Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江金倉(Chin-Tsang Chiang)
dc.contributor.authorShao-Hsuan Wangen
dc.contributor.author王紹宣zh_TW
dc.date.accessioned2021-06-12T18:11:15Z-
dc.date.available2008-11-15
dc.date.copyright2007-11-15
dc.date.issued2007
dc.date.submitted2007-10-11
dc.identifier.citation1. Bickel, P. J., G‥otze, F., and Van Zwet, W. R. (1986). The Edgeworth
expansion for U-statistics of degree 2. The Annals of Statistics. 19,
470-484.
2. Callaert, H., Janssen, P., and Veraverbeke, N. (1980). An edgeworth
expansion for U-statistics. The Annals of Statistics. 8, 299-312.
3. Callaert, H. and Veraverbeke, N. (1981). The order of the Normal
approximation for a studentized U-statistic. The Annals of Statistics.
9, 194-200.
4. Chambless, L. E. and Diao, G. (2006). Estimation of time-dependent
area under the ROC curve for long-term risk prediction. Statistics in
Medicine. 25, 3474-3486.
5. Chang, M. N. and Rao, P. V. (1989). Berry-Esseen bound for the
Kaplan-Meier estimator. Communication in Statistics-Theory and Methods.
18, 4647-4664.
6. Chang, M. N. (1991). Edgeworth expansion for the Kaplan-Meier estimator.
Communication in Statistics-Theory and Methods. 20, 2479-
2494.
7. Chiang, C. T., James, L. F., and Wang, M. C. (2005). Random
weighted bootstrap method for recurrent events with informative censoring.
Lifetime Data Analysis. 11, 489-509.
8. Cornish, E. A. and Fisher, R. A. (1937). Moments and cumulants in
the specification of distributions. Review of the International Statistical
Institute. 5, 307-320.
9. Fleming, T. R. and Harrington, D. P. (1991). Counting process and
survival analysis. New York:Wiley.
10. Helmers, R. (1991). On the Edgeworth expansion and the Bootstrap
approximation for a studentized U-statistic. The Annals of Statistics.
19, 470-484.
11. Hung, H and Chiang, C. T. (2007). Estimation methods for timedependent
AUC models with survival data. Technical Report.
12. Janssen, P. (1994). Weighted bootstrapping of U-statistics. Journal
of Statistical Planning and Inference. 38, 31-42.
13. Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis
of Failure Time Data. New York:Wiley.
14. Malevich, T. L. and Abdalimov, B. (1979). Large deviation probabilities
for U-statistics. Theory of Probability and its Applications. 24,
215-219.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27594-
dc.description.abstract根據非參數AUC 估計式之常態逼近理論所得之信賴區間已被建立。然而, 當樣本數
過小及設限率偏高時, 所建立之信賴區間顯現涵蓋機率過低及區間不精確問題。為了
解決此缺點, 吾等利用加權自助法和Edgeworth 展式方法來改進涵蓋率和區間分位
的精確性。在此論文, 針對加權自助分配和Edegeworth 展式作深入理論建立, 並在
一系列的數值模擬中歸納出不同方法之性質。最後, 將所提出之方法應用於ACTG 175 研究資料上。
zh_TW
dc.description.abstractThe confidence region for the time-dependent area under the receiver operating
characteristic curve (AUC) has been constructed based on the asymptotic
normality of a non-parametric estimator. However, the performance
of the normal approximated confidence interval is very poor when the sample
size is small and the censoring rate is high. To improve the coverage
probability and the accuracy of confidence interval, the random weighted
bootstrap distribution and the Edgeworth expansion with remainder term
o(n^(?1/2)) are proposed to approximate the sampling distribution of the estimator.
The asymptotic properties of the random weighted bootstrap approximation
and the Edgeworth expansion are studied in this thesis. The
usefulness of the proposed procedures are confirmed by a class of simulations
with different sample sizes and censoring rates. Moreover, the methods are
demonstrated using the ACTG 175 data.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:11:15Z (GMT). No. of bitstreams: 1
ntu-96-R93221024-1.pdf: 252881 bytes, checksum: 61433bf251e4629dd593fd0435f2b245 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1. Chapter 1 Introduction .....1
2. Chapter 2 Estimation of θt .....4
3. Chapter 3 Random Weighted Bootstrap .....7
4. Chapter 4 Edgeworth Expansion .....13
5. Chapter 5 Simulation Study .....23
6. Chapter 6 Application to ACTG 175 Data .....30
7. Chapter 7 Concluding Remarks ...... 32
dc.language.isoen
dc.subjectU統計量zh_TW
dc.subjectAUCzh_TW
dc.subjectEdgeworth展式zh_TW
dc.subject存活資料zh_TW
dc.subjectkaplan-meier估計式zh_TW
dc.subject加權自助法zh_TW
dc.subject常態逼近理論zh_TW
dc.title時間相關之AUC統計推論 - 加權自助法與Edgeworth展式zh_TW
dc.titleWeighted Bootstrap and Edgeworth
Expansion for the Nonparametric Estimator
of Time-Dependent AUC
en
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宏(Hung Chen),張子貴(Tzu-Kui Chang)
dc.subject.keywordAUC,Edgeworth展式,kaplan-meier估計式,常態逼近理論,存活資料,加權自助法,U統計量,zh_TW
dc.subject.keywordAUC,Edgeworth expansion,Kaplan-Meier estimator,normal approximation,random weighted,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2007-10-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
246.95 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved