請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27592完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余政靖(Cheng-Ching Yu) | |
| dc.contributor.author | Li-Chiang Lin | en |
| dc.contributor.author | 林立強 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:11:09Z | - |
| dc.date.available | 2007-11-15 | |
| dc.date.copyright | 2007-11-15 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-10-11 | |
| dc.identifier.citation | 參考文獻
[中文] [1]童士哲,[反應蒸餾塔之概念性設計: 相對揮發度排序之影 響],國立台灣大學化學工程研究所碩士論文(2006) [英文] [2] Abella, L. C.; Gaspillo, P. D.; Itoh, H.; Goto, S., “Dehydration of tert-Butyl Alcohol in Reactive Distillation”, J. Chem. Eng. Jpn., 1999, 32(6), 742. [3] Abufares, A. A.; Douglas, P. L., “Mathematical Modeling and Simulation of an MTBE Catalytic Distillation Process Using Speedup and Aspenplus”, Chem. Eng. Res. Des., 1995, 73, Part A, 3. [4] Agreda, V. H.; Partin, L. R.; Heise, W. H., “High-purity methyl acetate production via reactive distillation”, Chem. Eng. Prog., 1990, 86, 40-46. [5] Al-Arfaj, M. A.; Luyben, W. L., “Effect of Number of Fractionating Trays on Reactive Distillation Performance”, AIChE J., 2000, 46, 2417. [6] Al-Arfaj, M. A.; Luyben, W. L., “Comparison of alternative control structures for an ideal two-product reactive distillation column”, Ind. Eng. Chem. Res., 2000, 39, 3298-3307. [7] Bao, J.; Gao, B.; Wu, X.; Yoshimoto, M.; Nakao, K., “Simulation of Industrial Catalytic-Distillation Process for Production of Methyl tert-Butyl Ether by Developing User’s Model on Aspen Plus Platform”, Chem. Eng. J., 2002, 90, 253. [8] Barbosa, D.; Doherty, M. F., “Simple Distillation of Homogeneous Reactive Mixtures.” Chem. eng. sci., 1988, 43(3), 541. [9] Baur, R.; Higler, A. P.; Taylor, R.; Krishna, R., “Comparison of Equilibrium Stage and Nonequilibrium Stage Models for Reactive Distillation”, Chem. Eng. J., 2000, 76, 33. [10] Beckmann, A.; Nierlich, F.; Pöpken, T.; Reusch, D.; von Scala, C.; Tuchlenski, A., “Reactive distillation-industrial applications, process design and scale-up”, Chem. Eng. Sci., 2002, 57, 1525-1530. [11] Cardoso, M. F.; Salcedo, R. L.; Feyo de Azevedo, S.; Barbosa, D. “Optimization of reactive distillation processes with simulated annealing”, Chem. Eng. Sci., 2000, 55, 5059-5078. [12] Chang, J. W.; Yu, C. C., “The Relative Gain for Non-Square Multivariable System”, Chem. Eng. Sci., 1990, 45, 1309. [13] Cheng, Y. C.; Yu, C. C. “Effects of Feed Tray Locations to the Design of Reactive Distillation and Its Implication to Control”, Chem. Eng. Sci., 2005, 60, 4661-4677. [14] Chiang, S.H; Kuo, C.L; Yu, C.C; Wong, D. S. H., “Design alternatives for the amyl acetate process: coupled reactor/column and reactive distillation”, Ind. Eng. Chem. Res., 2002, 41, 3233-3246. [15] Chung, Y.; Jeong, H. K.; Song, H. K.; Park, W. H., “Modeling and Simulation of the Chemical Reaction Heat Pump System Adopting the Reactive Distillation Process”, Comput. Chem. Eng., 1997, 21, Suppl., S1007. [16] Ciric, A. R.; Gu, D., “Synthesis of nonequilibrium reactive distillation processes by MINLP optimization”, AIChE J, 1994, 40, 1479-1487. [17] Ciric, A. R.; Maio, P., “Steady State Multiplicities in an Ethylene Glycol Reactive Distillation Column”, Ind. Eng. Chem. Res., 1994, 33, 2738-2748. [18] Doherty, M. F.; Buzad, G., “Reactive Distillation by Design.” Chem. eng. res. des, 1992, 70(A5), 448. [19] Doherty, M. F.; Malone, M. F., “Conceptual Design of Distillation Systems”, McGraw-Hill: New York, 2001. [20] Dragomir, R. M.; Jobson, M. “Conceptual design of single-feed hybrid reactive distillation columns”, Chem. Eng. Sci., 2005, 60, 4377-4395. [21] Groemping, M.; Dragomir, R. M.; Jobson, M., ”Conceptual design of reactive distillation columns using stage composition lines”, 2004, 43, 369-382. [22] Hanika, J.; Kolena, J.; Smejkal, Q., “Butyl Acetate via Reactive Distillation Modeling and Experiment”, Chem. Eng. Sci., 1999, 54, 5205. [23] Hauan, S.; Hertzberg, T.; Lien, K. M., “Why Methyl tert-Butyl Ether Production by Reactive Distillation May Yield Multiple Solutions”, Ind. Eng. Chem. Res., 1995, 34, 987-991. [24] Hernjak, N.; Doyle, F. J., “Correlation of Process Nonlinearity with Closed-Loop Disturbance Rejection”, Ind. Eng. Chem. Res., 2003, 42, 4611-4619. [25] Higler, A.; Taylor, R.; Krishna, R., “Modeling of a Reactive Separation Process Using a Nonequilibrium Stage Model”, Comput. Chem. Eng., 1998, 22, Suppl., S111. [26] Huang, K; Iwakabe, K.; Nakaiwa, M.; Tsutsumi, A., “Towards further internal heat integration in design of reactive distillation columns - Part I: The design principle”, Chem. Eng. Sci., 2005, 60, 4901-4914. [27] Jackson, J. R.; Grossmann, I. E., “A disjunctive programming approach for the optimal design of reactive distillation columns”, Comput. Chem. Eng., 2001, 25, 1661-1673. [28] Jacobs, R.; Krishna, R., “Multiple Solutions in Reactive Distillation for Methyl tert-Butyl Ether Synthesis”, Ind. Eng. Chem. Res., 1993, 32, 1706-1709. [29] Jiménez, L.; Wanhschafft, O. M.; Julka, V., “Analysis of Residue Curve Maps of Reactive and Extractive Distillation Units”, Comput. Chem. Eng., 2001, 25, 635. [30] Kaymak, D. B.; Luyben, W. L., “Effect of relative volatility on the quantitative comparison of reactive distillation and conventional multi-unit systems”, Ind. Eng. Chem. Res., 2004, 43, 3151-3162. [31] Kaymak, D. B.; Luyben, W. L., “Effect of the chemical equilibrium constant on the design of reactive distillation columns”, Ind. Eng. Chem. Res., 2004, 43, 3666-3671. [32] Kaymak, D. B.; Luyben, W. L., “Quantitative Comparison of Reactive Distillation with Conventional Multi-Unit Reactor/Column/Recycle Systems for Different Chemical Equilibrium Constants”, Ind. Eng. Chem. Res., 2004, 43, 2493-2507. [33] Krishna, R., “Reactive Separations: More Ways to Skin a Cat”, Chem. Eng. Sci., 2002, 57, 1491. [34] Kumar, A.; Daoutidis, P., “Modeling, Analysis and Control of Ethylene Glycol Reactive Distillation Column,” AIChE J., 1999, 45, 51. [35] Lee, J. W.; Bruggemann, S.; Marquardt,W. “Shortcut method for kinetically controlled reactive distillation systems”, AIChE J., 2003, 49, 1471-1487 [36] Lee, L. S.; Hauan, S.; Westerberg, A. W., “Graphical Methods Reaction Distribution in a Reactive Distillation Column”, AIChE J., 2000, 46, 1218. [37] Lee, M. J.; Chen, S. L.; Kang, C. H.; Lin, H. M., “Simultaneous Chemical and Phase Equilibria for Mixture of Acetic Acid, Amyl Alcohol, Amyl Acetate, and Water”, Ind. Eng. Chem. Res., 2000, 39, 4383. [38] Luyben, W. L., “Economic and Dynamic Impact of the Use of Excess Reactant in Reactive Distillation System”, Ind. Eng. Chem. Res., 2000, 39, 2935. [39] Luyben, W. L.; Pszalgowski, K. M.; Schaefer, M. R.; Siddons, C., “ Design and Control of Conventional and Reactive Distillation Processes for the Production of Butyl Acetate.” Ind. eng. chem. res., 2004, 43(25), 8014. [40] Malone, M. F.; Doherty, M. F., “Reactive Distillation”, Ind. Eng. Chem. Res., 2000, 39, 3953-3957. [41] Menold, P. H.; Allgöwer, F.; Pearson, R.K., “Nonlinear Structure Identification of Chemical Processes”, Comput. Chem. Eng., 1997, 21, S137. [42] Nijhuis, S. A.; Kerkhof, F. P. J. M.; Mak, A. N. S., “Multiple Steady States during Reactive Distillation of Methyl tert-Butyl Ether”, Ind. Eng. Chem. Res., 1993, 32, 2767-2774. [43] Noeres, C.; Kenig, E. Y.; Górak, A., “Modeling of Reactive Separation Processes: Reactive Absorption and Reactive Distillation”, Chem. Eng. Proc., 2003, 42, 157. [44] Okur, H.; Bayramoglu, M., “The Effect of the Liquid-Phase Activity Model on the Simulation of Ethyl Acetate Production by Reactive Distillation,” Ind. Eng. Chem. Res., 2001, 40, 3639. [45] Pöpken, T.; Götze, L.; Gmehling, J., “Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis”, Ind. Eng. Chem. Res., 2000, 39, 2601. [46] Schweickhardt, T.; Allgöwer, F., “Quantitative Nonlinearity Assessment: An Introduction to Nonlinearity Measure”, In Integration of Process Design and Control, Seferlis, P. and Georgiadis, M. C. Eds., Elsevier: Amsterdam , 2004. [47] Seferlis, P.; Grievink, J. “Optimal design and sensitivity analysis of reactive distillation units using collocation models”, Ind. Eng. Chem. Res., 2001, 40, 1673-1685. [48] Sharma, M. M.; Mahajani, S. M., “Industrial applications of reactive distillation”, In Reactive Distillations Status and Future Directions; Sundmacher, K., Kienle, A., Eds.; Wiley-VCH: New York. ,2003. [49] Shen, S. H.; Yu, C. C., “Use of Relay-Feedback Test for Automatic Tuning of Multivariable Systems”, AIChE J, 1994, 40, 627-646. [50] Siirola, J. J. “An industrial perspective on process synthesis”, In Foundations of Computer-Aided Process Design; Biegler, L. T., Doherty, M. F., Eds.; AIChE Symposium Series 304; American Institute of Chemical Engineers (AIChE): New York: 1995, 222-233. [51] Smejkal, Q.; Hanika, J.; Kolena, J., “2-Methylpropylacetate Synthesis in a System of Equilibrium Reactor and Reactive Distillation Column”, Chem. Eng. Sci., 2001, 56, 365. [52] Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via Reactive Distillation. 1. Steady-State Simulation and Design Aspects”, Ind. Eng. Chem. Res., 1997a ,36, 1855. [53] Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via Reactive Distillation. 2. Dynamic Simulation and Control Aspects”, Ind. Eng. Chem. Res., 1997b, 36, 1870. [54] Sneesby, M. G., M. O. Tade, R. Data, and T. N. Smith, ‘‘Detrimental Influence of Excessive Fractionation on Reactive Distillation,’’, AIChE J., 1998, 44, 388. [55] Stichlmair, J.; Frey, T., “Mixed-integer nonlinear programming optimization of reactive distillation processes”, Ind. Eng. Chem. Res., 2001, 40, 5978-5982. [56] Stitt, E. H., “Reactive distillation for toluene disproportionation: A technical and economical evaluation”, Chem. Eng. Sci. 2002, 57, 1537-1543. [57] Tang, Y. T.; Hung, S. B.; Chen, Y. W.; Huang, H. P.; Lee, M. J.; Yu, C. C., “Design of Reactive Distillations for Acetic Acid Esterification with Different Alcohols”, AIChE J., 2005, 51, 1683. [58] Taylor, R.; Krishna, R., “Modeling reactive distillation”, Chem. Eng. Sci., 2000, 55, 5183-5229 [59] Tuchlenski, A.; Beckmann, A.; Reusch, D.; Düssel, R.; Weidlich, U.; Janowsky, R., “Reactive Distillation – Industrial Applications, Process Design and Scale-Up”, Chem. Eng. Sci., 2001, 56, 387. [60] Tung, S. T.; Yu, C. C., “Effects of Relative Volatility Ranking to the design of Reactive Distillation”, AIChE J., 2007, 53, 1278-1297. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27592 | - |
| dc.description.abstract | 多功程序在程序強化中是相當重要之一環,而多功程序中最主要例子為反應性蒸餾。過去10年的研究主要強調可行性分析、設計或控制方式探討,但針對相同或不同系統,在程序設計上,缺乏一系統化的整體概念性設計。在此研究中,礙於真實系統的複雜性,我們改而對一理想系統作探討,我們考慮一四成分的可逆放熱反應(A+B↔C+D),並且忽略產物與反應物間個別的相對揮發度排列,最後歸列出6種可能的不同相對揮發度排列(4!/2!2!)。針對這些不同的相對揮發度排列,我們以年總成本(TAC)做為比較基準來找出最佳架構。在設計上,我們先以無回流反應性蒸餾系統(Neat)當作主軸,提出一系列的設計,並且針對其架構做更進一步設計,提出過量反應物(Excess-reactant)的設計步驟以及成果,此外,除了反應性蒸餾系統外,傳統反應/分離系統(Conventional)也將被探討,最後延伸其應用面,改變平衡常數(0.1~100)來涵蓋大部份反應系統的發生。結果顯示,相對揮發度排序不論在反應性蒸餾系統與傳統反應/分離系統設計與結果上皆扮演一個非常重要的角色,不同的相對揮發度排序表現出不同的設計架構,並且展現出不同的時機(平衡常數)採用過量反應物設計,同時也得到相差甚遠的年總成本,此外從結果也得知,針對所有可能之排序,反應性蒸餾系統的年總成本會較傳統反應/分離系統來的低廉,此結果也再次顯示出此種多功程序的重要性。 | zh_TW |
| dc.description.abstract | Multifunctional process unit is an important element in process intensification and reactive distillation is one of the most common examples. For the recent ten years, the progress focus on understanding the feasibility, design, and, in some cases, control of reactive distillation. On the other side, for the design of same or different process, a systematic design procedure which is capable of covering a wide range of system parameters is lacking. The objective of this work is aimed to provide a systematic design procedure to determine the configuration of process. Instead of investigating real chemical systems, ideal chemical reaction systems with different relative volatility rankings will be studied. This provides a gradual transition as the reaction and separation properties change. The reaction considered is a reversible reaction A+B↔C+D, and this constitutes a quaternary system with 24 (4!) possible relative volatility arrangements. These 24 systems can further be grouped into six categories (4! /2! 2!) according to the ranking of relative volatilities of reactants and products. The likely process configurations will be explored and design will be optimized based on the total annual cost (TAC). First, in this work, proposing the configuration of neat design for those six categories, future more, excess design which is used to improve the performance of Neat design also be proposed. In addition to reactive distillation, the conventional reaction/separation system is also considered in order to do a basis of comparison. Finally, extending the application of this work, the equilibrium is changed (0.1~100) to cover almost all reaction, which is taken in real world. The results clearly indicate that the relative volatility rankings play a dominant role in the design and result of both reactive distillation and conventional reaction/separation process. Different relative volatilities ranking needs different configuration and has different timing (equilibrium constant) to use excess design, in the mean time, showing the different total annual cost (TAC). Besides, the result also indicates that the reactive distillation compares to conventional reaction/separation progress process has the lower TAC. The result tells us the important of multifunctional process unit, again. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:11:09Z (GMT). No. of bitstreams: 1 ntu-96-R94524090-1.pdf: 2116323 bytes, checksum: 611e9c4c667877789ff032b930c257d4 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖索引 VIII 表索引 XI 1. 緒論 1 1.1. 前言. 1 1.2. 文獻回顧. 4 1.3. 研究動機與目的. 9 1.4. 組織章節. 10 2. 程序架構分類與模式建立 12 2.1. 前言. 12 2.2. 程序架構分類. 12 2.2.1 Type I:One-Group 14 2.2.2 Type II:Two-Groups 15 2.2.3 Type III:Alternating 15 2.3. 理想反應蒸餾描述. 15 2.3.1動力學描述 15 2.3.2熱力學描述 16 2.3.3模式假設與規格 17 2.3.4建立程序模式 19 2.3.5模擬方法 22 3. 無回流反應性蒸餾系統之穩態設計(Neat)) 25 3.1. 前言. 25 3.2. 穩態設計之最適化步驟. 25 3.3. 最適化結果. 27 3.3.1 Type I:One-Group 27 3.3.1.1 Type Ip:LK+HK=LLK+HHK 27 3.3.1.2 Type Ir:LLK+HHK=LK+HK 30 3.3.2 Type II:Two-Groups 36 3.3.2.1 Type IIp:HK+HHK=LLK+LK 36 3.3.2.2 Type IIr:LLK+LK=HK+HHK 41 3.3.3 Type III:Alternating 45 3.3.3.1 Type IIIp:LK+HHK=LLK+HK 45 3.3.3.2 Type IIIr:LLK+HK=LK+HHK 48 3.4. 比較與討論. 51 4. 過量反應物之穩態設計(Excess-reactant)) 57 4.1. 前言. 57 4.2. 過量反應物之程序設計及其結果. 57 4.2.1 Type Ir:LLK+HHK=LK+HK. 59 4.2.2 Type IIr:LLK+LK=HK+HHK 68 4.2.2.1等劑量比進料之過量反應物設計 69 4.2.2.2非等劑量比進料之過量反應物設計 71 4.2.3 Type IIIr:LLK+HK=LK+HHK 74 4.2.4其他type 過量反應物設計架構之提出 78 4.3.4.1 Type Ip:LK+HK=LLK+HHK 79 4.3.4.2 Type IIp:HK+HHK=LLK+LK 82 4.3.4.3 Type IIIp:LK+HHK=LLK+HK 83 4.2.5設計結果 84 4.3. 平衡常數對反應性蒸餾系統設計的影響. 86 4.3.1 反應物最輕系統 87 4.3.1.1 Type Ir:LLK+HHK=LK+HK 87 4.3.1.2 Type IIr:LLK+LK=HK+HHK 88 4.3.1.3 Type IIIr:LLK+HK=LK+HHK 89 4.3.2產物最輕系統 90 4.3.2.1 Type Ip:LK+HK=LLK+HHK 90 4.3.2.2 Type IIp:HK+HHK=LLK+LK 91 4.3.2.3 Type IIIp:LK+HHK=LLK+HK 91 4.3.3 平衡常數與反應性蒸餾系統之架構轉變 92 4.4. 比較與討論. 96 5. 傳統反應分離程序之穩態設計(Conventional)) 99 5.1. 前言. 99 5.2. 最適化方法. 99 5.3. 最適化設計結果. 103 5.3.1 Type I:One-Group 103 5.3.1.1 Type Ip:LK+HK=LLK+HHK 103 5.3.1.2 Type Ir:LLK+HHK=LK+HK 107 5.3.2 Type II:Two-Groups 108 5.3.2.1 Type IIp:HK+HHK=LLK+LK 109 5.3.2.2 Type IIr:LLK+LK=HK+HHK 110 5.3.3 Type III:Alternating 111 5.3.3.1 Type IIIp:LK+HHK=LLK+HK 111 5.3.3.2 Type IIIr:LLK+HK=LK+HHK 113 5.3.3 設計結果之比較 114 5.4. 平衡常數與傳統反應分離系統. 115 6. 結論 121 參考文獻 123 附錄A年總成本計算公式 130 附錄B無回流反應性蒸餾系統之設計 132 附錄C Type Ir 無回流系統之新架構 142 附錄D傳統反應/分離系統設計 145 | |
| dc.language.iso | zh-TW | |
| dc.subject | 反應蒸餾 | zh_TW |
| dc.subject | 過量反應物設計 | zh_TW |
| dc.subject | 理想系統 | zh_TW |
| dc.subject | 相對揮發度排序 | zh_TW |
| dc.subject | 概念性設計 | zh_TW |
| dc.subject | ideal system | en |
| dc.subject | Excess-reactant Design | en |
| dc.subject | reactive distillation | en |
| dc.subject | conceptual design | en |
| dc.subject | Relative volatility ranking | en |
| dc.title | 不同相對揮發度排序在反應性蒸餾系統設計的影響:過量反應物設計 | zh_TW |
| dc.title | Effects of Relative Volatility Ranking to the Design of Reactive Distillation: Excess-reactant Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃孝平(Hsiao-Ping Huang),陳誠亮(Cheng-Liang Chen),王聖潔(San-Jang Wang),黃世宏(Shyh-Hong Hwang) | |
| dc.subject.keyword | 反應蒸餾,過量反應物設計,理想系統,相對揮發度排序,概念性設計, | zh_TW |
| dc.subject.keyword | reactive distillation,Excess-reactant Design,ideal system,Relative volatility ranking,conceptual design, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-10-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
