Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27715
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 蔡曜陽 | |
dc.contributor.author | Chi-Lin Chiu | en |
dc.contributor.author | 邱季霖 | zh_TW |
dc.date.accessioned | 2021-06-12T18:16:56Z | - |
dc.date.available | 2009-09-03 | |
dc.date.copyright | 2007-09-03 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-29 | |
dc.identifier.citation | 參考文獻
[1] 王英裕,GPS 在手機上的發展現況(下),工研院經資中心ITIS 計畫,2002 [2] E. Mounier, M. Provence, Technologies and markets trends in biochips and microfluidic chips, mstnews, International Newsletter on MICROSYSTEMS and MEMS, pp.4-16, November 2002 [3] D. J. Laser, J. G. Santiago, A review of micropumps, Journal of Micromechanics and Microengineering, vol.14, No.6, pp. R35-R64, 2004 [4] E. Wolfgang, Electrochemistry and Microsystems, Electrochimica Acta, Vol.48, pp.2857-2868, 2003 [5] G. A. Macdonald, Accelerometers for vehicle chassis systems, Chassis Electronics, IEE Colloquium, pp. 1/1-1/2, 1990 [6] H. Jun, T. R. Way, B. Löfgren, M. Landström, A. C. Bailey, Dynamic load and inflation pressure effects on contact pressures of a forestry forwarder tire, Journal of Terramechanics Vol.41, pp. 209-222, 2004 [7] R. F. Blackwelder, D. Liu, W. Jeon, Velocity perturbations produced by oscillating delta wing actuators in the wall region, Experimental Thermal and Fluid Science Vol.16, pp. 32-40, 1998 [8] 楊啟榮,微系統LIGA 製程技術,科儀新知,Vol. 19, No.4, pp.4-17, 1998. [9] 吳清沂、鍾震桂,微機電系統技術簡介,科儀新知,Vol. 18, No. 3, pp26-40, 1996. [10] 邱燦賓、施敏,電子束微影技術,科學發展月刊 National Science Council Monthly, Vol. 28, No.6, pp.423-434. [11] Ernest Bassous, Fabricated of nozzle three-dimensional microstructures by the anisotropic etching of (100) and (110) Silicon, IEEE Transaction on Electron Devices, Vol. ED-25, No.10, pp.1178-1184, 1978. [12] Meint J. de Boer, R. Willem Tjerkstra, J.W.(Erwin) Berenschot, Henri V.Jansen, G.J. Burger, J.G.E. (Han) Gardeniers, Miko Elwenspoke, and Albert van den Berg, Micromachining of Buried Micro Channels in Silicon, Journal of Microelectromechanical System, Vol.9, No.1, pp.94-103, 2000. [13] S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Rouillay, P.Bernéde, and W. Daniau, Microgrippers fabricated by the LIGA technology, Sensors and Actuators A, Vol.58, pp.265-272, 1997. [14] A. Schmidt, W. Ehrfeld, H. Lehr, L. Müller, F. Reuther, M. Schmidt, and Th.Zetterer, Aligned Double Exposure in Deep X-ray Lithography, Microelectronic Engineering, Vol.30, pp.235-238,1996. [15] Z. Yu, T. Masuzawa, M. Fujino, 3D Micro-EDM with simply shapedelectrode, Proceedings of 3rd France-Japan & 1st Europe-Asia Conference on Mechatronics, pp.519-523,1986. [16] Z. Yu, T. Masuzawa, M. Fujino, 3D EDM using simpleelectrodes-application of uniform wear method to normal size molds, Proceeding of Annual Meeting of Japan Society of Electrical-Machining engineers, pp.67-70,1997. [17] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming Annals of the CIRP, Vol.50, No.2, pp.445-462, 2001. [18] U. Engel, R. Eckstein, Microforming—from basic research to its realization, Journal of Materials Processing Technology,Vol.125-126,pp.35-44, 2002. [19] C.R. Friedrich, P.J. Coane, M.J. Vasile, Micromilling development and applications for micro fabrication, Microelectronic Engineering, Vol.35, pp.367-372, 1997. [20] T. Masuzawa, State of the art of micromachining, keynote paper, Annals of the CIRP ,Vol.49, No.2, pp.473-488, 2000. [21] K. Bohringer, K. Fearing, K. Goldberg, A chapter on micro assembly. The Handbook of Industrial Robotics. 2nd ed.; 1998, /http://www.ee.washington.edu/research/mems/publications/1999/chapters/industrialrobotics-bohringer-99.pdf [22] 葉翳民等,微系統在車輛產業上之應用與未來發展,機械技術雜誌, Vol.228, pp. 116, 2004. [23] H. Woern, J. Seyfried, St. Fahlbusch, A. Buerkle and F. Schmoeckel, Flexible Microrobots for Micro Assembly Tasks, Proceeding of the 2000 International Symposium on Micromechatronics and Human Science, pp. 135-143, Oct. 2000. [24] X. Li, G. Zong and S. Bi, Development of Global Vision System for Biological Automatic Micro-Manipulation System, Proceeding of the 2001 IEEE International Conference on Robotic & Automation, Seoul Korea, pp. 127-132, May 2001. [25] T. Baidyk, E. Kussul, Application of neural classifier for flat image recognition in process of microdevice assembly, Proceedings of the International Joint Conference on Neural Networks, pp. 12-17, 2002. [26] T. Baidyk, E. Kussul, O. Makeyev, A. Caballero and L. Ruiz, Flat image recognition in process of microdevice assembly, Pattern Recognition Letters, Vol.25, pp. 107-118, 2004. [27] K. B. Yesin and B. J. Nelson, A CAD model based tracking system for visually guided microassembly, J. of Robotica, Vol.23, pp. 409-418, 2005. [28] M. Boncheva, D. A. Bruzewicz, and G. M. Whitesides, Millimeter-scale self-assembly and its application, Pure Application Chemistry, Vol.75, No.5, pp.621-630, 2003 [29] G. M. Whitesides and B. Grzybowski, Self-assembly at all scales, Science, Vol.295, pp. 2418-2421, 2002 [30] H. Woern, J. Seyfried, St. Fahlbusch, A. Buerkle and F. Schmoeckel, Flexible Microrobots for Micro Assembly Tasks, Proceeding of the 2000 International Symposium on Micromechatronics and Human Science, pp. 135-143, Oct. 2000. [31] A. Terfort, N. Bowden, and G. M. Whitesides, Three-Dimensional Self Assembly of Millileter-Scale Components, Nature, vol. 386, pp.162-164, 1997. [32] H.O.Jacobs, A.R.Tao, A.Schwartz, D.H.Gracias, and G.M.Whitesides, Fabrication of a cylindrical display by patterned assembly, Science, Vol.296, No.323, 2002. [33] U. Srinivasan, D. Lipmann, and R. T. Howe, Microstructures to substrate self-assembly using capillary forces, Journal of Microelectromechanical Systems, vol. 10, No. 1, March, 2001. [34] M. B. Cohn, Assembly techniques for micro-electro-mechanical-systems, Ph.D. dissertation, Univ. of California at Berkeley, 1997. [35] C. G. Fonstad, Magnetically-assisted statistical assembly a new heterogeneous integration technique, Singapore-MIT Alliance symposium in January 2002. [36] K. Saitou and M. J. Jakiela, DESIGN of a self-closing compliant “mouse trap” for micro assembly, proc. of IMECE’98,November 17-22, Atlanta, Georgia, USA, 1996 [37] 宮川 治, ナッタポン・ソウスウィッツ, 竹内芳美, 河合知彦, 沢田潔,佐田登志夫, マイクロV 溝を利用した微小部品の直接接合, 精密工学会誌, Vol. 65, No. 7, pp. 987-991, 1999. [38] H. H. Langen, T. Masuzawa, M. Fujino, Modular Method for Microparts Machining and Assembly with Self-Alignment, Annals of the CIRP, Vol. 44, NO1, pp.173-176, 1995. [39] C. L. Kuo, J. D. Huang, H. Y. Liang, Precise Micro-Assembly Through an Integration of Micro-EDM and Nd-YAG, Advanced Manufacturing Technology, Vol. 20, pp. 454–458, 2002. [40] 蔡興正,微放電加工與Pin-plate之緊配技術研究,國立雲林科技大學機械工程技術研究所,碩士論文,民國89年 [41] 林常盛,微細元件創新性製造法與線上裝配技術之研究,國立台灣大學機械工程研究所,碩士論文,民國93年 [42] www.daido.co.jp/.../powder_procedures.html [43] 李石成,BGA錫球之製程研究,國立成功大學工程科學研究所,碩士論文,民國94年 [44] J.H. Chun and C.H. Passow, A Study of Spray Forming Using Uniform Droplet Spray, U.S. Patent, No.5, 266, 098, 1993. [45] P.Yim, J. H. Chun, T. Ando and V. K. Sikka, Production and Charaterization of Mono-sized Sn-38wt%Pb Alloy Balls, The International Journal of Power Metallurgy, vol. 32, No.2, pp.155-163, 1996. [46] D.Y. Sheu, Micro-spherical probes machining by EDM, Journal of micromechanics and microengineering, vol15,pp 185–189, 2005 [47] 林正軒,多晶矽半圓球殼之微加工技術,國立台灣大學應用力學研究所,碩士論文,民國87年 [48] 劉育辰,陶瓷半球薄殼與中空肋射出成型之研究,國立台灣大學機械工程研究所,碩士論文,民國88年 [49] X. Q. Sun, T. Masuzawa, M. Fujino, Micro Ultrasonic Machining and Self-Aligned Multilayer Machining/Assembly Technologies for 3D Micromachines , Proceedings of the IEEE Workshop on MEMS, pp.312–317, 1996. [50] D. Popa, Byoung Hun Kang, Jeongsik Sin, Jie Zou, Robotics and Automation, Proceedings. ICRA '02. IEEE International Conference on, Volume: 2, 11-15 May 2002, Page(s): 1495 –1500. [51] M. Okada, T. Shinohara, T. Gotoh, S. Ban, Y. Nakamura, Double Spherical Joint and Backlash Clutch for Lower Limbs Humanoids [52] 林毅著,李雅榮譯,輕結構理論及應用(上),曉園出版社,1985 [53] D.L. Schodek著,劉錫蘭譯,結構學,科技圖書股份有限公司,1989 [54] 康淵、陳信吉, ANSYS 入門,全華科技圖書股份有信公司,2003 [55] 康淵、翁嘉駿、何熹羽、馮威強,ANSYS進階,全華科技圖書股份有信公司,2003 [56] 陳精一,電腦輔助工程實務分析,全華科技圖書有限公司,2001 [57] 戴久永,可靠度導論,三民書局,1990 [58] 趙浡森譯,Patrick D.T. O,Connor著,實用可靠度工程,科技圖書股份有限公司,民國77年6月 [59] 柯煇耀,預防性失效分析-FMECA & FTA之應用,中華民國品質學會發行,民國90年11月 [60] C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill Book Company, 1997. [61] 郭榮沛,失效模式與效應分析及其應用案例探討,機械工業雜誌,第142期,第137-148頁,1995年1月。 [62] http://www.uscg.mil/hq/g-m/risk/e-guidelines/RBDM/html/vol1/ContV1.htm [63] http://asia.matweb.com/search/SearchSubcat.asp [64] 陳申岳,ANSYS有限元素法軟體—實務產品可靠度分析,全華科技圖書股份有限公司,2004 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27715 | - |
dc.description.abstract | 微球接頭是由圓球與球殼兩個元件所組裝構成的,其能夠提供多角度和多方向的自由度,不但能改變運動方向,還能承受一定量的負荷,有相當大的發展潛力。然而在微米尺寸等級時,由於生產與製作不易限制了其應用的範圍,對此本研究設計其以機上微組裝技術來製作微球接頭,首先加工製作出微圓球與微球殼,接著藉由微球殼材料自身的彈性變形,直接在生產製作微圓球與微球殼的機台進行組裝。此方法可省略物件的夾持交換,減少夾持誤差,相對位置準確。
為了瞭解此機上微組裝方法之組裝情形,本研究先採用可靠度工程中常用之失效模式、影響與關鍵性分析(Failure Mode, Effect and Criticality Analysis, FMECA)來判斷微球接頭可能的失效情形,發現倘若微圓球和微球殼之幾何形狀設計不良,除了會造成組裝過程中微元件的損壞,導致組裝失敗,也會使裝配後的微球接頭間隙不適當而造成效能不佳。對此本研究利用有限元素法配合電腦數值軟體ANSYS來解決這個問題,針對組裝過程中微元件的變形情況做模擬分析探討。藉由模擬所獲得的資訊,可改善組裝的品質,確保此組裝方法之可行性與實用性。 由研究結果顯示,由於微球殼是薄殼時之徑向變形量比厚殼時來的大,且在開口角度170度時有最大的可容許徑向變形量;若當微球殼的半徑大小固定時,組裝後預得到適當餘隙配合之微球接頭,則與之配合之微圓球以選擇開口角度170度較佳,半徑大小則依間隙和微球殼的變形量來決定。 關鍵字:機上微組裝、微球殼、變形模擬、失效分析、間隙配合。 | zh_TW |
dc.description.abstract | The micro spherical joint assembled by precision a micro spherical ball and shell has great potential for application to the micro robots and machines. It can not only deliver the force and moment but also supply high freedom of movement. It is very simple and easy to operate on the machine using the elasticity deflection for the assembly of the micro ball and shell. In order to know the reliability of the micro spherical joint, reliability analytical tools such as failure mode effect and criticality analysis (FMECA) and fault tree analysis (FTA) are used. According to FMECA and FTA, the dimensional mistakes and assembly load were the main factors making the micro joint failure. In order to overcome the problem, deflection of micro spherical shell were simulated under the various conditions of shell angles, radius, and thickness for some materials by means of the finite element method and computer-assisted numerical program ANSYS. The simulated results based on deflection would be helpful for designing the dimension of the micro assembly parts and handling the correct clearance of joints.
Keyword: micro assembly, micro spherical shell, deflection simulation, FEMCA, gap analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:16:56Z (GMT). No. of bitstreams: 1 ntu-96-R94522721-1.pdf: 2684543 bytes, checksum: bb50e378cb1682a566586e01ff541d37 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
致謝……………………………………………………………………Ⅰ 中文摘要………………………………………………………………Ⅱ 英文摘要………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 圖目錄…………………………………………………………………Ⅶ 表目錄…………………………………………………………………XI 第一章 緒論……………………………………………………………1 1.1 研究背景…………………………………………………………1 1.2 文獻及現有技術回顧. …………………………………………………. 18 1.2.1 機上微組裝之技術回顧. ………………………………………….. 18 1.2.2 球狀元件之微加工技術回顧. …………………………………….. 21 1.3 研究動機與目的. ………………………………………………………. 29 1.4 研究流程. ………………………………………………………………. 31 1.5 論文架構. ………………………………………………………………. 33 第二章 研究相關理論與方法介紹. …………………………………… 34 2.1 球殼之線彈性變形理論………………………………………………... 34 2.2 有限元素軟體ANSYS分析方法. ……………………………………... 39 2.2.1 有限元素法與ANSYS簡介. ……………………………………… 39 2.2.2 基本原理. ………………………………………………………….. 40 2.2.3 有限元素法與ANSYS分析流程. ………………………………… 42 2.3 可靠度分析方法. ………………………………………………………. 44 2.3.1 可靠度的數學概念. ……………………………………………….. 44 2.3.2 系統的可靠度模式. ……………………………………………….. 45 2.3.3 失效模式與關鍵性分析. ………………………………………….. 47 2.3.4 失效樹分析之簡介與符號. ……………………………………….. 52 第三章 微球接頭之失效模式分析. …………………………………… 58 3.1 失效模式與關鍵性分析. ………………………………………………. 59 3.1.1 微球接頭組裝系統之功能方塊圖與可靠度模式建立…………… 59 3.1.2 微組裝系統各細部元件之失效模式分析………………………… 62 3.1.3 失效影響性與機率性分析………………………………………… 64 3.1.4 失效關鍵性評估…………………………………………………… 65 3.2 失效樹分析……………………………………………………………... 71 3.3 結論……………………………………………………………………... 72 第四章 微球殼結構之變形模擬………………………………….. 75 4.1 分析模型………………………………………………………………... 76 4.1.1 合理的簡化分析…………………………………………………… 77 4.1.2 模擬假設…………………………………………………………… 80 4.2 模擬規畫與流程………………………………………………………... 81 4.2.1 模擬規劃…………………………………………………………… 81 4.2.2 模擬流程…………………………………………………………… 87 4.3 模擬結果與討論………………………………………………………... 88 4.3.1 材料性質對『可容許的最大徑向變形量』之影響……………… 88 4.3.2 開口角度對『可容許的最大徑向變形量』之影響……………… 90 4.3.3 厚度對『可容許的最大徑向變形量』之影響…………………… 96 4.4 結論……………………………………………………………………... 98 第五章 微球接頭之間隙分析…………………………………….. 99 5.1 基本模型與幾何關係的建立…………………………………………... 101 5.2 微球接頭間隙配合之探討……………………………………………... 103 5.2.1 鬆配合……………………………………………………………… 106 5.2.2 餘隙配合…………………………………………………………… 108 5.2.3 緊配合……………………………………………………………… 110 5.3 分析結論………………………………………………………………... 111 第六章 總結與未來展望………………………………………….. 112 6.1 總結……………………………………………………………………... 112 6.2 未來工作………………………………………………………………... 113 參考文獻…………………………………………………………….. 114 作者簡歷 | |
dc.language.iso | zh-TW | |
dc.title | 微球接頭組裝技術之研究 | zh_TW |
dc.title | Study on The Assembly Technology of Micro Spherical Joints | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖運炫,吳文方,李志中,張志毅 | |
dc.subject.keyword | 機上微組裝,微球殼,變形模擬,失效分析,間隙配合, | zh_TW |
dc.subject.keyword | micro assembly,micro spherical shell,deflection simulation,FEMCA,gap analysis, | en |
dc.relation.page | 120 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
Appears in Collections: | 機械工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-96-1.pdf Restricted Access | 2.62 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.