Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27599
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹恆偉
dc.contributor.authorHsin-Yi Wuen
dc.contributor.author吳信義zh_TW
dc.date.accessioned2021-06-12T18:11:29Z-
dc.date.available2017-10-09
dc.date.copyright2007-11-15
dc.date.issued2007
dc.date.submitted2007-10-09
dc.identifier.citation[1] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques”, IEEE J. Solid-State Circuits, Vol. 31, pp. 1723-1732, Nov. 1996.
[2] I. A. Young, J.K. Greason, K.L. Wong, “A PLL clock generator with 5 to 10 MHz of lock range for microprocessors”, IEEE J. Solid-State Circuits, Vol. 27, pp. 1599 - 1607, Nov. 1992.
[3] A. Waizman, “A delay line loop for frequency synthesis of de-skewed clock”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1994, pp. 298-299.
[4] M. J. Lee, W. J. Dally, J. W. Poulton, P. Chiang, S. E. Greenwood, “An 84-mW 4-Gb/s clock and data recovery circuit for serial link applications”, in Symp. on VLSI Circuits Dig. Tech. Papers, June 2001, pp. 149-152.
[5] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 545-548, 1999.
[6] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J. M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, I. Yoshida, K. Yoshino, S. Hashimoto, T. Yoshii, M. Ichinose, T. Imura, M. Uziie, S. Kikuchi, K. Koyama, Y. Fukuzo, T. Okuda, “A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with synchronous mirror delay”, IEEE J. Solid-State Circuits, Vol. 31, pp. 1656 - 1668, Nov. 1996.
[7] J. A. Gasbarro, M. A. Horowitz, “Integrated pin electronics for VLSI functional testers”, IEEE J. Solid-State Circuits, Vol. 24, pp. 331-337, Apr. 1989.
[8] M. G. Johnson, E. L. Hudson, “A variable delay line PLL for CPU-coprocessor synchronization”, IEEE J. Solid-State Circuits, Vol. 23, pp. 1218-1223, Oct. 1988.
[9] B. W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Y. F. Chan, T. H. Lee, M. A. Horowitz, “A portable digital DLL for high-speed CMOS interface circuits”, IEEE J. Solid-State Circuits, Vol. 34, pp. 632-644, May 1999.
[10] C. T. Gray, W. Liu, W. A. M. V. Noije, T. A. Hughes, R. K. Cavin III, “A sampling technique and its CMOS implementation with 1 Gb/s bandwidth and 25 ps resolution”, IEEE J. Solid-State Circuits, Vol. 29, pp. 340-349, Mar. 1994.
[11] Y. C. Lin, “The Design and Realization of A Timing Generator Circuit for High Speed Automatic Test Equipment”, MS thesis, NTU, 2000.
[12] J. Christiansen, “An integrated high resolution CMOS timing generator based on an array of delay locked loops”, IEEE J. Solid-State Circuits, Vol. 31, pp. 952-957, July 1996.
[13] H. C. Chu, “A High Speed CMOS Serial Link Transceiver Using Multiplexing-at- Output-Pad and Oversampling Techniques”, MS thesis, NTU, 1998.
[14] S. Sidiropoulos, “High-performance inter-chip signaling”, Ph.D. thesis, Stanford University, 1998.
[15] S. Sidiropoulos, M. A. Horowitz, “A semidigital dual delay-locked loop”, IEEE J. Solid-State Circuits, Vol. 32, pp. 1683-1692, Nov. 1997.
[16] T. Saeki, M. Mitsuishi, H. Iwaki, M. Tagishi, “A 1.3-cycle lock time, non-PLL/DLL clock multiplier based on direct clock cycle interpolation for “clock on demand” ”, IEEE J. Solid-State Circuits, Vol. 35, pp. 1581-1590, Nov. 2000.
[17] C. P. Wu, H. W. Tsao, “A 100 MHz timing generator for impulse radio applications”, 30th European Solid-State Circuits Conf., Sept. 2004, pp. 439-442.

[18] T. Y. Wang, S. M. Lin, H. W. Tsao, “Multiple channel programmable timing generators with single cyclic delay line” IEEE Transactions on Instrumentation and Measurement, Vol. 53, pp. 1295-1303, Aug. 2004.
[19] P. K. Hanumolu, V. Kratyuk, G. Y. Wei, U. K. Moon, “A Sub-Picosecond Resolution 0.5-1.5GHz Digital-to-Phase Converter”, in Symp. on VLSI Circuits Dig. Tech. Papers, June 2006, pp. 75-76.
[20] H. H. Chang, J. W. Lin, C. Y. Yang, S. I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle”, IEEE J. Solid-State Circuits, Vol. 37, pp. 1021-1027, Aug. 2002.
[21] S. Kim, K. Lee, Y. Moon, D. K. Jeong, Y. Choi, H. K. Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL”, IEEE J. Solid-State Circuits, Vol. 32, pp. 691-700, May 1997.
[22] H. H. Chang, J. Y. Chang, C. Y. Kuo, S. I. Liu, “A 0.7-2-GHz self-calibrated multiphase delay-locked loop”, IEEE J. Solid-State Circuits, Vol. 41, pp. 1051-1061, May 2006.
[23] T. C. Lee, K. J. Hsiao, “The design and analysis of a DLL-based frequency synthesizer for UWB application”, IEEE J. Solid-State Circuits, Vol. 41, pp. 1245-1252, June 2006.
[24] S. Karthikeyan, “Clock duty cycle adjuster circuit for switched capacitor circuits”, Electron. Lett., Vol. 38, pp. 1008-1009, Aug. 2002.
[25] G. Manganaro, S. U. Kwak, A. R. Bugeja, “A dual 10-b 200-MSPS pipelined D/A converter with DLL-based clock synthesizer”, IEEE J. Solid-State Circuits, Vol. 39, pp. 1829-1838, Nov. 2004.
[26] J. Lee, B. Kim, “A low-noise fast-lock phase-locked loop with adaptive bandwidth control”, IEEE J. Solid-State Circuits, Vol. 35, pp. 1137-1145, Aug. 2000.
[27] K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, M. Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending”, in Symp. on VLSI Circuits Dig. Tech. Papers, June 2000, pp. 48-49.
[28] Y. Moon, J. Choi, K. Lee; D. K. Jeong, M. K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance”, IEEE J. Solid-State Circuits, Vol. 35, pp. 377-384, Mar. 2000.
[29] H. Huh, Y. Koo, K. Y. Lee, Y. Ok, S. Lee, D. Kwon, J. Lee, J. Park, K. Lee, D. K. Jeong, W. Kim, “A CMOS dual-band fractional-n synthesizer with reference doubler and compensated charge pump”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 100-101.
[30] F. Mu, C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers”, IEEE J. Solid-State Circuits, Vol. 35, pp. 134-141, Feb. 2000.
[31] P. H. Yang, J. S. Wang, “Low-voltage pulsewidth control loops for SOC applications”, IEEE J. Solid-State Circuits, Vol. 37, pp. 1348-1351, Oct. 2002.
[32] W. M. Lin, H. Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit”, IEEE J. Solid-State Circuits, Vol. 39, pp. 1366-1369, Aug. 2004.
[33] S. R. Han, S. I. Liu, “A single-path pulsewidth control loop with a built-in delay-locked loop”, IEEE J. Solid-State Circuits, Vol. 40, pp. 1130-1135, May 2005.
[34] J. R. Yuan, C. Svensson, “Fast CMOS nonbinary divider and counter”, Electron. Lett., Vol 29, pp. 1222-1223, June 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27599-
dc.description.abstract隨著積體電路系統的發展,對高頻率應用的需求也急速地增加。如此一來,精準的延遲產生器、同步問題和可變的工作週期也變得重要,但也變成高效能系統中亟需克服的瓶頸。
本研究分為兩個部份,第一個部份是針對延遲產生器,為了產生精準的相位,延遲產生器解析度的提升是必要的。在本研究中,我們提出一個利用平均時間延遲技巧的精準延遲產生器,藉由這個所提出的技巧,我們不但可以使用較小的晶片面積去達到低功率和高解析度的延遲產生器,而且可利用平均延遲技巧去獲得一個可變的延遲時間,而不是一個固定的延遲時間。本晶片使用0.18-μm CMOS 1P6M製程,在輸入操作頻率為400MHz下,解析度為25ps,在輸入1.8伏特的電壓下,總消耗功率為17毫瓦,全部的晶片面積佔了0.747×0.785mm2。
第二部份是針對脈波寬度控制迴路,一個系統在高速的操作下相位和工作週期是重要的資訊。在本研究中,我們使用0.18-μm CMOS 1P6M製程,提出一個具有可變的工作週期的脈波寬度控制迴路,並利用寬頻操作的延遲鎖定迴路。藉由這個所提出的技巧不但可以產生可變的工作週期信號,而且輸入和輸出信號的同步也可達到,輸出信號的工作週期可從30%到70%,每5%為一等級。而為了操作在輸入信號頻率介於400MHz到1.6GHz的寬頻範圍下,提出一個快速鎖定的起始電路去解決延遲鎖定迴路的鎖定錯誤問題。
zh_TW
dc.description.abstractAs the development in VLSI systems, the demands of high frequency applications increase dramatically. Therefore, the precise delay generator, the synchronization problem, and programmable duty cycles are becoming important but choke points for high performance systems.
This thesis is divided into two parts. The first part of the research is on delay generators. In order to generate precise phases, the resolution of delay generator enhancement is essential. In this work, we propose a precise delay generator circuit using an average delay technique. With the proposed technique, we can use not only smaller chip areas to achieve low power and a high resolution delay generator, but also the average delay technique to get a variable delay time, not a fixed one. The delay generator is realized in 0.18-μm CMOS 1P6M technology. The input frequency is 400MHz and the resolution is 25ps. Under a supply voltage of 1.8V, the whole chip ,which occupies the area of 0.747×0.785mm2 ,dissipates a power of 17mW.
The second part of the research is on pulsewidth control loops (PWCL). In a high speed operation, the phase and the duty cycle are important information in a system. In this work, a pulsewidth control loop with a programmable duty cycle using a wide range DLL is realized in 0.18-μm CMOS 1P6M technology. Based on the proposed circuit, not only the programmable duty cycle of the clock can be generated but also the phase alignment between the input and output clocks can be achieved. The duty cycle of the output clock can be adjusted from 30% to 70% in steps of 5%. The input frequency is from 400MHz to 1.6GHz. In order to work in a wide range of operations, a fast locking started-controlled circuit (FLSC) is proposed to solve the harmonic problem in a DLL.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:11:29Z (GMT). No. of bitstreams: 1
ntu-96-R94943035-1.pdf: 7225315 bytes, checksum: e9fb1ea53fd2b9a1f0250a7d4e8a0549 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsChinese Abstract I
Abstract III
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis overview 2
Chapter 2 The Basics of Delay Locked Loop 5
2.1 Fundamental Theory and Architecture of DLL 5
2.1.1 Stability Analysis 5
2.1.2 Design Consideration of the Delay-Locked Loop 7
2.2 The Building Block Circuit of DLL 10
Chapter 3 A Precise Delay Generator Circuit Using The
Average Delay Technique 17
3.1 Conventional Techniques of Delay Generators 17
3.1.1 Absolute Delay Generators 18
3.1.2 Relative Delay Generators 24
3.2 The System Architecture of the Proposed Delay
Generator 32
3.2.1 Introduction 32
3.2.2 The Concept of A Precise Delay Generator Circuit
Using The Average Delay Technique 32
3.3 Circuit Design 40
3.3.1 Coarse Tune 40
3.3.2 Fine Tune 44
3.3.3 Multiplexer of Output (MUXOUT) 46
3.4 Experimental Results 47
3.4.1 Chip Floor Plan and Layout 47
3.4.2 Interface 49
3.4.3 Measurement Setup 50
3.4.4 Experiment Results 52
3.5 Summary 55
Chapter 4 Pulsewidth Control Loop with Programmable Duty
Cycle Using A Wide Range DLL 57
4.1 Conventional Techniques of PWCL 57
4.1.1 Duty Cycle Corrector 59
4.1.2 Pulsewidth Control Loop 63
4.2 The System Architecture of Proposed PWCL 69
4.2.1 Introduction 69
4.2.2 The Concept of Proposed PWCL with Programmable Duty
Cycle using A Wide Range DLL 71
4.3 Circuit Design 75
4.3.1 PWCL Part 75
4.3.2 DLL Part 84
4.4 Simulated Results 91
4.4.1 Chip floor plane and layout 91
4.4.2 Simulated results 92
4.5 Summary 95
Chapter 5 Conclusions and Future Works 97
5.1 Conclusions 97
5.2 Future Works 98
Bibliography 99
dc.language.isoen
dc.subject起始控制電路zh_TW
dc.subject延遲產生器zh_TW
dc.subject脈波寬度控制迴路zh_TW
dc.subject可變工作週期zh_TW
dc.subject寬範圍zh_TW
dc.subjectwide rangeen
dc.subjectDelay Generatoren
dc.subjectstart-controlled circuiten
dc.subjectprogrammable duty cycleen
dc.subjectDelay Locked Loop(DLL)en
dc.title互補式金氧半延遲鎖定迴路在延遲產生與脈波寬度控制之設計與應用zh_TW
dc.titleDesign and Application of CMOS DLL in Delay Generator and PWCLen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.coadvisor黃崇禧
dc.contributor.oralexamcommittee陳伯奇,楊清淵,吳駿邦
dc.subject.keyword延遲產生器,脈波寬度控制迴路,可變工作週期,寬範圍,起始控制電路,zh_TW
dc.subject.keywordDelay Generator,Delay Locked Loop(DLL),programmable duty cycle,wide range,start-controlled circuit,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2007-10-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
7.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved