請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27698
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輝吉(Hey-Chi Hsu) | |
dc.contributor.author | Kang-Yun Chang | en |
dc.contributor.author | 張康筠 | zh_TW |
dc.date.accessioned | 2021-06-12T18:16:05Z | - |
dc.date.available | 2012-09-12 | |
dc.date.copyright | 2007-09-12 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-29 | |
dc.identifier.citation | Ahn, S. H., Sawada, H., Ro, J. Y., and Nicolson, G. L. (1997). Differential expression of annexin I in human mammary ductal epithelial cells in normal and benign and malignant breast tissues. Clin Exp Metastasis 15, 151-156.
Alitalo, K., and Schwab, M. (1986). Oncogene amplification in tumor cells. Adv Cancer Res 47, 235-281. Allan, V. J., and Schroer, T. A. (1999). Membrane motors. Curr Opin Cell Biol 11, 476-482. Bieche, I., Lachkar, S., Becette, V., Cifuentes-Diaz, C., Sobel, A., Lidereau, R., and Curmi, P. A. (1998). Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer 78, 701-709. Bieche, I., Maucuer, A., Laurendeau, I., Lachkar, S., Spano, A. J., Frankfurter, A., Levy, P., Manceau, V., Sobel, A., Vidaud, M., and Curmi, P. A. (2003). Expression of stathmin family genes in human tissues: non-neural-restricted expression for SCLIP. Genomics 81, 400-410. Bishop, J. M. (1982). Retroviruses and cancer genes. Adv Cancer Res 37, 1-32. Bitto, E., and Cho, W. (1998). Roles of individual domains of annexin I in its vesicle binding and vesicle aggregation: a comprehensive mutagenesis study. Biochemistry 37, 10231-10237. Boige, V., Laurent-Puig, P., Fouchet, P., Flejou, J. F., Monges, G., Bedossa, P., Bioulac-Sage, P., Capron, F., Schmitz, A., Olschwang, S., and Thomas, G. (1997). Concerted nonsyntenic allelic losses in hyperploid hepatocellular carcinoma as determined by a high-resolution allelotype. Cancer Res 57, 1986-1990. Bootcov, M. R., Bauskin, A. R., Valenzuela, S. M., Moore, A. G., Bansal, M., He, X. Y., Zhang, H. P., Donnellan, M., Mahler, S., Pryor, K., et al. (1997). MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A 94, 11514-11519. Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A., and McCubrey, J. A. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603. Chang, K. S., Wang, G., Freireich, E. J., Daly, M., Naylor, S. L., Trujillo, J. M., and Stass, S. A. (1992). Specific expression of the annexin VIII gene in acute promyelocytic leukemia. Blood 79, 1802-1810. Chetcuti, A., Margan, S. H., Russell, P., Mann, S., Millar, D. S., Clark, S. J., Rogers, J., Handelsman, D. J., and Dong, Q. (2001). Loss of annexin II heavy and light chains in prostate cancer and its precursors. Cancer Res 61, 6331-6334. Choi, S., Kobayashi, M., Wang, J., Habelhah, H., Okada, F., Hamada, J., Moriuchi, T., Totsuka, Y., and Hosokawa, M. (2000). Activated leukocyte cell adhesion molecule (ALCAM) and annexin II are involved in the metastatic progression of tumor cells after chemotherapy with Adriamycin. Clin Exp Metastasis 18, 45-50. Chou, Y. H., Chung, K. C., Jeng, L. B., Chen, T. C., and Liaw, Y. F. (1998). Frequent allelic loss on chromosomes 4q and 16q associated with human hepatocellular carcinoma in Taiwan. Cancer Lett 123, 1-6. Costa, F. F. (2007). Non-coding RNAs: lost in translation? Gene 386, 1-10. Creutz, C. E. (1992). The annexins and exocytosis. Science 258, 924-931. Dang, C. V., Resar, L. M., Emison, E., Kim, S., Li, Q., Prescott, J. E., Wonsey, D., and Zeller, K. (1999). Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253, 63-77. Echard, A., Jollivet, F., Martinez, O., Lacapere, J. J., Rousselet, A., Janoueix-Lerosey, I., and Goud, B. (1998). Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580-585. Emans, N., Gorvel, J. P., Walter, C., Gerke, V., Kellner, R., Griffiths, G., and Gruenberg, J. (1993). Annexin II is a major component of fusogenic endosomal vesicles. J Cell Biol 120, 1357-1369. Fang, J. Y., and Richardson, B. C. (2005). The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6, 322-327. Gerke, V., and Moss, S. E. (2002). Annexins: from structure to function. Physiol Rev 82, 331-371. Gomez-Roman, J. J., Saenz, P., Molina, M., Cuevas Gonzalez, J., Escuredo, K., Santa Cruz, S., Junquera, C., Simon, L., Martinez, A., Gutierrez Banos, J. L., et al. (2005). Fibroblast growth factor receptor 3 is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth. Clin Cancer Res 11, 459-465. Gruenberg, J., and Emans, N. (1993). Annexins in membrane traffic. Trends Cell Biol 3, 224-227. Hayes, M. J., Rescher, U., Gerke, V., and Moss, S. E. (2004). Annexin-actin interactions. Traffic 5, 571-576. Hirokawa, N., Noda, Y., and Okada, Y. (1998). Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10, 60-73. Horlick, K. R., Ganjianpour, M., Frost, S. C., and Nick, H. S. (1991). Annexin-I regulation in response to suckling and rat mammary cell differentiation. Endocrinology 128, 1574-1579. Hromas, R., Hufford, M., Sutton, J., Xu, D., Li, Y., and Lu, L. (1997). PLAB, a novel placental bone morphogenetic protein. Biochim Biophys Acta 1354, 40-44. Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P. M., Tidow, N., Brandt, B., Buerger, H., Bulk, E., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031-8041. JM, B. (1982). Retroviruses and cancer genes. 1-32. Johnson, G. L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. Kelloniemi, E., Rintala, E., Finne, P., and Stenman, U. H. (2003). Tumor-associated trypsin inhibitor as a prognostic factor during follow-up of bladder cancer. Urology 62, 249-253. Kornmann, M., Ishiwata, T., Matsuda, K., Lopez, M. E., Fukahi, K., Asano, G., Beger, H. G., and Korc, M. (2002). IIIc isoform of fibroblast growth factor receptor 1 is overexpressed in human pancreatic cancer and enhances tumorigenicity of hamster ductal cells. Gastroenterology 123, 301-313. Lee, E. K., Regenold, W. T., and Shapiro, P. (2002). Inhibition of aldose reductase enhances HeLa cell sensitivity to chemotherapeutic drugs and involves activation of extracellular signal-regulated kinases. Anticancer Drugs 13, 859-868. Lee, Y. C., Pan, H. W., Peng, S. Y., Lai, P. L., Kuo, W. S., Ou, Y. H., and Hsu, H. C. (2007). Overexpression of tumour-associated trypsin inhibitor (TATI) enhances tumour growth and is associated with portal vein invasion, early recurrence and a stage-independent prognostic factor of hepatocellular carcinoma. Eur J Cancer 43, 736-744. Li, H.-Y. (2004) Cloning and Characterization of Annexin A10 Isoforms, NTU. Li, P. X., Wong, J., Ayed, A., Ngo, D., Brade, A. M., Arrowsmith, C., Austin, R. C., and Klamut, H. J. (2000). Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 275, 20127-20135. Liemann, S., and Huber, R. (1997). Three-dimensional structure of annexins. Cell Mol Life Sci 53, 516-521. Liemann, S., and Lewit-Bentley, A. (1995). Annexins: a novel family of calcium- and membrane-binding proteins in search of a function. Structure 3, 233-237. Lipsick, J. S. (1996). One billion years of Myb. Oncogene 13, 223-235. Liu, S. H., Lin, C. Y., Peng, S. Y., Jeng, Y. M., Pan, H. W., Lai, P. L., Liu, C. L., and Hsu, H. C. (2002). Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160, 1831-1837. Lukkonen, A., Lintula, S., von Boguslawski, K., Carpen, O., Ljungberg, B., Landberg, G., and Stenman, U. H. (1999). Tumor-associated trypsin inhibitor in normal and malignant renal tissue and in serum of renal-cell carcinoma patients. Int J Cancer 83, 486-490. Masaki, T., Tokuda, M., Fujimura, T., Ohnishi, M., Tai, Y., Miyamoto, K., Itano, T., Matsui, H., Watanabe, S., Sogawa, K., and et al. (1994). Involvement of annexin I and annexin II in hepatocyte proliferation: can annexins I and II be markers for proliferative hepatocytes? Hepatology 20, 425-435. Masaki, T., Tokuda, M., Ohnishi, M., Watanabe, S., Fujimura, T., Miyamoto, K., Itano, T., Matsui, H., Arima, K., Shirai, M., et al. (1996). Enhanced expression of the protein kinase substrate annexin in human hepatocellular carcinoma. Hepatology 24, 72-81. Menell, J. S., Cesarman, G. M., Jacovina, A. T., McLaughlin, M. A., Lev, E. A., and Hajjar, K. A. (1999). Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med 340, 994-1004. Morgan, R. O., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Balsara, B. R., Testa, J. R., and Fernandez, M. P. (1999). Novel human and mouse annexin A10 are linked to the genome duplications during early chordate evolution. Genomics 60, 40-49. Moss, S. E., and Morgan, R. O. (2004). The annexins. Genome Biol 5, 219. Nagai, H., Pineau, P., Tiollais, P., Buendia, M. A., and Dejean, A. (1997). Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene 14, 2927-2933. Nygaard, S. J., Haugland, H. K., Kristoffersen, E. K., Lund-Johansen, M., Laerum, O. D., and Tysnes, O. B. (1998). Expression of annexin II in glioma cell lines and in brain tumor biopsies. J Neurooncol 38, 11-18. Oh, I. H., and Reddy, E. P. (1999). The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18, 3017-3033. Ohnishi, M., Tokuda, M., Masaki, T., Fujimura, T., Tai, Y., Matsui, H., Itano, T., Ishida, T., Takahara, J., Konishi, R., and et al. (1994). Changes in annexin I and II levels during the postnatal development of rat pancreatic islets. J Cell Sci 107 ( Pt 8), 2117-2125. Ornitz, D. M. (2000). FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22, 108-112. Oster, S. K., Ho, C. S., Soucie, E. L., and Penn, L. Z. (2002). The myc oncogene: MarvelouslY Complex. Adv Cancer Res 84, 81-154. Paciucci, R., Tora, M., Diaz, V. M., and Real, F. X. (1998). The plasminogen activator system in pancreas cancer: role of t-PA in the invasive potential in vitro. Oncogene 16, 625-633. Paju, A., Vartiainen, J., Haglund, C., Itkonen, O., von Boguslawski, K., Leminen, A., Wahlstrom, T., and Stenman, U. H. (2004). Expression of trypsinogen-1, trypsinogen-2, and tumor-associated trypsin inhibitor in ovarian cancer: prognostic study on tissue and serum. Clin Cancer Res 10, 4761-4768. Pan, H. W., Chou, H. Y., Liu, S. H., Peng, S. Y., Liu, C. L., and Hsu, H. C. (2006). Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma. Cell Cycle 5, 2676-2687. Pan, H. W., Ou, Y. H., Peng, S. Y., Liu, S. H., Lai, P. L., Lee, P. H., Sheu, J. C., Chen, C. L., and Hsu, H. C. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98, 119-127. Panzitt, K., Tschernatsch, M. M., Guelly, C., Moustafa, T., Stradner, M., Strohmaier, H. M., Buck, C. R., Denk, H., Schroeder, R., Trauner, M., and Zatloukal, K. (2007). Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132, 330-342. Paweletz, C. P., Ornstein, D. K., Roth, M. J., Bichsel, V. E., Gillespie, J. W., Calvert, V. S., Vocke, C. D., Hewitt, S. M., Duray, P. H., Herring, J., et al. (2000). Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res 60, 6293-6297. Pencil, S. D., and Toth, M. (1998). Elevated levels of annexin I protein in vitro and in vivo in rat and human mammary adenocarcinoma. Clin Exp Metastasis 16, 113-121. Peng, S. Y., Lai, P. L., and Hsu, H. C. (1993). Amplification of the c-myc gene in human hepatocellular carcinoma: biologic significance. J Formos Med Assoc 92, 866-870. Peng, S. Y., Ou, Y. H., Chen, W. J., Li, H. Y., Liu, S. H., Pan, H. W., Lai, P. L., Jeng, Y. M., Chen, D. C., and Hsu, H. C. (2005). Aberrant expressions of annexin A10 short isoform, osteopontin and alpha-fetoprotein at chromosome 4q cooperatively contribute to progression and poor prognosis of hepatocellular carcinoma. Int J Oncol 26, 1053-1061. Pompetti, F., Rizzo, P., Simon, R. M., Freidlin, B., Mew, D. J., Pass, H. I., Picci, P., Levine, A. S., and Carbone, M. (1996). Oncogene alterations in primary, recurrent, and metastatic human bone tumors. J Cell Biochem 63, 37-50. Rand, J. H. (2000). Antiphospholipid antibody-mediated disruption of the annexin-V antithrombotic shield: a thrombogenic mechanism for the antiphospholipid syndrome. J Autoimmun 15, 107-111. Rashid, A., Wang, J. S., Qian, G. S., Lu, B. X., Hamilton, S. R., and Groopman, J. D. (1999). Genetic alterations in hepatocellular carcinomas: association between loss of chromosome 4q and p53 gene mutations. Br J Cancer 80, 59-66. Rastan, S. (1994). X chromosome inactivation and the Xist gene. Curr Opin Genet Dev 4, 292-297. Raynal, P., and Pollard, H. B. (1994). Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197, 63-93. Reis, E. M., Nakaya, H. I., Louro, R., Canavez, F. C., Flatschart, A. V., Almeida, G. T., Egidio, C. M., Paquola, A. C., Machado, A. A., Festa, F., et al. (2004). Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene 23, 6684-6692. Rescher, U., and Gerke, V. (2004). Annexins--unique membrane binding proteins with diverse functions. J Cell Sci 117, 2631-2639. Roseman, B. J., Bollen, A., Hsu, J., Lamborn, K., and Israel, M. A. (1994). Annexin II marks astrocytic brain tumors of high histologic grade. Oncol Res 6, 561-567. Rothhut, B. (1997). Participation of annexins in protein phosphorylation. Cell Mol Life Sci 53, 522-526. Sakata, T., Iwagami, S., Tsuruta, Y., Suzuki, S., and Suzuki, R. (1993). Study of natural lipocortin I. A potent mediator for macrophage-mediated immunosuppression in tumor-bearing mice. J Immunol 151, 4964-4972. Sarkar, A., Yang, P., Fan, Y. H., Mu, Z. M., Hauptmann, R., Adolf, G. R., Stass, S. A., and Chang, K. S. (1994). Regulation of the expression of annexin VIII in acute promyelocytic leukemia. Blood 84, 279-286. Schlaepfer, D. D., and Haigler, H. T. (1990). Expression of annexins as a function of cellular growth state. J Cell Biol 111, 229-238. Seger, R., and Krebs, E. G. (1995). The MAPK signaling cascade. Faseb J 9, 726-735. Silistino-Souza, R., Rodrigues-Lisoni, F. C., Cury, P. M., Maniglia, J. V., Raposo, L. S., Tajara, E. H., Christian, H. C., and Oliani, S. M. (2007). Annexin 1: differential expression in tumor and mast cells in human larynx cancer. Int J Cancer 120, 2582-2589. Smith, P. D., and Moss, S. E. (1994). Structural evolution of the annexin supergene family. Trends Genet 10, 241-246. Sobel, A. (1991). Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 16, 301-305. Srivastava, M., Bubendorf, L., Nolan, L., Glasman, M., Leighton, X., Miller, G., Fehrle, W., Raffeld, M., Eidelman, O., Kallioniemi, O. P., et al. (2001). ANX7 as a bio-marker in prostate and breast cancer progression. Dis Markers 17, 115-120. Stavropoulos, N., Lu, N., and Lee, J. T. (2001). A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc Natl Acad Sci U S A 98, 10232-10237. Tan, M., Wang, Y., Guan, K., and Sun, Y. (2000). PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway. Proc Natl Acad Sci U S A 97, 109-114. Taniuchi, K., Nakagawa, H., Nakamura, T., Eguchi, H., Ohigashi, H., Ishikawa, O., Katagiri, T., and Nakamura, Y. (2005). Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 65, 105-112. Tatenhorst, L., Rescher, U., Gerke, V., and Paulus, W. (2006). Knockdown of annexin 2 decreases migration of human glioma cells in vitro. Neuropathol Appl Neurobiol 32, 271-277. Theobald, J., Hanby, A., Patel, K., and Moss, S. E. (1995). Annexin VI has tumour-suppressor activity in human A431 squamous epithelial carcinoma cells. Br J Cancer 71, 786-788. Torosyan, Y., Dobi, A., Naga, S., Mezhevaya, K., Glasman, M., Norris, C., Jiang, G., Mueller, G., Pollard, H., and Srivastava, M. (2006). Distinct Effects of Annexin A7 and p53 on Arachidonate Lipoxygenation in Prostate Cancer Cells Involve 5-Lipoxygenase Transcription. Cancer Res 66, 9609-9616. Violette, S. M., King, I., Browning, J. L., Pepinsky, R. B., Wallner, B. P., and Sartorelli, A. C. (1990). Role of lipocortin I in the glucocorticoid induction of the terminal differentiation of a human squamous carcinoma. J Cell Physiol 142, 70-77. Vishwanatha, J. K., Chiang, Y., Kumble, K. D., Hollingsworth, M. A., and Pour, P. M. (1993). Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers. Carcinogenesis 14, 2575-2579. Werner, S. (1998). Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev 9, 153-165. Wong, N., Lai, P., Lee, S. W., Fan, S., Pang, E., Liew, C. T., Sheng, Z., Lau, J. W., and Johnson, P. J. (1999). Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am J Pathol 154, 37-43. Yuan, R. H., Jeng, Y. M., Chen, H. L., Lai, P. L., Pan, H. W., Hsieh, F. J., Lin, C. Y., Lee, P. H., and Hsu, H. C. (2006). Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol 209, 549-558. Yuan, R. H., Jeng, Y. M., Pan, H. W., Hu, F. C., Lai, P. L., Lee, P. H., and Hsu, H. C. (2007). Overexpression of KIAA0101 Predicts High Stage, Early Tumor Recurrence, and Poor Prognosis of Hepatocellular Carcinoma Clin Cancer Res (in press). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27698 | - |
dc.description.abstract | Annexin 家族是真核細胞結合鈣離子沒有 EF hands 的最大一類蛋白,Annexin家族擁有一個由70個胺基酸所組成的相似結構,每個成員擁有四或八個這樣的重複結構,及一個高度變異的N’端。整個家族可參與廣泛的生理作用,包括抗凝血、胞吞作用、胞吐作用、免疫抑制、細胞分化、細胞分裂及抑制鈣離子通道、phospholipase A2和protin kinase C等。目前至少有13個Annexin成員被發現,他們對於腫瘤的形成扮演著不同的角色,可能是個致癌基因也可能是個抑癌基因。
Annexin A10 (ANXA10) 是Annexin家族的新成員,擁有幾個獨特的特徵,包括在第三重複序列的codon丟失,第四重核心重複序列第二型鈣離子結合區的不正常缺失,明顯偏離annexin結構應保存的特性,無疑在功能上會有影響。 先前,我們實驗室選殖到了一個新的ANXA10的異構物,稱之為ANXA10S。我們發現ANXA10S mRNA 在人類肝癌細胞中表現量下降與腫瘤侵犯轉移,再發性與預後不良息息相關。 在這篇論文裡我們試著去探討ANXA10S 與ANXA10 的生物功能,並且也嘗試去偵測內生性的ANXA10S蛋白。 關於ANXA10Su部分的實驗結果如下: (1)在colony formation分析中,轉染ANXA10S的Hep3B細胞株,相對於控制組細胞會形成較少的細胞群落。 (2)在動物腫瘤細胞形成實驗中,皮下控制組細胞會形成較大的腫瘤,並且擁有典型惡性腫瘤的型態,然而這些特徵是在轉染ANXA10S的腫瘤內所無法觀察到的。 (3)我們嘗試利用抗體免疫沉澱法以及蛋白質濃縮的方式,去偵測肝臟組織中內生性的ANXA10S蛋白,但不幸的,到目前為止我們始終無法成功的偵測到內生性的ANXAS蛋白。 關於ANXA10部分的實驗結果如下: (1)在colony formation分析中,轉染ANXA10的 HA22T、HCC36與Hep3B細胞株,相對於控制組細胞會形成較少的細胞群落。 (2)在MTT分析中,利用RNAi系統降低ANXA10表現的HeLa細胞株與控製組細胞在5%、7%與10%血清培養基中,細胞增殖速度並沒有顯著差異,而在低濃度的血清培養基(2%)與無血清的培養基中,降低ANXA10表現的HeLa細胞增殖速度會較快。 (3)在soft agar實驗中,降低ANXA10表現的HeLa細胞株能在缺乏依附的情況下,形成較大細胞群落。 (4)利用西方墨點法,我們發現降低ANXA10的表現量,會伴隨著p-MEK、p-ERK與c-myc表現量的增加,但不影響MEK與ERK的表現。 (5)透過microarray資料分析,我們發現一些與生長相關的基因表現量,會隨著ANXA10的表現量降低而有所改變。 綜合而言,即使到目前為止我們還是無法成功偵測到內生性的ANXA10S蛋白,但我們相信ANXA10S與ANXA10具有抑制癌細胞生長的潛力。 | zh_TW |
dc.description.abstract | The annexin (ANX) family is the largest single category of eukaryotic calcium-binding proteins without EF hands. The ANXs share a similar structure characterized by the presence of four or eight repeats of a 70-amino acid motif and a highly variable N-terminal end. The ANXs play an important role in a broad range of physiological processes, including anti-coagulation,endocytosis, exocytosis, immunosuppression, differentiation, proliferation, and inhibition of calcium channels, phospholipase A2, and protein kinase C. There are at least 13 human ANX members, play different roles in tumorigenesis, as an oncogene or a tumor suppressor gene.
ANXA10, a novel member of the ANX family, has several distinct features, including codon deletion in conserved repeat 3, and an unusual ablation of the type II calcium-binding sites in tetrad core repeats. The loss of type II calcium-binding sites is a fundamental deviation from ANX structure conservation and undoubtedly has functional consequences. Previously, our lab identified a novel transcript isoform of ANXA10, the ANXA10S. We found the mRNA expression level of ANXA10S gene was down-regulated in hepatocellular carcinoma, and the downregulation correlated with vascular invasion, early recurrence, and poor prognosis. In this study we tried to determine the biological function of ANXA10S and ANXA10. Moreover we tried to prove the existence of the endogenous ANXA10S protein. Our results about ANXA10S are as follows: (1) On colony formation assay, the Hep3B cells transfected with ANXA10S formed fewer colonies as compared with the vector control cells. (2) In vivo tumorigenesis assay, control cells formed larger tumor than ANXA10S overexpression cells. Besides, Tumor tissue of HuH-7 control cells showed topical morphology of cancer cells. But those characteristics did not observe in tumor tissue of ANXA10S expressed HuH-7 cells (3) We used liver tissue protein lysates for immunoprecipitation and protein concentration to detect the endogenous ANXA10S protein. Unfortunately, we could not detect ANXA10S protein expression in liver tissue. Our results about ANXA10 are as follows: (1) On colony formation assay, the HA22T, HCC36 and Hep3B cells transfected with ANXA10 formed fewer colonies as compared with the vector control cells. (2) On MTT assays, the RNAi knockdown HeLa cells, which expressed ANXA10, and control cells did not differ in cell proliferation in 5%, 7%, and 10% serum medium, but the RNAi knockdown cells showed increased cell growth in lower serum (2%) and serum free media. (3) On the soft agar assay, the RNAi knockdown HeLa cells formed more numerous and larger colonies than the control cells. (4) By western blot analysis, we found that the down-regulation of ANXA10 led to increased amount of p-MEK, p-ERK and c-myc but not total MEK and ERK. (5) From microarray assay data we found several growth related gene expression would change after ANXA10 knockdown. In conclusion, even if the endogenous ANXA10S protein was hard to detect. We still believed that ANXA10S and ANXA10 might have tumor suppressor potential. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:16:05Z (GMT). No. of bitstreams: 1 ntu-96-R94444006-1.pdf: 10797076 bytes, checksum: f0aef59f7d6f270cb2f3600a5e5ef8e1 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III Abstract V Contents VIII 1. Introduction 1.1 Annexin 1 1.2 Annexin A10 (ANXA10) 4 1.3 Annexin A10 short variant (ANXA10S) 6 1.4 Purposes of study 8 2. Materials and Methods 2.1 Construction of the expression vector of ANXA10S and ANXA10 9 2.2 Reverse transcription-polymerase chain reaction ( RT-PCR ) 9 2.3 Western blot analysis 10 2.4 Antibodies 11 2.5 Cell lines and cell culture 11 2.6 Colony formation assay 11 2.7 In vivo tumorigenesis assay 12 2.8 Hematoxylin and eosin stain (H & E stain) 12 2.9 In situ apoptosis detection (TUNEL assay) 13 2.10 Immunoprecipitation for ANXA10S in liver tissues 13 2.11 Protein cut off and concentration 13 2.12 In vitro transcription and translation 14 2.13 RNAi interference ( RNAi ) and knockout of ANXA10L expression 14 2.14 Cell proliferation assay 14 2.15 Soft agar (anchorage-independent growth ) assay 15 2.16 Microarray analysis 15 3. Results 3.1 Expression of ANXA10S and AXNA10 in liver and hepatocellular carcinoma 16 3.2 Establishment of the ANXA10S and ANXA10 fusion protein expression vectors 16 3.3 Overexpression of ANXA10S and ANXA10 led to enhance in vitro tumor cell growth 17 3.4 Overexpression of ANXA10S reduced in vivo tumor cell growth 18 3.5 Histopathology and gene expression of the tumors derived from Huh-7 cells transfected with ANXA10S or mock vector control 19 3.6 Aberrant gene expression in tumors derived from Huh-7 cells transfected with mock and ANXA10S vectors: downregulation of TATI expression in ANXA10S transfected tumor cells 20 3.7 Detection of endogenous ANXA10S in liver tissue 21 3.8 In vitro transcription and translation for the detection of ANXA10S protein 22 3.9 Sense or antisense of ANXA10S RNA 23 3.10 Knockdown of ANXA10 by RNAi oligonucleotides in HeLa cells 24 3.11 Downregulation of ANXA10 enhanced in vitro anchorage-dependent and independent tumor cell growth 25 3.12 Knockdown of ANXA10 induced in vitro cell growth under serum deprivation through ERK signaling 26 3.13 Downregulation of ANXA10 led to aberrant expressions of genes involved in cell growth 26 3.14 Downregulation of ANXA10 did not affect in vivo tumor cell growth 27 4. Discussion 4.1 ANXA10S plays as a potential tumor suppressor gene 28 4.11 Overexpression of ANXA10S reduced growth of HCC cells 28 4.12 Effects of ANXA10S in tumor tissue 29 4.2 The tumor suppressor ability of ANXA10S through the functional mRNA? 30 4.3 ANXA10 may function as a potential tumor suppressor 32 4.31 Downregulation of ANXA10 enhanced in vitro tumor cell growth through ERK signaling 32 4.32 Knockdown ANXA10 regulated cell growth related genes 35 5. Figures Text-Figure 1. Schematic drawing and amino acid sequence of ANXA10 and ANXA10S 38 Figure 1. The expression pattern of ANXA10 and ANXA10S in HCC and cancer cell lines 39 Figure 2. Transient expression of ANXA10S and ANXA10 by the expression vectors 40 Figure 3. Anchorage-dependent cell growth colony formation assay in HuH-7 cells 41 Figure 4. Anchorage-dependent cell growth colony formation assay in HA22T cells 42 Figure 5. Anchorage-dependent cell growth colony formation assay in HCC36 cells 43 Figure 6. Anchorage-dependent cell growth colony formation assay in Hep3B cells 44 Figure 7. Anchorage-dependent cell growth colony formation assay in HeLa cells 45 Figure 8. Overexpression of ANXA10S reduced in vitro tumor cell growth of HuH-7 cells 46 Figure 9. Histopathologic features of tumor tissue 47 Figure 10. TUNEL assay of tumor tissue 48 Figure 11. Expression of ANXA10S and genes related to HCC progression in the subcutaneous tumor in mice 49 Figure 12. Detection of ANXA10S isoform in liver tissue 50 Figure 13. Detection of ANXA10S liver using tissue protein fractionation and concentration 51 Figure 14. Dectection of ANXA10S in liver tissue using high protein loading 52 Figure 15. Predicted open reading frames of ANXA10S in sense and antisense direction 53 Figure 16. In vitro transcription and translation of ANXA10S protein 54 Figure 17. Sense and antisense transcription of ANXA10S RNA 54 Figure 18. Knockdown of ANXA10 by ANXA10L RNAi oligonucleotides in HeLa cells 55 Figure 19. Knockdown of ANXA10 induced in vitro cell proliferation in low serum medium by MTT assay 56 Figure 20. ANXA10 Knockdown increased in vitro anchorage-independent cell growth by soft agar assay 57 Figure 21. Western blot analysis of ERK signaling proteins 58 Figure 22. Confirmation of microarray results 59 Figure 23. ANXA10 Knockdown did not cause significant difference in in vivo tumor cell growth 60 6. Reference 61 | |
dc.language.iso | en | |
dc.title | Annexin A10與其變異物Annexin A10S在癌症細胞之角色 | zh_TW |
dc.title | Roles of Annexin A10 and Annexin A10S Variant in Cancer Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 唐堂,康照洲,許金玉,呂勝春 | |
dc.subject.keyword | Annexin A10,Annexin A10S,細胞生長,抑癌基因, | zh_TW |
dc.subject.keyword | Annexin A10,Annexin A10S,cell growth,tumor suppressor, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 病理學研究所 | zh_TW |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 10.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。