請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27695
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 伍安怡(Betty A. Wu-Hsieh) | |
dc.contributor.author | Yang-Ding Lin | en |
dc.contributor.author | 林洋鼎 | zh_TW |
dc.date.accessioned | 2021-06-12T18:15:57Z | - |
dc.date.available | 2012-09-13 | |
dc.date.copyright | 2007-09-13 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-29 | |
dc.identifier.citation | Reference List
Aird,W.C. (2004). Endothelium as an organ system. Crit Care Med. 32, S271-S279. Akaike,T., Ando,M., Oda,T., Doi,T., Ijiri,S., Araki,S., and Maeda,H. (1990). Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J. Clin. Invest 85, 739-745. Akaike,T., Fujii,S., Kato,A., Yoshitake,J., Miyamoto,Y., Sawa,T., Okamoto,S., Suga,M., Asakawa,M., Nagai,Y., and Maeda,H. (2000). Viral mutation accelerated by nitric oxide production during infection in vivo. FASEB J. 14, 1447-1454. Akaike,T., Noguchi,Y., Ijiri,S., Setoguchi,K., Suga,M., Zheng,Y.M., Dietzschold,B., and Maeda,H. (1996). Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc. Natl. Acad. Sci. U. S. A 93, 2448-2453. An,J., Kimura-Kuroda,J., Hirabayashi,Y., and Yasui,K. (1999). Development of a novel mouse model for dengue virus infection. Virology 263, 70-77. Atrasheuskaya,A., Petzelbauer,P., Fredeking,T.M., and Ignatyev,G. (2003). Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol. Med. Microbiol. 35, 33-42. Avirutnan,P., Malasit,P., Seliger,B., Bhakdi,S., and Husmann,M. (1998). Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J. Immunol. 161, 6338-6346. Beaudry,P., Force,J., Naumov,G.N., Wang,A., Baker,C.H., Ryan,A., Soker,S., Johnson,B.E., Folkman,J., and Heymach,J.V. (2005). Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as a surrogate marker of antiangiogenic activity. Clin. Cancer Res. 11, 3514-3522. Beckman,J.S., Beckman,T.W., Chen,J., Marshall,P.A., and Freeman,B.A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U. S. A 87, 1620-1624. Brandt,W.E., McCown,J.M., Gentry,M.K., and Russell,P.K. (1982). Infection enhancement of dengue type 2 virus in the U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants. Infect. Immun. 36, 1036-1041. Bukrinsky,M.I., Nottet,H.S., Schmidtmayerova,H., Dubrovsky,L., Flanagan,C.R., Mullins,M.E., Lipton,S.A., and Gendelman,H.E. (1995). Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J. Exp. Med. 181, 735-745. Butthep,P., Chunhakan,S., Tangnararatchakit,K., Yoksan,S., Pattanapanyasat,K., and Chuansumrit,A. (2006). Elevated soluble thrombomodulin in the febrile stage related to patients at risk for dengue shock syndrome. Pediatr. Infect. Dis. J. 25, 894-897. Cardier,J.E., Marino,E., Romano,E., Taylor,P., Liprandi,F., Bosch,N., and Rothman,A.L. (2005). Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-alpha in endothelial cell damage in dengue. Cytokine 30, 359-365. Cardier,J.E., Rivas,B., Romano,E., Rothman,A.L., Perez-Perez,C., Ochoa,M., Caceres,A.M., Cardier,M., Guevara,N., and Giovannetti,R. (2006). Evidence of vascular damage in dengue disease: demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium 13, 335-340. Chen,H.C., Hofman,F.M., Kung,J.T., Lin,Y.D., and Wu-Hsieh,B.A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J. Virol. 81, 5518-5526. Cologna,R., Armstrong,P.M., and Rico-Hesse,R. (2005). Selection for virulent dengue viruses occurs in humans and mosquitoes. J. Virol. 79, 853-859. Estevez,A.G., Crow,J.P., Sampson,J.B., Reiter,C., Zhuang,Y., Richardson,G.J., Tarpey,M.M., Barbeito,L., and Beckman,J.S. (1999). Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498-2500. George,F., Brouqui,P., Boffa,M.C., Mutin,M., Drancourt,M., Brisson,C., Raoult,D., and Sampol,J. (1993). Demonstration of Rickettsia conorii-induced endothelial injury in vivo by measuring circulating endothelial cells, thrombomodulin, and von Willebrand factor in patients with Mediterranean spotted fever [see comments]. Blood 82, 2109-2116. Gil,L., Martinez,G., Tapanes,R., Castro,O., Gonzalez,D., Bernardo,L., Vazquez,S., Kouri,G., and Guzman,M.G. (2004). Oxidative stress in adult dengue patients. Am. J. Trop. Med. Hyg. 71, 652-657. Grefte,A., van der,G.M., van,S.W., and The,T.H. (1993). Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J. Infect. Dis. 167, 270-277. Gubler,D.J. (1998). Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480-496. Gubler,D.J., Suharyono,W., Lubis,I., Eram,S., and Gunarso,S. (1981a). Epidemic dengue 3 in central Java, associated with low viremia in man. Am. J. Trop. Med. Hyg. 30, 1094-1099. Gubler,D.J., Suharyono,W., Tan,R., Abidin,M., and Sie,A. (1981b). Viraemia in patients with naturally acquired dengue infection. Bull. World Health Organ 59, 623-630. Halstead,S.B. (1979). In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 140, 527-533. Halstead,S.B. (1988). Pathogenesis of dengue: challenges to molecular biology. Science 239, 476-481. Henchal,E.A. and Putnak,J.R. (1990). The dengue viruses. Clin. Microbiol. Rev. 3, 376-396. Hougee,S., Hartog,A., Sanders,A., Graus,Y.M.F., Hoijer,M.A., Garssen,J., van den Berg,W.B., van Beuningen,H.M., and Smit,H.F. (2006). Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. European Journal of Pharmacology 531, 264-269. Huang,K.J., Li,S.Y., Chen,S.C., Liu,H.S., Lin,Y.S., Yeh,T.M., Liu,C.C., and Lei,H.Y. (2000a). Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J. Gen. Virol. 81, 2177-2182. Huang,Y.H., Lei,H.Y., Liu,H.S., Lin,Y.S., Liu,C.C., and Yeh,T.M. (2000b). Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am. J. Trop. Med. Hyg. 63, 71-75. Ikeda,T., Shimokata,K., Daikoku,T., Fukatsu,T., Tsutsui,Y., and Nishiyama,Y. (1992). Pathogenesis of cytomegalovirus-associated pneumonitis in ICR mice: possible involvement of superoxide radicals. Arch. Virol. 127, 11-24. Jessie,K., Fong,M.Y., Devi,S., Lam,S.K., and Wong,K.T. (2004). Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J. Infect. Dis. 189, 1411-1418. Johnson,A.J. and Roehrig,J.T. (1999). New mouse model for dengue virus vaccine testing. J. Virol. 73, 783-786. Khan,S.S., Solomon,M.A., and McCoy,J.P., Jr. (2005). Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin. Cytom. 64, 1-8. Kliks,S.C., Nimmanitya,S., Nisalak,A., and Burke,D.S. (1988). Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38, 411-419. Kliks,S.C., Nisalak,A., Brandt,W.E., Wahl,L., and Burke,D.S. (1989). Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 40, 444-451. Krishnamurti,C., Kalayanarooj,S., Cutting,M.A., Peat,R.A., Rothwell,S.W., Reid,T.J., Green,S., Nisalak,A., Endy,T.P., Vaughn,D.W., Nimmannitya,S., and Innis,B.L. (2001). Mechanisms of hemorrhage in dengue without circulatory collapse. Am. J. Trop. Med. Hyg. 65, 840-847. La,R., V and Innis,B.L. (1995). Mechanisms of dengue virus-induced bone marrow suppression. Baillieres Clin. Haematol. 8, 249-270. Lanciotti,R.S., Lewis,J.G., Gubler,D.J., and Trent,D.W. (1994). Molecular evolution and epidemiology of dengue-3 viruses. J. Gen. Virol. 75 ( Pt 1), 65-75. Lei,H.Y., Yeh,T.M., Liu,H.S., Lin,Y.S., Chen,S.H., and Liu,C.C. (2001). Immunopathogenesis of dengue virus infection. J. Biomed. Sci. 8, 377-388. Libraty,D.H., Endy,T.P., Houng,H.S., Green,S., Kalayanarooj,S., Suntayakorn,S., Chansiriwongs,W., Vaughn,D.W., Nisalak,A., Ennis,F.A., and Rothman,A.L. (2002). Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J. Infect. Dis. 185, 1213-1221. Limonta,D., Capo,V., Torres,G., Perez,A.B., and Guzman,M.G. (2007). Apoptosis in tissues from fatal dengue shock syndrome. J. Clin. Virol. Lin,C.F., Lei,H.Y., Liu,C.C., Liu,H.S., Yeh,T.M., Wang,S.T., Yang,T.I., Sheu,F.C., Kuo,C.F., and Lin,Y.S. (2001). Generation of IgM anti-platelet autoantibody in dengue patients. J. Med. Virol. 63, 143-149. Lin,Y.L., Liao,C.L., Chen,L.K., Yeh,C.T., Liu,C.I., Ma,S.H., Huang,Y.Y., Huang,Y.L., Kao,C.L., and King,C.C. (1998). Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J. Virol. 72, 9729-9737. Lin,Y.L., Liu,C.C., Chuang,J.I., Lei,H.Y., Yeh,T.M., Lin,Y.S., Huang,Y.H., and Liu,H.S. (2000). Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology 276, 114-126. Majano,P.L., Garcia-Monzon,C., Lopez-Cabrera,M., Lara-Pezzi,E., Fernandez-Ruiz,E., Garcia-Iglesias,C., Borque,M.J., and Moreno-Otero,R. (1998). Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J. Clin. Invest 101, 1343-1352. Malavige,G.N., Fernando,S., Fernando,D.J., and Seneviratne,S.L. (2004). Dengue viral infections. Postgrad. Med. J. 80, 588-601. Messer,W.B., Gubler,D.J., Harris,E., Sivananthan,K., and de Silva,A.M. (2003). Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg. Infect. Dis. 9, 800-809. Messer,W.B., Vitarana,U.T., Sivananthan,K., Elvtigala,J., Preethimala,L.D., Ramesh,R., Withana,N., Gubler,D.J., and De Silva,A.M. (2002). Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 66, 765-773. Moncada,S. (2000). Nitric oxide and cell respiration: physiology and pathology. Verh. K. Acad. Geneeskd. Belg. 62, 171-179. Morens,D.M. and Halstead,S.B. (1987). Disease severity-related antigenic differences in dengue 2 strains detected by dengue 4 monoclonal antibodies. J. Med. Virol. 22, 169-174. Morens,D.M., Venkateshan,C.N., and Halstead,S.B. (1987). Dengue 4 virus monoclonal antibodies identify epitopes that mediate immune infection enhancement of dengue 2 viruses. J. Gen. Virol. 68 ( Pt 1), 91-98. Murgue,B., Roche,C., Chungue,E., and Deparis,X. (2000). Prospective study of the duration and magnitude of viraemia in children hospitalised during the 1996-1997 dengue-2 outbreak in French Polynesia. J. Med. Virol. 60, 432-438. Myers,S.I., Hernandez,R., and Castaneda,A. (1995). Oxygen free radicals regulate splanchnic nitric oxide synthesis and blood flow. Cardiovasc. Surg. 3, 207-210. Oda,T., Akaike,T., Hamamoto,T., Suzuki,F., Hirano,T., and Maeda,H. (1989). Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244, 974-976. Park,K.W., Metais,C., Dai,H.B., Comunale,M.E., and Sellke,F.W. (2001). Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage. Anesth. Analg. 92, 990-996. Pei,L., Wang,J., and Xu,G. (1998). [Arterial plasma nitric oxide and lactate level in hemorrhagic shock patients]. Zhonghua Yi. Xue. Za Zhi. 78, 604-606. Peters,C.J. and Zaki,S.R. (2002). Role of the endothelium in viral hemorrhagic fevers. Crit Care Med. 30, S268-S273. Reiter,C.D., Teng,R.J., and Beckman,J.S. (2000). Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J. Biol. Chem. 275, 32460-32466. Rigau-Perez,J.G., Clark,G.G., Gubler,D.J., Reiter,P., Sanders,E.J., and Vorndam,A.V. (1998). Dengue and dengue haemorrhagic fever. Lancet 352, 971-977. Russell,P.K., Udomsakdi,S., and Halstead,S.B. (1967). Antibody response in dengue and dengue hemorrhagic fever. Jpn. J. Med. Sci. Biol. 20, 103-108. Sahaphong,S., Riengrojpitak,S., Bhamarapravati,N., and Chirachariyavej,T. (1980). Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J. Trop. Med. Public Health 11, 194-204. Sahni,S.K. (2007). Endothelial cell infection and hemostasis. Thromb. Res. 119, 531-549. Sato,S. (1998). [The role of nitric oxide in hemorrhagic shock]. Masui 47, 392-403. Sawa,T., Akaike,T., and Maeda,H. (2000). Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase. J. Biol. Chem. 275, 32467-32474. Schnittler,H.J. and Feldmann,H. (2003). Viral hemorrhagic fever--a vascular disease? Thromb. Haemost. 89, 967-972. Solovey,A., Lin,Y., Browne,P., Choong,S., Wayner,E., and Hebbel,R.P. (1997). Circulating activated endothelial cells in sickle cell anemia. N. Engl. J. Med. 337, 1584-1590. Stollar,V. (1969). Studies on the nature of dengue viruses. IV. The structural proteins of type 2 dengue virus. Virology 39, 426-438. Sudiro,T.M., Zivny,J., Ishiko,H., Green,S., Vaughn,D.W., Kalayanarooj,S., Nisalak,A., Norman,J.E., Ennis,F.A., and Rothman,A.L. (2001). Analysis of plasma viral RNA levels during acute dengue virus infection using quantitative competitor reverse transcription-polymerase chain reaction. J. Med. Virol. 63, 29-34. Valbuena,G. and Walker,D.H. (2006). THE ENDOTHELIUM AS A TARGET FOR INFECTIONS. Annual Review of Pathology: Mechanisms of Disease 1, 171-198. Valero,N., Espina,L.M., Anez,G., Torres,E., and Mosquera,J.A. (2002). Short report: increased level of serum nitric oxide in patients with dengue. Am. J. Trop. Med. Hyg. 66, 762-764. Vaughn,D.W., Green,S., Kalayanarooj,S., Innis,B.L., Nimmannitya,S., Suntayakorn,S., Rothman,A.L., Ennis,F.A., and Nisalak,A. (1997). Dengue in the early febrile phase: viremia and antibody responses. J. Infect. Dis. 176, 322-330. Wang,S., He,R., Patarapotikul,J., Innis,B.L., and Anderson,R. (1995). Antibody-enhanced binding of dengue-2 virus to human platelets. Virology 213, 254-257. Watts,D.M., Porter,K.R., Putvatana,P., Vasquez,B., Calampa,C., Hayes,C.G., and Halstead,S.B. (1999). Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 354, 1431-1434. World Health Organization (2002). Dengue and dengue haemorrhagic fever. WHO Fact Sheet no. 117. World Health Organization. (1997). Dengue haemorrhagic fever: diagnosis,treatment prevention and control . WHO Geneva. Wu,S.J., Hayes,C.G., Dubois,D.R., Windheuser,M.G., Kang,Y.H., Watts,D.M., and Sieckmann,D.G. (1995). Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. Am. J. Trop. Med. Hyg. 52, 468-476. Zhang,J. and Snyder,S.H. (1995). Nitric oxide in the nervous system. Annu. Rev. Pharmacol. Toxicol. 35, 213-233. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27695 | - |
dc.description.abstract | 登革病毒感染會造成嚴重的登革出血熱與登革休克症候群,然而其致病機制仍不清楚。最近的研究顯示內皮細胞可能是登革病毒的宿主細胞而且可能產生血管病變。利用登革出血小鼠動物模式的研究結果提供了證據支持內皮細胞受損在登革出血熱的致病機轉扮演關鍵角色。本研究以不同劑量的第二型登革病毒16681病毒株,利用真皮間注射方式感染免疫健全的C57BL/6小鼠。當給予小鼠2 × 109、4 × 108以及 4 × 107 PFU的病毒感染後,在三天後會分別造成81.8%、54.5%以及36.3% 的病毒感染小鼠全身性的出血;而給予小鼠4 × 106 PFU的病毒感染,則沒有病毒感染小鼠有出血的現象。利用流氏細胞儀器分析顯示出血小鼠的周邊血循環內皮細胞(CEC)數量增多。此外,出血小鼠的血小板的數量有顯著降低的情形。免疫螢光染色結果顯示於病毒感染小鼠出血的皮下組織中血管的內皮細胞會表現誘導型一氧化氮生成酵素(iNOS)和硝基化酪氨酸(nitrotyrosine),此結果顯示由大量產生之一氧化氮及活性氧分子所導致的氧化壓力可能參與在與血管內皮受損。為了釐清一氧化氮及活性氧分子是否參與登革病毒所引發的出血,以NADPH-oxidase抑制劑餵食一氧化氮缺陷小鼠。結果顯示在一氧化氮缺陷小鼠或抑制活性氧分子可使受2 × 109 PFU登革病毒感染小鼠的出血率下降(分別從77.8 % 降至 33.3 % 與28.6 % )。而登革病毒感染活性氧分子生成被抑制之一氧化氮缺陷小鼠後,可降低出血率以及出血的嚴重性。綜合以上研究,此研究顯示小鼠動物模式中,活性氮及活性氧分子兩者都參與在登革病毒引發出血的致病機轉。此外,此研究也顯示了循環內皮細胞數目的增加和血小板的數目減少可作為發生出血現象的指標。 | zh_TW |
dc.description.abstract | Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) are severe dengue disease. However, the underlying pathogenic mechanisms involved in severe dengue disease remain unclear. Recent studies demonstrated that endothelial cells (ECs) are targeted by dengue virus and vascular disorder may occur. Results from study of dengue hemorrhage mouse model provided evidence to support the possibility that EC damage is key to the pathogenesis of DHF. In the present study, immunocompetent C57BL/6 mice were inoculated with different titers of DENV sertotype 2 strain 16681 through the intradermal route. While 81.8%, 54.5%, and 36.3% of the mice receiving 2 × 109, 4 × 108, and 4 × 107 PFU DV developed hemorrhage, none of those given 4 × 106 PFU did at 3 days after infection. Flow cytometric analysis showed that mice that developed hemorrhage had numbers of circulating endothelial cells (CECs) in the peripheral blood. Furthermore, hemorrhage was accompanied by significant reduction of platelet counts. Immunofluorescence staining revealed that ECs express iNOS and nitrotyrosine in the endothelium of hemorrhage tissues, suggesting oxidative stress created by the production of high output nitric oxide and reactive oxygen species is involved in endothelium damage. To test whether nitric oxide and reactive oxygen species participate in DV-induced hemorrhage, iNOS-/- mice were treated with NADPH oxidase inhibitor. The results showed that iNOS deficiency or inhibition of ROS production reduced the percentage of mice that developed hemorrhage from 77.8 % to 33.3 and 28.6 %, respectively. Combination of iNOS deficiency and oxidase inhibitor had additive effect to reduce the severity of hemorrhage as well as the percentage of mice that developed hemorrhage. Taken together, the results of the present study demonstrate that both reactive nitrogen and oxygen species are responsible for the pathogenesis of DENV-induced hemorrhage in the mouse model. Additionally, this study also showed that high numbers of CECs and low platelet counts can be used as indicators for hemorrhage development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:15:57Z (GMT). No. of bitstreams: 1 ntu-96-R94449006-1.pdf: 1423654 bytes, checksum: 91202827cc94d7d1eedce4e87b8c3647 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | Abstract iii
Abstract (Chinese) v Chapter I Introduction - 1 - Part 1 Background - 1 - 1.1 Dengue virus and dengue - 1 - 1.2 Vascular distortion in dengue disease - 4 - 1.3 Role of reactive nitrogen and oxygen species in pathology of viral infection - 5 - 1.4 The animal models for dengue virus infection - 6 - Part 2 Rationale and Objectives - 10 - Chapter II Materials and Methods - 11 - Part 1. Experimental Procedures - 11 - 1.1 Virus - 11 - 1.2 Mice - 11 - 1.3 Intradermal infection - 12 - 1.4 Flow cytometric analysis of circulating endothelial cells (CECs). - 13 - 1.5 H & E staining. - 13 - 1.6 Platelet counts and hematocrit detection. - 14 - 1.7 Double immunofluorescence staining - 14 - 1.8 Statistical analysis - 15 - Part 2. Experimental Materials - 16 - 2.1 10X PBS buffer - 16 - 2.2 FACS staining buffer - 16 - 2.3 FACS fixation buffer - 16 - 2.4 DEPC H2O - 16 - 2.5 Reagents - 17 - 2.6 General materials - 17 - 2.7 Antibodies - 18 - 2.8 Instruments - 18 - Chapter III Results - 20 - Part 1 Dengue virus induces hemorrhage in C57BL/6 mice. - 20 - Part 2 Endothelium damage in hemorrhage mice - 21 - 2.1 Increased circulating endothelial cells in the peripheral blood of hemorrhage mice - 21 - 2.2 Hematologic findings - 22 - Part 3 Exploring the molecular mechanism of hemorrhage development in dengue virus-infected C57BL/6 mice - 23 - 3.1 The endothelial cells in hemorrhage tissues express iNOS - 23 - 3.2 Nitrotyrosine colocalizes with endothelial cells in hemorrhage tissues - 24 - 3.3 The correlation between ROS/NOS and hemorrhage development. - 24 - Chapter IV Discussion - 26 - Part 1 Alterations of vascular endothelium in dengue virus-induced hemorrhage - 26 - 1.1 Circulating endothelial cells as an indicator of vascular damage in dengue hemorrhage mouse model - 26 - 1.2 The factors involved in endothelial damage in dengue hemorrhage mouse model - 28 - Part 2 Hematologic findings in dengue hemorrhage mouse model - 29 - 2.1 Hemorrhage mice exhibit thrombocytopenia. - 29 - 2.2 Hematocrit is not different between DENV-infected and uninfected mice. - 31 - References - 34 - Figure 1. Intradermal inoculation of high dose of DV induces sytemic hemorrhage in immunocompetent mice. - 49 - Figure 2. Intradermal inoculation of DV induces hemorrhage in immunocompetent mice. - 50 - Figure 3. Increased numbers of CECs in hemorrhagic mice. - 51 - Figure 4. Hemorrhage mice exhibit thrombocytopenia. - 53 - Figure 5. Hematocrit is not different between DV-infected and uninfected mice. - 54 - Figure 6. iNOS colocalized with CD31+ endothelial cells in the subcutaneous tissues of hemorrhage mouse. - 55 - Figure 7. Nitrotyrosine colocalized with CD31+ endothelial cell in the subcutaneous tissues of hemorrhage mouse. - 57 - Table 1. Correlation between inoculation size and hemorrhage development - 59 - Table 2. Both iNOS and ROS contribute to hemorrhage development in DV-infected mice. - 60 - | |
dc.language.iso | en | |
dc.title | 登革出血小鼠模式中活性氮及活性氧於血管內皮之受損扮演重要角色 | zh_TW |
dc.title | Reactive Nitrogen and Oxygen Species are Critical to Endothelium Damage in Dengue Hemorrhage Mouse Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顧家綺(Chia-Chi Ku),林宜玲(Yi-Ling Lin) | |
dc.subject.keyword | 小鼠模式,活性氮,活性氧,血管內皮, | zh_TW |
dc.subject.keyword | Mouse Model,Reactive Nitrogen Species,Reactive Oxygen Species,Endothelium Damage, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。