝多醣體之免疫活性分析及結構鑑定zh_TW
dc.titleStructural determination of immunoactive polysaccharides from Antrodia cinnamomeaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee花國鋒(Kuo-Feng Hua),趙國評(Louis Kuo-Ping Chao),廖志中(Chih-Chuang Liaw),王賢達(Hsin-Ta Wang)
dc.subject.keyword牛樟芝,多醣,免疫活性,膠體過濾,氣相層析質譜儀,腫瘤壞死因子,一氧化氮,zh_TW
dc.subject.keywordAntrodia cinnamomea,polysaccharides,immunoactivity,gel filtraton,GC-MS,TNF,NO,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2011-08-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
963.4 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved