Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27611
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorChun-Kuang Chenen
dc.contributor.author陳俊光zh_TW
dc.date.accessioned2021-06-12T18:12:02Z-
dc.date.available2012-11-15
dc.date.copyright2007-11-15
dc.date.issued2007
dc.date.submitted2007-10-08
dc.identifier.citation[1] G. Sauerbrey, 'Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung,' Zeitschrift Fur Physik, vol. 155, pp. 206-222, 1959.
[2] W. H. King, 'Piezoelectric Sorption Detector,' Analytical Chemistry, vol. 36, pp. 1735-1739, 1964.
[3] G. G. Guilbault, 'Determination of Formaldehyde with an Enzyme-Coated Piezoelectric Crystal Detector,' Analytical Chemistry, vol. 55, pp. 1682-1684, 1983.
[4] A. W. Czanderna and T. M. Thomas, 'A Quartz-Crystal Microbalance Apparatus for Water Sorption by Polymers,' Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 5, pp. 2412-2416, Jul-Aug 1987.
[5] M. S. R. Gomes, 'Application of piezoelectric quartz crystals to the analysis of trace metals in solution: a review,' Sensors Journal, IEEE, vol. 1, pp. 109-118, 2001.
[6] T. Nomura and A. Minemura, 'Behavior of a piezoelectric quartz crystal in an aqueous solution and the application to the determination of minute amounts of cyanide,' Nippon Kagaku Kaishi, pp. 1621-1625, 1980.
[7] P. L. Konash and G. J. Bastiaans, 'Piezoelectric-Crystals as Detectors in Liquid-Chromatography,' Analytical Chemistry, vol. 52, pp. 1929-1931, 1980.
[8] K. K. Kanazawa and J. G. Gordon, 'Frequency of a Quartz Microbalance in Contact with Liquid,' Analytical Chemistry, vol. 57, pp. 1770-1771, 1985.
[9] M. Rodahl, F. Hook, A. Krozer, P. Brzezinski, and B. Kasemo, 'Quartz-Crystal Microbalance Setup for Frequency and Q-Factor Measurements in Gaseous and Liquid Environments,' Review of Scientific Instruments, vol. 66, pp. 3924-3930, Jul 1995.
[10] 'HISTORY OF QUARTZ CRYSTAL MICROBALANCE DEVELOPMENT FOR SPACE,' http://www.qcmresearch.com/docs/flthist.htm.
[11] http://www.foa.se/surfbiotech/tt/Characterisation.html.
[12] B. Drafts, 'Acoustic Wave Technology Sensors,' Sensors, 2000, http://www.sensorsmag.com/articles/1000/68/main.shtml.
[13] A. Janshoff and C. Steinem, 'Quartz Crystal Microbalance for Bioanalytical Applications,' Sensors Update, vol. 9, pp. 313-354, 2001.
[14] G. C. F. Jay W. Grate, 'Acoustic Wave Sensors,' Sensors Update, vol. 2, pp. 37-83, 1996.
[15] M. J. Vellekoop, 'Acoustic wave sensors and their technology,' Ultrasonics, vol. 36, pp. 7-14, Feb 1998.
[16] http://www.farfield-scientific.com/technology_dpi.asp.
[17] BIAtechnology Handbook. Uppsala, Sweden: BIACORE AB, 1998.
[18] http://www.q-sense.com/viewArticle.asp?ID=22.
[19] X. D. Su, Y. J. Wu, and W. Knoll, 'Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,' Biosensors & Bioelectronics, vol. 21, pp. 719-726, Nov 15 2005.
[20] L. Laricchia-Robbio and R. P. Revoltella, 'Comparison between the surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM) method in a structural analysis of human endothelin-1,' Biosensors & Bioelectronics, vol. 19, pp. 1753-1758, Jul 15 2004.
[21] B. D. Spangler, E. A. Wilkinson, J. T. Murphy, and B. J. Tyler, 'Comparison of the Spreeta (R) surface plasmon resonance sensor and a quartz crystal microbalance for detection of Escherichia coli heat-labile enterotoxin,' Analytica Chimica Acta, vol. 444, pp. 149-161, Oct 12 2001.
[22] X. L. Su and Y. Li, 'Surface plasmon resonance and quartz crystal microbalance immunosensors for detection of Escherichia coli O157 : H7,' Transactions of the Asae, vol. 48, pp. 405-413, Jan-Feb 2005.
[23] M. A. Cooper, 'Biosensor profiling of molecular interactions in pharmacology,' Current Opinion in Pharmacology, vol. 3, pp. 557-562, 2003.
[24] M. A. Cooper and C. Whalen, 'Profiling molecular interactions using label-free acoustic screening,' Drug Discovery Today: Technologies, vol. 2, pp. 241-245, 2005.
[25] K. D. Pavey, 'Quartz crystal analytical sensors: the future of label-free, real-time diagnostics?,' Expert Rev Mol Diagn, vol. 2, pp. 173-186, Mar 2002.
[26] 王志方, '石英元件產業概況,' 2006.
[27] 國票證券投資信託研調部, '石英元件產業景氣熱度未減,' 2006, http://web.wls.com.tw/f0/rd/IndustryRpt/IdyNewsView.asp.
[28] 'Fundamentals of Quartz Oscillators Application Note 200-2,' Hewlett Packard.
[29] J. R. Vig, 'Quartz Crystal Resonators and Oscillators, For Frequency Control and Timing Applications,' US Army Communications-Electronics Research, Development & Engineering Center, February 2005.
[30] D. Nehring, 'Novel high-frequency crystal oscillator cuts jitter and noise,' June 2005, www.rfdesign.com.
[31] H. Yamada, H. Ura, and H. Fujiyama, '620 MHz AT-cut fundamental crystal resonator,' 2002, pp. 174-178.
[32] 'IEEE Standard 177: Standard Definitions and Methods of Measurement for Piezoelectric Vibrators,' The Institute of Electrical and Electronics Engineers, Inc., New York May 1966.
[33] 張沛霖 and 鐘維烈, 壓電材料與器件物理: 山東科學技術出版社, 1996.
[34] F. Eichelbaum, R. Borngraber, J. Schroder, R. Lucklum, and P. Hauptmann, 'Interface circuits for quartz-crystal-microbalance sensors,' Review of Scientific Instruments, vol. 70, pp. 2537-2545, May 1999.
[35] J. R. Vig, 'Dual-mode oscillators for clocks and sensors,' 1999, pp. 859-868 vol.2.
[36] M. E. Frerking, 'Fifty years of progress in quartz crystal frequency standards,' 1996, pp. 33-46.
[37] C. E. Reed, K. K. Kanazawa, and J. H. Kaufman, 'Physical Description of a Viscoelastically Loaded at-Cut Quartz Resonator,' Journal of Applied Physics, vol. 68, pp. 1993-2001, Sep 1 1990.
[38] C. Lu and A. W. Czanderna, Applications of Piezoelectric Quartz Crystal Microbalances 1984.
[39] R. P. Buck, E. Lindner, W. Kutner, and G. Inzelt, 'Piezoelectric chemical sensors - (IUPAC Technical Report),' Pure and Applied Chemistry, vol. 76, pp. 1139-1160, Jun 2004.
[40] W. P. Mason, Physical Acoustics vol. 2A. New York: Academic Press, 1965.
[41] H. L. Bandey, S. J. Martin, R. W. Cernosek, and A. R. Hillman, 'Modeling the responses of thickness-shear mode resonators under various loading conditions,' Analytical Chemistry, vol. 71, pp. 2205-2214, Jun 1 1999.
[42] A. Laschitsch and D. Johannsmann, 'High frequency tribological investigations on quartz resonator surfaces,' Journal of Applied Physics, vol. 85, pp. 3759-3765, Apr 1 1999.
[43] F. N. Nunalee and K. R. Shull, 'Contact mechanics studies with the quartz crystal microbalance: Origins of the contrast factor for polymer gels and solutions,' Langmuir, vol. 20, pp. 7083-7089, Aug 17 2004.
[44] S. J. Martin, V. E. Granstaff, and G. C. Frye, 'Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading,' Analytical Chemistry, vol. 63, pp. 2272-2281, Oct 15 1991.
[45] D. A. Buttry and M. D. Ward, 'Measurement of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance,' Chemical Reviews, vol. 92, pp. 1355-1379, Sep-Oct 1992.
[46] A. Arnau, Y. Jimenez, and T. Sogorb, 'An extended Butterworth-Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media,' Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 48, pp. 1367-1382, Sep 2001.
[47] E. J. Calvo, R. Etchenique, P. N. Bartlett, K. Singhal, and C. Santamaria, 'Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films,' Faraday Discussions, pp. 141-157, 1997.
[48] J. M. Encarnacao, P. Stallinga, and G. N. M. Ferreira, 'Influence of electrolytes in the QCM response: Discrimination and quantification of the interference to correct microgravimetric data,' Biosensors & Bioelectronics, vol. 22, pp. 1351-1358, Feb 15 2007.
[49] V. E. Granstaff and S. J. Martin, 'Characterization of a Thickness-Shear Mode Quartz Resonator with Multiple Nonpiezoelectric Layers,' Journal of Applied Physics, vol. 75, pp. 1319-1329, Feb 1 1994.
[50] C. Christopoulos, The Transmission Line Modeling Method. New York: Oxford University Press, 1995.
[51] Krimholt.R, D. A. Leedom, and G. L. Matthaei, 'New Equivalent Circuits for Elementary Piezoelectric Transducers,' Electronics Letters, vol. 6, pp. 398-&, 1970.
[52] R. Lucklum, C. Behling, R. W. Cernosek, and S. J. Martin, 'Determination of complex shear modulus with thickness shear mode resonators,' Journal of Physics D-Applied Physics, vol. 30, pp. 346-356, Feb 7 1997.
[53] R. Lucklum and P. Hauptmann, 'Transduction mechanism of acoustic-wave based chemical and biochemical sensors,' Measurement Science & Technology, vol. 14, pp. 1854-1864, Nov 2003.
[54] F. Josse, Y. Lee, S. J. Martin, and R. W. Cernosek, 'Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators,' Analytical Chemistry, vol. 70, pp. 237-247, Jan 15 1998.
[55] P. J. Cumpson and M. P. Seah, 'The Quartz Crystal Microbalance - Radial Polar Dependence of Mass Sensitivity Both on and Off the Electrodes,' Measurement Science & Technology, vol. 1, pp. 544-555, Jul 1990.
[56] M. D. Ward, 'Radial Mass Sensitivity of the Quartz Crystal Microbalance in Liquid-Media,' Abstracts of Papers of the American Chemical Society, vol. 201, pp. 48-Anyl, Apr 14 1991.
[57] V. M. Mecea, 'Fundamentals of mass measurements,' Journal of Thermal Analysis and Calorimetry, vol. 86, pp. 9-16, Sep 2006.
[58] A. C. Hillier and M. D. Ward, 'Scanning Electrochemical Mass Sensitivity Mapping of the Quartz Crystal Microbalance in Liquid-Media,' Analytical Chemistry, vol. 64, pp. 2539-2554, Nov 1 1992.
[59] S. J. Martin, G. C. Frye, A. J. Ricco, and S. D. Senturia, 'Effect of Surface-Roughness on the Response of Thickness-Shear Mode Resonators in Liquids,' Analytical Chemistry, vol. 65, pp. 2910-2922, Oct 15 1993.
[60] C. Zhang and G. P. Feng, 'Contributions of amplitude measurement in QCM sensors,' Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 43, pp. 942-947, Sep 1996.
[61] L. Daikhin, E. Gileadi, G. Katz, V. Tsionsky, M. Urbakh, and D. Zagidulin, 'Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids,' Analytical Chemistry, vol. 74, pp. 554-561, Feb 1 2002.
[62] V. Tsionsky, G. Katz, E. Gileadi, and L. Daikhin, 'Admittance studies of the EQCM on rough surfaces. The double layer region,' Journal of Electroanalytical Chemistry, vol. 524, pp. 110-119, May 3 2002.
[63] G. McHale and M. I. Newton, 'Surface roughness and interfacial slip boundary condition for quartz crystal microbalances,' Journal of Applied Physics, vol. 95, pp. 373-380, Jan 1 2004.
[64] K. Rechendorff, M. B. Hovgaard, M. Foss, and F. Besenbacher, 'Influence of surface roughness on quartz crystal microbalance measurements in liquids,' Journal of Applied Physics, vol. 101, pp. -, Jun 1 2007.
[65] K. K. Kanazawa, 'Some basics for operating and analyzing data using the thickness shear mode resonator,' Analyst, vol. 130, pp. 1459-1464, 2005.
[66] M. Yoshimoto, S. Tokimura, and S. Kurosawa, 'Characteristics of the series resonant-frequency shift of a quartz crystal microbalance in electrolyte solutions,' Analyst, vol. 131, pp. 1175-1182, 2006.
[67] 'Agilent Technologies Impedance Measurement Handbook,' Agilent Technologies, Inc. July 2006.
[68] M. Rodahl, F. Hook, and B. Kasemo, 'QCM operation in liquids: An explanation of measured variations in frequency and Q factor with liquid conductivity,' Analytical Chemistry, vol. 68, pp. 2219-2227, Jul 1 1996.
[69] M. Edvardsson, M. Rodahl, B. Kasemo, and F. Hook, 'A dual-frequency QCM-D setup operating at elevated oscillation amplitudes,' Analytical Chemistry, vol. 77, pp. 4918-4926, Aug 1 2005.
[70] S. J. Geelhood, C. W. Frank, and K. Kanazawa, 'Transient quartz crystal microbalance behaviors compared,' Journal of the Electrochemical Society, vol. 149, pp. H33-H38, Jan 2002.
[71] W. W. Lee, H. S. White, and M. D. Ward, 'Depletion Layer Effects on the Response of the Electrochemical Quartz-Crystal Microbalance,' Analytical Chemistry, vol. 65, pp. 3232-3237, Nov 15 1993.
[72] A. Bund and G. Schwitzgebel, 'Investigations on metal depositions and dissolutions with an improved EQCMB based on quartz crystal impedance measurements,' Electrochimica Acta, vol. 45, pp. 3703-3710, 2000.
[73] C. Eickes, J. Rosenmund, S. Wasle, K. Doblhofer, K. Wang, and K. G. Weil, 'The electrochemical quartz crystal microbalance (EQCM) in the studies of complex electrochemical reactions,' Electrochimica Acta, vol. 45, pp. 3623-3628, 2000.
[74] N. P. Cosman and S. G. Roscoe, 'Electrochemical quartz crystal nanobalance to detect solvent displacement by pH-induced conformational changes of proteins at Pt,' Analytical Chemistry, vol. 76, pp. 5945-5952, Oct 1 2004.
[75] F. L. Walls and J. R. Vig, 'Fundamental limits on the frequency stabilities of crystal oscillators,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 42, pp. 576-589, 1995.
[76] R. J. Matthys, Crystal Oscillator Circuits, Revised ed.: Krieger Publishing Company, 1992.
[77] K. O. Wessendorf, 'The active-bridge oscillator,' in Frequency Control Symposium, 1998. Proceedings of the 1998 IEEE International, 1998, pp. 361-369.
[78] R. Mancini, 'Feedback Amplifier Analysis Tools,' Texas Instruments Application April 1994.
[79] H. Ehahoun, C. Gabrielli, M. Keddam, H. Perrot, and P. Rousseau, 'Performances and limits of a parallel oscillator for electrochemical quartz crystal microbalances,' Analytical Chemistry, vol. 74, pp. 1119-+, Mar 1 2002.
[80] L. Rodriguez-Pardo, J. Farina, M. J. Gonzalez, C. Gabrielli, H. Perrot, and R. Brendel, 'OptiMiller: a CAD tool for the design and optimization of Miller electronic oscillator circuits for QCM sensors,' in Sensors, 2003. Proceedings of IEEE, 2003, pp. 534-538 Vol.1.
[81] L. Rodriguez- Pardo, J. Farina, C. Gabrielli, H. Perrot, and R. Brendel, 'Miller oscillators for high sensitivity quartz crystal microbalance sensors in damping media,' in Frequency Control Symposium and Exposition, 2004. Proceedings of the 2004 IEEE International, 2004, pp. 806-812.
[82] L. Bouzidi, S. S. Narine, K. G. Stefanov, and A. J. Slavin, 'High-stability quartz-crystal microbalance for investigations in surface science,' Review of Scientific Instruments, vol. 74, pp. 3039-3044, Jun 2003.
[83] M. Koyama, M. Okazaki, H. Aizawa, and S. Kurosawa, 'Frequency stability of a crystal resonator for biosensors,' in Frequency Control Sympposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003 IEEE International, 2003, pp. 981-985.
[84] K. O. Wessendorf, 'The Lever oscillator for use in high resistance resonator applications,' in Frequency Control Symposium, 1993. 47th., Proceedings of the 1993 IEEE International, 1993, pp. 711-717.
[85] C. Kitchin, 'Op-amp oscillators simplify RF designs,' EDN Design Ideas, 1996, http://www.edn.com/archives/1996/101096/21di_02.htm#fig1.
[86] A. Arnau, T. Sogorb, and Y. Jimenez, 'A new method for continuous monitoring of series resonance frequency and simple determination of motional impedance parameters for loaded quartz-crystal resonators,' Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 48, pp. 617-623, Mar 2001.
[87] L. Bruschi, G. Delfitto, and G. Mistura, 'Inexpensive but accurate driving circuits for quartz crystal microbalances,' Review of Scientific Instruments, vol. 70, pp. 153-157, Jan 1999.
[88] A. Arnau, Y. Jimenez, and T. Sogorb, 'Circuit for continuous monitoring of quartz-crystal resonators in sensor applications,' Electronics Letters, vol. 38, pp. 365-367, Apr 11 2002.
[89] M. Ferrari, V. Ferrari, D. Marioli, A. Taroni, M. Suman, and E. Dalcanale, 'In-liquid sensing of chemical compounds by QCM sensors coupled with high-accuracy ACC oscillator,' Instrumentation and Measurement, IEEE Transactions on, vol. 55, pp. 828-834, 2006.
[90] K. O. Wessendorf, 'The active-bridge oscillator for use with liquid loaded QCM sensors,' in Frequency Control Symposium and PDA Exhibition, 2001. Proceedings of the 2001 IEEE International, 2001, pp. 400-407.
[91] A. Benjaminson, 'Balanced Feedback Oscillators,' in 38th Annual Symposium on Frequency Control. 1984, 1984, pp. 327-333.
[92] 'QCM200 Operation and Service Manual,' Stanford Research Systems 2005.
[93] B. Carter and L. P. Huelsman, 'Handbook Of Operational Amplifier Active RC Networks,' Texas Instruments Application October 2001.
[94] L. P. Huelsman, 'A Generalization of an Active Rc Realization Technique,' Ieee Transactions on Circuit Theory, vol. Ct14, pp. 422-&, 1967.
[95] M. Itoh, 'Synthesis of electronic circuits for simulating nonlinear dynamics,' International Journal of Bifurcation and Chaos, vol. 11, pp. 605-653, Mar 2001.
[96] L. Serrano and A. Carlosena, 'Active RC impedances revisited,' International Journal of Circuit Theory and Applications, vol. 25, pp. 289-305, Jul-Aug 1997.
[97] P. S.O. Reza Moheimani and P. Andrew J. Fleming, Piezoelectric Transducers for Vibration Control and Damping: Springer London, 2006.
[98] V. Dolezal and R. Newcomb, 'A nonlinear impedance converter,' Circuits and Systems, IEEE Transactions on, vol. 28, pp. 149-152, 1981.
[99] K. Nay and A. Budak, 'A Voltage-Controlled Resistance with Wide Dynamic-Range and Low Distortion,' Ieee Transactions on Circuits and Systems, vol. 30, pp. 770-772, 1983.
[100] R. Senani and D. R. Bhaskar, 'Realization of Voltage-Controlled Impedances,' Ieee Transactions on Circuits and Systems, vol. 38, pp. 1081-1086, Sep 1991.
[101] 'High Performance, 145 MHz FastFET™ Op Amps-AD8065/AD8066,' Analog Devices.
[102] 'JFET Voltage-Controlled Resistors- VCR2N/4N/7N,' Vishay Siliconix.
[103] P. Aronhime and M. Desai, 'Quotient Circuits Employing Vvr,' Ieee Transactions on Instrumentation and Measurement, vol. 41, pp. 679-684, Oct 1992.
[104] 'AD8302 2.7GHz RF / IF Gain Phase Detector,' Analog Devices.
[105] F. Josse, Y. Lee, S. J. Martin, and R. W. Cernosek, 'Analysis of the Radial Dependence of Mass Sensitivity for Modified-Electrode Quartz Crystal Resonators,' Anal. Chem., vol. 70, pp. 237-247, 1998.
[106]黃繼德, '無線感測器網路之公分等級距離量測-High Precision Distance Measurement in Wireless Sensor Network,' 國立台灣大學應用力學研究所碩士論文, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27611-
dc.description.abstract石英微質量天平在液相中應用時,面臨到Q值大幅下降以致影響振盪頻率穩定度,以及電容效應導致相位零點的振盪條件消失,所以本論文乃針對此兩大難題提出相位補償式的石英振盪電路以茲解決。
本研究從石英的基本特性分析切入,並從現有的理論模型得知,其理論所依據的參考頻率為串聯諧振頻率,然一般振盪電路其回授振盪乃是操作在相位零點的諧振頻率,而當石英在高阻尼的流體環境時,此兩頻率的差異也就越大,因此一般振盪電路所量測到的頻率與理論值也就存在更大的誤差,容易造成在生物質量分析上的誤判,所以本論文提出以負電容的方式以消除石英的並聯電容值,使其振盪頻率能夠準確地操作在串聯諧振頻率,使石英微質量天平在生物的量測應用中得到更精準地分析。
本論文從各種振盪電路的分析研究中,提出創新式的橋式振盪電路,使其振盪電路能夠具有額外的環路Q值增益,並且維持石英端的電壓恆定,使其整體振盪頻率的穩定度提升。
新的相位補償式振盪電路,除了可以修正在液相中振盪相位所產生的頻率誤差, 更可透過控制得知石英在液相中所受到的電容值之變化與阻尼狀況,因此本論文所開發的相位補償式石英微質量天平,可量測的參數除了頻率之外,還有電容值與阻尼值可提供生物應用時的分析,因此具有同時解析分子質量與液相阻尼之功能,故對於生物研究可以進一步了解其構形變化與力學特性。
zh_TW
dc.description.abstractThe application of Quartz Crystal Microbalance (QCM) in the liquid phase condition usually subjected to two major problems. The first one is the extra damping in liquid phase that causes the mechanical quality factor drop to a level that may induce unstable oscillation frequency. The second one is the self oscillation zero phase condition will be lost due to the shunt capacitance effect. In this study, a novel phase compensated quartz crystal oscillation circuit is proposed and will try to resolve these problems.
According to the traditional theoretical analysis, the prediction of frequency change is done by using the series resonance frequency as a reference. However, the general oscillation circuit is designed and operated at the actual resonance frequency condition. The difference between the two above-mentioned frequencies became even larger in the high damping liquid environment, and will lead to errors on bio-medical samples measurement. To hold self oscillation operated on the series resonance frequency accurately, a negative capacitance compensation circuit is proposed to cancel out the shut capacitance of the quartz crystal. It was shown that the simple self oscillation circuit will lead to accurate series resonant frequency oscillation no matter it is in liquid phase or not. The experimental result of the impedance analysis shows that the method is successful and work well to stabilize the oscillation and eliminate the measurement errors in liquid phase. A new bridge oscillation circuit to enhance the circuit loop quality factor and to sustain the constant voltage cross the quartz was also developed in this study. It also helps to further stabilize the oscillation in liquid phase.
The new compensated oscillation circuit not only fix the phase error in the liquid phase, but also can be used to get the capacitance and damping values by using a control loop design. With all these developmnets, not only the bio-mass loading but also the damping coefficient can be measured on the circuit simultaneously. With the improved stability and precision on the new QCM system, it will be shown that protein conformation changes and bio-mechanisms can then be examined.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:12:02Z (GMT). No. of bitstreams: 1
ntu-96-D91543011-1.pdf: 1425738 bytes, checksum: 4e9ba8b9f9fe2b74eba3bf440e4316e3 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝 i
中文摘要 iv
英文摘要 v
目錄 vii
圖目錄 xi
表目錄 xiv
第1章 緒論 1
1.1 動機與目標 1
1.2 石英晶體微天平基本運作原理 2
1.3 發展歷史 3
1.4 聲波元件作為生物感測之分析 5
1.5 常見生物檢測方式比較 6
1.6 石英產業與QCM生物檢測 8
1.7 應用領域 9
第2章 石英特性與QCM理論模型 10
2.1 石英特性 10
2.1.1 切面與振盪模式 10
2.1.2 等效電路 13
2.1.3 特徵頻率 14
2.1.4 溫度特性 18
2.2 理論模型 20
2.2.1 基本力學模型 20
2.2.2 等效電路Butterworth-Van Dyke (BVD circuit)模型 22
2.2.3 修正型BVD模型 24
2.2.4 傳輸線模型 25
2.3 其它影響特性 28
2.3.1 靈敏度 28
2.3.2 表面粗糙度 29
2.3.3 電容效應 30
2.3.4 表面應力,作用電壓等效應 31
第3章 量測方式 33
3.1 基本量測方式 33
3.1.1 脈波激發 33
3.1.2 網路分析儀或是阻抗分析儀 33
3.1.3 振盪電路 35
3.1.4 基本量測方式比較 36
3.2 特殊量測方式 37
3.2.1 阻尼量測QCM-Damping 37
3.2.2 電化學EQCM 39
第4章 液相量測探討 41
4.1 頻率變化誤差 41
4.2 穩定度Q值問題 44
4.3 振盪能力問題 46
第5章 振盪電路設計 49
5.1 基本振盪電路設計條件 50
5.1.1 巴克豪森振盪條件(Barkhausen Criterion) 50
5.1.2 串聯振盪與並聯振盪 50
5.1.3 電路增益與Q值 52
5.2 基本石英振盪電路分析 53
5.2.1 Miller Circuit 53
5.2.2 Colpitts Circuit 54
5.2.3 Pierce Circuit 56
5.3 QCM振盪電路要件 57
5.4 常見QCM振盪電路 58
5.4.1 Level oscillator 58
5.4.2 Emitter coupled oscillator 59
5.4.3 Operation amplifier oscillator 60
5.4.4 PLL based oscillator 61
5.4.5 Active-Bridge Oscillator 62
5.5 提升QCM振盪電路品質之方法 63
5.5.1 Q值提升 64
5.5.2 消除石英並聯電容 67
第6章 新型相位補償與高Q值石英振盪電路 71
6.1 負導抗轉換器消除石英並聯電容 71
6.1.1 負導抗轉換基本型態 71
6.1.2 進階型負導抗轉換器 73
6.1.3 負導抗實作與特性量測分析 77
6.2 補償控制設計 82
6.3 進階型OP-Amp 橋式振盪電路 84
6.3.1 新創橋式穩壓振盪電路特性 84
6.3.2 穩壓振盪電路特性實量測測 86
第7章 整體量測系統設計 93
7.1 晶片設計 93
7.2 機構設計 94
7.3 整體電路設計與軟體控制 96
第8章 結論與未來展望 99
8.1 結論 99
8.2 未來展望 99
參考文獻(Reference) 100
dc.language.isozh-TW
dc.subject構形變化zh_TW
dc.subject振盪電路zh_TW
dc.subject負導抗zh_TW
dc.subjectQ值zh_TW
dc.subject微質量天平zh_TW
dc.subject石英zh_TW
dc.subjectConformation Changeen
dc.subjectQuartzen
dc.subjectQuality Factoren
dc.subjectNegative Immittanceen
dc.subjectOscillator Circuiten
dc.subjectMirco Balanceen
dc.title同時解析分子質量與液相阻尼之相位補償式石英微質量天平zh_TW
dc.titlePhase compensated Quartz Crystal Microbalance for Simultaneous Measurement of Bio-mass loading and liquid dampingen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee林世明(Shi-Ming Lin),楊鎣(Pauline Y. Lau),張培仁(Pei-Zen Chang),吳光鐘(Kuang-Chong Wu),林啟萬(Chii-Wann Lin),呂學士(Shey-Shi Lu)
dc.subject.keyword石英,微質量天平,Q值,負導抗,振盪電路,構形變化,zh_TW
dc.subject.keywordQuartz,Mirco Balance,Quality Factor,Negative Immittance,Oscillator Circuit,Conformation Change,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2007-10-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved