Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27714
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賈儀平
dc.contributor.authorKeng-Yi Linen
dc.contributor.author林耿億zh_TW
dc.date.accessioned2021-06-12T18:16:53Z-
dc.date.available2009-09-03
dc.date.copyright2007-09-03
dc.date.issued2007
dc.date.submitted2007-08-29
dc.identifier.citation中央氣象局 (2005) 地震及活斷層研究計畫報告
中央氣象局地震觀測網頁:http://scman.cwb.gov.tw/eqv5/intro/obs/index.htm
中央氣象局 (2004) 強地動觀測第三期計畫-建置強震速報系統計畫報告
台灣省水利局 (1992) 台灣地區地下水觀測網第一期計畫,濁水溪沖積扇(一)-地下水觀測井建置及相關試驗
台灣省政府水利處 (1999) 省庫八十八年度地下水觀測井汰舊換新計畫,蘭陽平原地區工作成果報告
經濟部水利署 (2005) 地震發生前後地下水位異常之研究計畫報告
經濟部水資源局 (1998) 台灣地區地下水觀測網整體計畫-地下水觀測網之建立及運作管理,八十七年度子計畫報告,地下水觀測井建置及相關試驗
經濟部水資源局 (1999) 台灣地區地下水觀測網整體計畫-地下水觀測網之建立及運作管理,八十八年度子計畫報告,地下水觀測井建置及相關試驗
經濟部水資署 (2003) 地下水觀測站井及已完成觀測井井體維護計畫(2/2),地下水觀測井建置及相關試驗
謝瑞文與張承宗 (2005) 地下水永續發展所面臨的挑戰,第二屆資源工程研討會論文集
Bodvarsson, G. (1970) Confined fluids as strainmeters, J. Geophys. Res. 75, 2711–2718.
Bloomfield, P., (1976) Fourier Analysis of Time Series: An Introduction, John Wiley, New York.
Bredehoeft, J. D., (1967) Response of Well-Aquifer systems to earth tides, J.Geophys. Res., 72, 3075-3087.
Brodsky, E. E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga, (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophys. Res.,108, NO. B8, 2390, doi:10.1029 /2002JB002321.
Chia, Y-P., S. Wang, J-J. Chiu, and C-W. Liu, (2001) Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan, Bull. Seismol. Soc. Am,. 91(5), 1062-1068.
Cooper, H.H., J.D. Bredehoeft, I.S. Papadopulos, and R.R. Bennett, (1965) The response of well-aquifer system to seismic waves, J. Geophys. Res., 70, 3915-3926.
Dobrovolsky, I.P., S.K. Zubkov, and V.I Miachkin, (1979) Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics 117, 1025-1044.
Domenico, P. A. and F. W. Schwartz, (1997) Physical and Chemical Hydrogeology 2nd: John Wiley& Sons, New York, 824pp.
Eaton, J. P., and K. J. Takasaki, (1959) Seismological interpretation of earthquake -induced water-level fluctuations in well, Bull. Seismol. Soc. Am., 49, 227-245.
Hsieh, P. A., J. D. Bredehoeft, and J. M. Farr, (1987) Determination of aquifer transmissivity from earth tide anlaysis, Water Resour. Res., 23, 1824–1832.
Kipp, K. L., (1985) Type curve analysis of inertial effects in the response of a well to a slug test, Water Resour. Res., 21, 1397-1408.
Lee, M., T-K, Liu, K-F Ma, and Y-M Chang, (2002) Coseismic hydrological changes associated with dislocation of the September 21, 1999, Chichi earthquake, Taiwan, Geophys. Res. Let., 29, NO. 0,10.1029/2002GEL015116.
Liu, L-B., E. Roeloffs, and X-Y. Zheng, (1989) Seismically induced water level fluctuations in the Wali well, Beijing, China, J. Geophys. Res., 94, 9453-9462.
Montgomery, D. R. and M. Manga, (2003) Streamflow and Water Well Responses to Earthquakes, Science: 300. 2047–2049, DOI: 10.1126/science.1082980.
Ohno, M., H. Wakita, and K. Kanjo, (1997) A water well sensitive to seismic waves, Geophys. Res. Lett., 24, 691-694.
Theis, C.V., (1935) The Relation Between The Lowering of The Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage, Am. Geophys. Union Trans., 16, 519-524.
Vallentine, H. R., (1969) Applied Hydrodynamics, Butterworths, London.
Wang, C-Y., C-H. Wang, M. Manga, (2004) Coseismic release of water from mountains: Evidence from the 1999 (Mw 5 7.5) Chi-Chi, Taiwan, earthquake, Geology , 32, 769–772; doi: 10.1130/G20753.1.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27714-
dc.description.abstract地震對於地下水之各種影響有許多機制及模型被提出。Cooper等人發現井水的水位對於不同週期的地震表面波有不同程度的振幅反應,進而提出井水位振幅反映出含水層孔隙水壓放大的模型。本研究旨在利用台灣地區現有之地震與水井觀測資料,對遠距強震所產生之振盪式同震水位變化依據其理論進行分析,並與觀測值作比較。地震資料由台灣寬頻地震網提供,水位資料則來自壯圍、花蓮、東和、六甲、那菝和赤山等六口觀測井的秒水位記錄。針對2004年12月至2006年6月期間,規模大於M6.5以上的44次國外強震,本研究將地震波記錄與水位資料進行頻譜分析,估算出水位振幅放大率之觀測值,並嘗試調整導水係數以期理論分析之放大率與觀測值相符。我們發現在觀測井接受到的地震波震動幅度較大,也就是在地震規模大於7.0且震央距離小於5000km,而且震央距離並非太近的事件時,選取最佳的導水係數,結果約為10-4.9∼10-4.5 (1.26×10-5∼3.16×10-5) m2/s之間。依據Cooper理論所計算之水位振幅放大率,與觀測所得之放大率相符程度甚高。此外本研究估計六口觀測井發生可辨識之同震水位變化之臨界體積應變值,進而推測各井對於監測振盪式同震水位變化的敏感度,發現六口觀測井的敏感度可以分為四級:東和井與赤山井最為靈敏(臨界應變> 10-9),那菝井的敏感度尚佳(臨界應變> 10-8),花蓮井與壯圍井的敏感度較差(臨界應變> 10-7),六甲井最不靈敏。此項靈敏度可作為將來持續觀測地震造成地下水位變化之參考。zh_TW
dc.description.abstractNumerous mechanisms and models have been proposed to explain groundwater level fluctuations induced by distant earthquakes. Cooper et al. found that the responses of the groundwater level to earthquakes are frequency dependent and derived a solution for the amplification of the aquifer pore pressure due to the harmonic motion of the well water level. This study uses available seismic and monitor well data in Taiwan to analyze coseismic water level changes triggered by teleseismic surface waves. The water level data are obtained from six monitor wells: Hualien, Naba, Liujar, Tungwei, Chishan, Donher with sampling intervals of 1 second. Together with vertical ground velocities recorded at nearby BATS (the Broadband Array in Taiwan for Seismology) stations, the water level amplification is calculated based on the coherence between each seismogram and hydrograph of 44 distant earthquakes with magnitude M≧6.5 during the period from December, 2004 to June, 2006. For the events with M>7.0 and epicentral distances less than 5000 km, the seismically-induced water level fluctuations are clearly visible and the corresponding amplification values generally agree well with those predicted by the Cooper’s theory. The obtained best-fit values of transmissivity for six wells are similar, ranging from 1.26×10-5 to 3.16×10-5 m2/s. Furthermore, the threshold values of volumetric strains for the water level in response to seismic waves are estimated, and the sensibility of each well for monitoring oscillatory water level changes is inferred. The six wells are therefore classified into 4 classes: Donher and Chishan are the most sensitive and the earthquakes with strain > 10-9 are detectable; Naba is the next best (detectable for strain >10-8) ; Hualien and Tungwei are less sensitive (detectable for strain >10-7) and Liujar is imperceptible. These results can be used as references for further studies on monitoring earthquake induced groundwater level changes.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:16:53Z (GMT). No. of bitstreams: 1
ntu-96-R93224111-1.pdf: 2362145 bytes, checksum: e2b8610b16944f342ef321479475d13a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents致謝…………………………………………………………………………………...i
中文摘要………………………………………………………………………….….ii
英文摘要……………………………………………………………………………..iii
圖目錄……………………………………………………………………………..…vii
表目錄……………………………………………………………………………..…ix
符號說明……………………………………………………………………………...x
第一章 前言................................................................................................................1
1.1 背景...........................................................................................................1
1.2 目的............................................................................................................2
1.3 研究方法....................................................................................................3
第二章 地震波引起振盪式同震水位變化的模型....................................................5
2.1 理論模式........................................................................................................5
2.1.1 基本假設...............................................................................................5
2.1.2 孔隙壓力變化所引發的振盪式同震水位變化模型..........................6
2.1.3 地表垂直運動所引發的振盪式同震水位變化模型...............`..........11
2.2修正模式.........................................................................................................13
2.2.1 含水層厚度的問題..............................................................................13
2.2.2 修正後的井篩水流模式......................................................................14
2.2.3 修正後的水位振幅放大率理論模式與觀測結果之比較..................18
2.3水文參數.........................................................................................…............19
2.3.1水力傳導係數(K)與導水係數(T) ........................................................19
2.3.2比儲水係數(Ss)與儲水係數(S) ............................................................21
2.3.3 有效水柱高度(He)................................................................................22
2.3.4 水文參數對於水位振幅放大率(A)的影響.........................................22
第三章 寬頻地震觀測站和高頻地震觀測井資料....................................................26
3.1寬頻地震觀測站................. ...........................................................................26
3.2水位觀測井.....................................................................................................29
3.3 資料之選取..................................................................................................33
第四章 振盪式同震水位變化與同震資料分析.......................................................35
4.1同震水位資料分析方法...............................................................................35
4.1.1 快速富立葉轉換(FFT)與地震分析程式(SAC) .................................35
4.1.2 同震水位資料分析方法──由觀測值計算水位振幅放大率............35
4.2同震水位資料分析實例...............................................................................38
4.3同震水位資料之整理、分析及展示...........................................................42
4.4 分析結果.....................................................................................................49
第五章 討論.................................................................................................................56
第六章 結論.................................................................................................................58
參考文獻......................................................................................................................59
附錄一 台灣地區現有的地震觀測設施..................................................................62
附錄二 台灣地區地下水觀測井..............................................................................63
dc.language.isozh-TW
dc.subject體積應變zh_TW
dc.subject地震zh_TW
dc.subject水位變化zh_TW
dc.subject水位振幅放大率zh_TW
dc.subject導水係數zh_TW
dc.subjectvolumetric strainsen
dc.subjectwater level changesen
dc.subjectwater level amplificationen
dc.subjectearthquakeen
dc.subjecttransmissivityen
dc.title遠距地震引發台灣地區同震地下水位變化之研究zh_TW
dc.titleGroundwater Level Changes Induced by Teleseismic Earthquakes in Taiwanen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor洪淑蕙
dc.contributor.oralexamcommittee龔源成
dc.subject.keyword地震,水位變化,水位振幅放大率,導水係數,體積應變,zh_TW
dc.subject.keywordearthquake,water level changes,water level amplification,transmissivity,volumetric strains,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2007-08-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved