Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林仁混(Jen-Kun Lin)
dc.contributor.authorChun-Te Chiangen
dc.contributor.author江俊德zh_TW
dc.date.accessioned2021-06-12T18:11:06Z-
dc.date.available2012-11-19
dc.date.copyright2007-11-19
dc.date.issued2007
dc.date.submitted2007-10-11
dc.identifier.citation1. Parkin,D.M. (1998) The global burden of cancer. Semin.Cancer Biol., 8, 219-235.
2. Lacey,J.V., Jr., Devesa,S.S., and Brinton,L.A. (2002) Recent trends in breast cancer incidence and mortality. Environ.Mol Mutagen., 39, 82-88.
3. Fisher,B., Costantino,J.P., Wickerham,D.L., Redmond,C.K., Kavanah,M., Cronin,W.M., Vogel,V., Robidoux,A., Dimitrov,N., Atkins,J., Daly,M., Wieand,S., Tan-Chiu,E., Ford,L., and Wolmark,N. (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl.Cancer Inst., 90, 1371-1388.
4. Jordan,V.C. (2000) Progress in the prevention of breast cancer: concept to reality. J Steroid Biochem.Mol Biol., 74, 269-277.
5. Fabian,C.J. (2001) Breast cancer chemoprevention: beyond tamoxifen. Breast Cancer Res, 3, 99-103.
6. Surh,Y.J. (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer, 3, 768-780.
7. Farr,D.R. (1997) Functional foods. Cancer Letters, 114, 59-63.
8. van Poppel,G. and van den Berg,H. (1997) Vitamins and cancer. Cancer Letters, 114, 195-202.
9. Mukherjee,A.K., Basu,S., Sarkar,N., and Ghosh,A.C. (2001) Advances in cancer therapy with plant based natural products. Current Medicinal Chemistry, 8, 1467-1486.
10. Birt,D.F., Hendrich,S., and Wang,W. (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacology & Therapeutics, 90, 157-177.
11. Dixon,R.A. and Steele,C.L. (1999) Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends in Plant Science, 4, 394-400.
12. Ferriola,P.C., Cody,V., and Middleton E Jr (1989) Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem.Pharmacol., 38, 1617-1624.
13. Agullo,G., Gamet-Payrastre,L., Manenti,S., Viala,C., Remesy,C., Chap,H., and Payrastre,B. (1997) Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem.Pharmacol., 53, 1649-1657.
14. Jing,Y. and Waxman,S. (1995) Structural requirements for differentiation-induction and growth-inhibition of mouse erythroleukemia cells by isoflavones. Anticancer Res, 15, 1147-1152.
15. Wang,I.K., Lin-Shiau,S.Y., and Lin,J.K. (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur.J Cancer, 35, 1517-1525.
16. Setchell,K.D., Borriello,S.P., Hulme,P., Kirk,D.N., and Axelson,M. (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am.J Clin.Nutr., 40, 569-578.
17. Thompson,L.U., Robb,P., Serraino,M., and Cheung,F. (1991) Mammalian lignan production from various foods. Nutr.Cancer, 16, 43-52.
18. Peeters,P.H., Keinan-Boker,L., van der Schouw,Y.T., and Grobbee,D.E. (2003) Phytoestrogens and breast cancer risk. Review of the epidemiological evidence. Breast Cancer Res Treat., 77, 171-183.
19. Crespy,V. and Williamson,G. (2004) A review of the health effects of green tea catechins in in vivo animal models. J Nutr., 134, 3431S-3440S.
20. Lin,J.K., Liang,Y.C., and Lin-Shiau,S.Y. (1999) Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology, 58, 911-915.
21. Lin,J.K. and Lin-Shiau,S.Y. (2006) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr.Food Res, 50, 211-217.
22. Hynes,N.E. and Lane,H.A. (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat.Rev.Cancer, 5, 341-354.
23. Marmor,M.D., Skaria,K.B., and Yarden,Y. (2004) Signal transduction and oncogenesis by ErbB/HER receptors. Int.J Radiat.Oncol.Biol.Phys., 58, 903-913.
24. Slamon,D.J., Clark,G.M., Wong,S.G., Levin,W.J., Ullrich,A., and McGuire,W.L. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235, 177-182.
25. Yu,D. and Hung,M.C. (2000) Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene, 19, 6115-6121.
26. Meric-Bernstam,F. and Hung,M.C. (2006) Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin.Cancer Res, 12, 6326-6330.
27. Fendly,B.M., Winget,M., Hudziak,R.M., Lipari,M.T., Napier,M.A., and Ullrich,A. (1990) Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res, 50, 1550-1558.
28. Baselga,J., Tripathy,D., Mendelsohn,J., Baughman,S., Benz,C.C., Dantis,L., Sklarin,N.T., Seidman,A.D., Hudis,C.A., Moore,J., Rosen,P.P., Twaddell,T., Henderson,I.C., and Norton,L. (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J.Clin.Oncol., 14, 737-744.
29. Cobleigh,M.A., Vogel,C.L., Tripathy,D., Robert,N.J., Scholl,S., Fehrenbacher,L., Wolter,J.M., Paton,V., Shak,S., Lieberman,G., and Slamon,D.J. (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J.Clin.Oncol., 17, 2639-2648.
30. Vogel,C.L., Cobleigh,M.A., Tripathy,D., Gutheil,J.C., Harris,L.N., Fehrenbacher,L., Slamon,D.J., Murphy,M., Novotny,W.F., Burchmore,M., Shak,S., Stewart,S.J., and Press,M. (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J.Clin.Oncol., 20, 719-726.
31. Slamon,D.J., Leyland-Jones,B., Shak,S., Fuchs,H., Paton,V., Bajamonde,A., Fleming,T., Eiermann,W., Wolter,J., Pegram,M., Baselga,J., and Norton,L. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N.Engl.J.Med., 344, 783-792.
32. Cardoso,F., Piccart,M.J., Durbecq,V., and Di,L.A. (2002) Resistance to trastuzumab: a necessary evil or a temporary challenge? Clin.Breast Cancer, 3, 247-257.
33. Lan,K.H., Lu,C.H., and Yu,D. (2005) Mechanisms of trastuzumab resistance and their clinical implications. Ann.N.Y.Acad.Sci., 1059, 70-75.
34. Rusnak,D.W., Lackey,K., Affleck,K., Wood,E.R., Alligood,K.J., Rhodes,N., Keith,B.R., Murray,D.M., Knight,W.B., Mullin,R.J., and Gilmer,T.M. (2001) The Effects of the Novel, Reversible Epidermal Growth Factor Receptor/ErbB-2 Tyrosine Kinase Inhibitor, GW2016, on the Growth of Human Normal and Tumor-derived Cell Lines in Vitro and in Vivo. Mol Cancer Ther, 1, 85-94.
35. Wood,E.R., Truesdale,A.T., McDonald,O.B., Yuan,D., Hassell,A., Dickerson,S.H., Ellis,B., Pennisi,C., Horne,E., Lackey,K., Alligood,K.J., Rusnak,D.W., Gilmer,T.M., and Shewchuk,L. (2004) A Unique Structure for Epidermal Growth Factor Receptor Bound to GW572016 (Lapatinib): Relationships among Protein Conformation, Inhibitor Off-Rate, and Receptor Activity in Tumor Cells. Cancer Res, 64, 6652-6659.
36. Zhang,Y., Yu,D., Xia,W., and Hung,M.C. (1995) HER-2/neu-targeting cancer therapy via adenovirus-mediated E1A delivery in an animal model. Oncogene, 10, 1947-1954.
37. Chang,J.Y., Xia,W., Shao,R., Sorgi,F., Hortobagyi,G.N., Huang,L., and Hung,M.C. (1997) The tumor suppression activity of E1A in HER-2/neu-overexpressing breast cancer. Oncogene, 14, 561-568.
38. Brader,K.R., Wolf,J.K., Hung,M.C., Yu,D., Crispens,M.A., van Golen,K.L., and Price,J.E. (1997) Adenovirus E1A expression enhances the sensitivity of an ovarian cancer cell line to multiple cytotoxic agents through an apoptotic mechanism. Clin Cancer Res, 3, 2017-2024.
39. Citri,A., Kochupurakkal,B.S., and Yarden,Y. (2004) The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle, 3, 51-60.
40. Xu,W., Mimnaugh,E., Rosser,M.F.N., Nicchitta,C., Marcu,M., Yarden,Y., and Neckers,L. (2001) Sensitivity of Mature ErbB2 to Geldanamycin Is Conferred by Its Kinase Domain and Is Mediated by the Chaperone Protein Hsp90. J.Biol.Chem., 276, 3702-3708.
41. Hennessy,B.T., Smith,D.L., Ram,P.T., Lu,Y., and Mills,G.B. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat.Rev.Drug Discov., 4, 988-1004.
42. Shaw,R.J. and Cantley,L.C. (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424-430.
43. Bjornsti,M.A. and Houghton,P.J. (2004) The TOR pathway: a target for cancer therapy. Nat.Rev.Cancer, 4, 335-348.
44. Kopelovich,L., Fay,J.R., Sigman,C.C., and Crowell,J.A. (2007) The mammalian target of rapamycin pathway as a potential target for cancer chemoprevention. Cancer Epidemiol.Biomarkers Prev., 16, 1330-1340.
45. Inoki,K., Ouyang,H., Li,Y., and Guan,K.L. (2005) Signaling by target of rapamycin proteins in cell growth control. Microbiol.Mol Biol.Rev., 69, 79-100.
46. Clark,A.S., West,K., Streicher,S., and Dennis,P.A. (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther, 1, 707-717.
47. Sabatini,D.M. (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer, 6, 729-734.
48. Rao,R.D., Buckner,J.C., and Sarkaria,J.N. (2004) Mammalian target of rapamycin (mTOR) inhibitors as anti-cancer agents. Curr.Cancer Drug Targets., 4, 621-635.
49. Zhou,X., Tan,M., Stone,H., V, Klos,K.S., Lan,K.H., Yang,Y., Yang,W., Smith,T.L., Shi,D., and Yu,D. (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin.Cancer Res, 10, 6779-6788.
50. Bose,S., Chandran,S., Mirocha,J.M., and Bose,N. (2005) The Akt pathway in human breast cancer: a tissue-array-based analysis. Mod Pathol, 19, 238-245.
51. Chaudhary,L.R. and Hruska,K.A. (2003) Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem., 89, 1-5.
52. Gong,L., Li,Y., Nedeljkovic-Kurepa,A., and Sarkar,F.H. (2003) Inactivation of NF-kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene, 22, 4702-4709.
53. Way,T.D., Kao,M.C., and Lin,J.K. (2004) Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J.Biol.Chem., 279, 4479-4489.
54. Mallikarjuna,G., Dhanalakshmi,S., Singh,R.P., Agarwal,C., and Agarwal,R. (2004) Silibinin Protects against Photocarcinogenesis via Modulation of Cell Cycle Regulators, Mitogen-Activated Protein Kinases, and Akt Signaling. Cancer Res, 64, 6349-6356.
55. Majumder,P.K., Febbo,P.G., Bikoff,R., Berger,R., Xue,Q., McMahon,L.M., Manola,J., Brugarolas,J., McDonnell,T.J., Golub,T.R., Loda,M., Lane,H.A., and Sellers,W.R. (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat.Med, 10, 594-601.
56. Liu,M., Howes,A., Lesperance,J., Stallcup,W.B., Hauser,C.A., Kadoya,K., Oshima,R.G., and Abraham,R.T. (2005) Antitumor activity of rapamycin in a transgenic mouse model of ErbB2-dependent human breast cancer. Cancer Res, 65, 5325-5336.
57. Wakil,S.J. (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry, 28, 4523-4530.
58. Calle,E.E., Rodriguez,C., Walker-Thurmond,K., and Thun,M.J. (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N.Engl.J.Med., 348, 1625-1638.
59. Menendez,J.A., Colomer,R., and Lupu,R. (2005) Obesity, fatty acid synthase, and cancer: serendipity or forgotten causal linkage? Mol.Genet.Metab, 84, 293-295.
60. Kuhajda,F.P. (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res, 66, 5977-5980.
61. Kuhajda,F.P. (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition, 16, 202-208.
62. Bandyopadhyay,S., Zhan,R., Wang,Y., Pai,S.K., Hirota,S., Hosobe,S., Takano,Y., Saito,K., Furuta,E., Iiizumi,M., Mohinta,S., Watabe,M., Chalfant,C., and Watabe,K. (2006) Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res, 66, 5934-5940.
63. De,S.E., Brusselmans,K., Heyns,W., Verhoeven,G., and Swinnen,J.V. (2003) RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res, 63, 3799-3804.
64. Pizer,E.S., Jackisch,C., Wood,F.D., Pasternack,G.R., Davidson,N.E., and Kuhajda,F.P. (1996) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res, 56, 2745-2747.
65. Visca,P., Alo,P.L., Nonno,F.D., Botti,C., Trombetta,G., Marandino,F., Filippi,S., Tondo,U.D., and Donnorso,R.P. (1999) Immunohistochemical Expression of Fatty Acid Synthase, Apoptotic-regulating Genes, Proliferating Factors, and ras Protein Product in Colorectal Adenomas, Carcinomas, and Adjacent Nonneoplastic Mucosa. Clin Cancer Res, 5, 4111-4118.
66. Bull,J.H., Ellison,G., Patel,A., Muir,G., Walker,M., Underwood,M., Khan,F., and Paskins,L. (2001) Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br.J Cancer, 84, 1512-1519.
67. Kusakabe,T., Nashimoto,A., Honma,K., and Suzuki,T. (2002) Fatty acid synthase is highly expressed in carcinoma, adenoma and in regenerative epithelium and intestinal metaplasia of the stomach. Histopathology, 40, 71-79.
68. Nemoto,T., Terashima,S., Kogure,M., Hoshino,Y., Kusakabe,T., Suzuki,T., and Gotoh,M. (2001) Overexpression of fatty acid synthase in oesophageal squamous cell dysplasia and carcinoma. Pathobiology, 69, 297-303.
69. Krontiras,H., Roye,G.D., Beenken,S.E., Myers,R.B., Mayo,M.S., Peters,G.E., and Grizzle,W.E. (1999) Fatty acid synthase expression is increased in neoplastic lesions of the oral tongue. Head Neck, 21, 325-329.
70. Alo,P.L., Visca,P., Botti,C., Galati,G.M., Sebastiani,V., Andreano,T., Di,T.U., and Pizer,E.S. (2001) Immunohistochemical expression of human erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas and adjacent typical/atypical hyperplastic or normal breast tissue. Am.J Clin Pathol, 116, 129-134.
71. Xu,R., Perle,M.A., Inghirami,G., Chan,W., Delgado,Y., and Feiner,H. (2002) Amplification of Her-2/neu gene in Her-2/neu-overexpressing and -nonexpressing breast carcinomas and their synchronous benign, premalignant, and metastatic lesions detected by FISH in archival material. Mod Pathol, 15, 116-124.
72. Kumar-Sinha,C., Ignatoski,K.W., Lippman,M.E., Ethier,S.P., and Chinnaiyan,A.M. (2003) Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res., 63, 132-139.
73. Menendez,J.A., Vellon,L., Mehmi,I., Oza,B.P., Ropero,S., Colomer,R., and Lupu,R. (2004) Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc.Natl.Acad.Sci.U.S.A, 101, 10715-10720.
74. Vance,D., Goldberg,I., Mitsuhashi,O., and Bloch,K. (1972) Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem.Biophys.Res Commun., 48, 649-656.
75. Christie,W.W., Hunter,M.L., and Clegg,R.A. (1981) The effects of cerulenin on lipid metabolism in vitro in cellular preparations from the rat. Biochim.Biophys.Acta, 666, 284-290.
76. Kuhajda,F.P., Pizer,E.S., Li,J.N., Mani,N.S., Frehywot,G.L., and Townsend,C.A. (2000) Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc.Natl.Acad.Sci.U.S.A, 97, 3450-3454.
77. Li,J.N., Gorospe,M., Chrest,F.J., Kumaravel,T.S., Evans,M.K., Han,W.F., and Pizer,E.S. (2001) Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res, 61, 1493-1499.
78. Wang,X. and Tian,W. (2001) Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase. Biochem.Biophys.Res.Commun., 288, 1200-1206.
79. Wang,X., Song,K.S., Guo,Q.X., and Tian,W.X. (2003) The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem.Pharmacol., 66, 2039-2047.
80. Way,T.D., Kao,M.C., and Lin,J.K. (2005) Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett., 579, 145-152.
81. Kuo,K.L., Weng,M.S., Chiang,C.T., Tsai,Y.J., Lin-Shiau,S.Y., and Lin,J.K. (2005) Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, pu-erh, and green tea leaves in rats. J.Agric.Food Chem., 53, 480-489.
82. Slamon,D.J., Godolphin,W., Jones,L.A., Holt,J.A., Wong,S.G., Keith,D.E., Levin,W.J., Stuart,S.G., Udove,J., Ullrich,A., and . (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244, 707-712.
83. Ross,J.A. and Kasum,C.M. (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu.Rev.Nutr., 22, 19-34.
84. Bagli,E., Stefaniotou,M., Morbidelli,L., Ziche,M., Psillas,K., Murphy,C., and Fotsis,T. (2004) Luteolin Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis; Inhibition of Endothelial Cell Survival and Proliferation by Targeting Phosphatidylinositol 3'-Kinase Activity. Cancer Res, 64, 7936-7946.
85. Chowdhury,A.R., Sharma,S., Mandal,S., Goswami,A., Mukhopadhyay,S., and Majumder,H.K. (2002) Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem.J., 366, 653-661.
86. Lee,L.T., Huang,Y.T., Hwang,J.J., Lee,P.P., Ke,F.C., Nair,M.P., Kanadaswam,C., and Lee,M.T. (2002) Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res, 22, 1615-1627.
87. Weiss,R.H. (2003) p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell, 4, 425-429.
88. Fan,Y., Borowsky,A.D., and Weiss,R.H. (2003) An Antisense Oligodeoxynucleotide to p21Waf1/Cip1 Causes Apoptosis in Human Breast Cancer Cells. Mol Cancer Ther, 2, 773-782.
89. Stewart,Z.A., Mays,D., and Pietenpol,J.A. (1999) Defective G1-S Cell Cycle Checkpoint Function Sensitizes Cells to Microtubule Inhibitor-induced Apoptosis. Cancer Res, 59, 3831-3837.
90. Waldman,T., Lengauer,C., Kinzler,K.W., and Vogelstein,B. (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature, 381, 713-716.
91. Suzuki,A., Ito,T., Kawano,H., Hayashida,M., Hayasaki,Y., Tsutomi,Y., Akahane,K., Nakano,T., Miura,M., and Shiraki,K. (2000) Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene, 19, 1346-1353.
92. Huang,S., Shu,L., Dilling,M.B., Easton,J., Harwood,F.C., Ichijo,H., and Houghton,P.J. (2003) Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell, 11, 1491-1501.
93. Gartel,A.L. and Tyner,A.L. (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther, 1, 639-649.
94. Calderwood,S.K., Khaleque,M.A., Sawyer,D.B., and Ciocca,D.R. (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem.Sci., 31, 164-172.
95. Hulit,J., Lee,R.J., Russell,R.G., and Pestell,R.G. (2002) ErbB-2-induced mammary tumor growth: the role of cyclin D1 and p27Kip1. Biochem.Pharmacol., 64, 827-836.
96. Lenferink,A.E., Busse,D., Flanagan,W.M., Yakes,F.M., and Arteaga,C.L. (2001) ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res, 61, 6583-6591.
97. Lee,S., Yang,W., Lan,K.H., Sellappan,S., Klos,K., Hortobagyi,G., Hung,M.C., and Yu,D. (2002) Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res, 62, 5703-5710.
98. Yu,D., Jing,T., Liu,B., Yao,J., Tan,M., McDonnell,T.J., and Hung,M.C. (1998) Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol Cell, 2, 581-591.
99. Way,T.D. and Lin,J.K. (2005) Role of HER2/HER3 co-receptor in breast carcinogenesis. Fut.Oncol., 1, 841-849.
100. Beuvink,I., Boulay,A., Fumagalli,S., Zilbermann,F., Ruetz,S., O'Reilly,T., Natt,F., Hall,J., Lane,H.A., and Thomas,G. (2005) The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell, 120, 747-759.
101. Horinaka,M., Yoshida,T., Shiraishi,T., Nakata,S., Wakada,M., Nakanishi,R., Nishino,H., Matsui,H., and Sakai,T. (2005) Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene, 24, 7180-7189.
102. Plaumann,B., Fritsche,M., Rimpler,H., Brandner,G., and Hess,R.D. (1996) Flavonoids activate wild-type p53. Oncogene, 13, 1605-1614.
103. Brusselmans,K., Vrolix,R., Verhoeven,G., and Swinnen,J.V. (2005) Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity. J.Biol.Chem., 280, 5636-5645.
104. Cheng,A.C., Huang,T.C., Lai,C.S., and Pan,M.H. (2005) Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells. Eur.J.Pharmacol., 509, 1-10.
105. Selvendiran,K., Koga,H., Ueno,T., Yoshida,T., Maeyama,M., Torimura,T., Yano,H., Kojiro,M., and Sata,M. (2006) Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res, 66, 4826-4834.
106. Weinstein,I.B. (2002) Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science, 297, 63-64.
107. Lynch,T.J., Bell,D.W., Sordella,R., Gurubhagavatula,S., Okimoto,R.A., Brannigan,B.W., Harris,P.L., Haserlat,S.M., Supko,J.G., Haluska,F.G., Louis,D.N., Christiani,D.C., Settleman,J., and Haber,D.A. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N.Engl.J.Med., 350, 2129-2139.
108. Kobayashi,S., Boggon,T.J., Dayaram,T., Janne,P.A., Kocher,O., Meyerson,M., Johnson,B.E., Eck,M.J., Tenen,D.G., and Halmos,B. (2005) EGFR Mutation and Resistance of Non-Small-Cell Lung Cancer to Gefitinib. N Engl J Med, 352, 786-792.
109. Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70.
110. Buck,E., Eyzaguirre,A., Brown,E., Petti,F., McCormack,S., Haley,J.D., Iwata,K.K., Gibson,N.W., and Griffin,G. (2006) Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther, 5, 2676-2684.
111. Mondesire,W.H., Jian,W., Zhang,H., Ensor,J., Hung,M.C., Mills,G.B., and Meric-Bernstam,F. (2004) Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin.Cancer Res., 10, 7031-7042.
112. Wendel,H.G., De,S.E., Fridman,J.S., Malina,A., Ray,S., Kogan,S., Cordon-Cardo,C., Pelletier,J., and Lowe,S.W. (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature, 428, 332-337.
113. Sergina,N.V., Rausch,M., Wang,D., Blair,J., Hann,B., Shokat,K.M., and Moasser,M.M. (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature, 445, 437-441.
114. Yang,W., Klos,K.S., Zhou,X., Yao,J., Yang,Y., Smith,T.L., Shi,D., and Yu,D. (2003) ErbB2 overexpression in human breast carcinoma is correlated with p21Cip1 up-regulation and tyrosine-15 hyperphosphorylation of p34Cdc2: poor responsiveness to chemotherapy with cyclophoshamide methotrexate, and 5-fluorouracil is associated with Erb2 overexpression and with p21Cip1 overexpression. Cancer, 98, 1123-1130.
115. Coleman,M.L., Densham,R.M., Croft,D.R., and Olson,M.F. (2006) Stability of p21Waf1/Cip1 CDK inhibitor protein is responsive to RhoA-mediated regulation of the actin cytoskeleton. Oncogene, 25, 2708-2716.
116. Ping,B., He,X., Xia,W., Lee,D.F., Wei,Y., Yu,D., Mills,G., Shi,D., and Hung,M.C. (2006) Cytoplasmic expression of p21CIP1/WAF1 is correlated with IKKbeta overexpression in human breast cancers. Int.J Oncol., 29, 1103-1110.
117. Zhou,B.P., Liao,Y., Xia,W., Spohn,B., Lee,M.H., and Hung,M.C. (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat.Cell Biol., 3, 245-252.
118. Wakil,S.J. (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry, 28, 4523-4530.
119. Kumar-Sinha,C., Ignatoski,K.W., Lippman,M.E., Ethier,S.P., and Chinnaiyan,A.M. (2003) Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res., 63, 132-139.
120. Menendez,J.A., Mehmi,I., Verma,V.A., Teng,P.K., and Lupu,R. (2004) Pharmacological inhibition of fatty acid synthase (FAS): A novel therapeutic approach for breast cancer chemoprevention through its ability to suppress Her-2/neu (erbB-2) oncogene-induced malignant transformation. Mol.Carcinog., 41, 164-178.
121. Alli,P.M., Pinn,M.L., Jaffee,E.M., McFadden,J.M., and Kuhajda,F.P. (2005) Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene, 24, 39-46.
122. Cham,B.E., Daunter,B., and Evans,R.A. (1991) Topical treatment of malignant and premalignant skin lesions by very low concentrations of a standard mixture (BEC) of solasodine glycosides. Cancer Lett., 59, 183-192.
123. Lavie,Y., Harel-Orbital,T., Gaffield,W., and Liscovitch,M. (2001) Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells. Anticancer Res, 21, 1189-1194.
124. Roman,I.D., Thewles,A., and Coleman,R. (1995) Fractionation of livers following diosgenin treatment to elevate biliary cholesterol. Biochim.Biophys.Acta, 1255, 77-81.
125. Liu,M.J., Wang,Z., Ju,Y., Wong,R.N., and Wu,Q.Y. (2005) Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother.Pharmacol., 55, 79-90.
126. Moalic,S., Liagre,B., Corbiere,C., Bianchi,A., Dauca,M., Bordji,K., and Beneytout,J.L. (2001) A plant steroid, diosgenin, induces apoptosis, cell cycle arrest and COX activity in osteosarcoma cells. FEBS Lett., 506, 225-230.
127. Raju,J., Patlolla,J.M., Swamy,M.V., and Rao,C.V. (2004) Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol.Biomarkers Prev., 13, 1392-1398.
128. Shishodia,S. and Aggarwal,B.B. (2006) Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene, 25, 1463-1473.
129. Brusselmans,K., Vrolix,R., Verhoeven,G., and Swinnen,J.V. (2005) Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity. J.Biol.Chem., 280, 5636-5645.
130. Chiang,C.T., Way,T.D., and Lin,J.K. (2007) Sensitizing HER2-overexpressing cancer cells to luteolin-induced apoptosis through suppressing p21(WAF1/CIP1) expression with rapamycin. Mol Cancer Ther, 6, 2127-2138.
131. Chiang,C.T., Weng,M.S., Lin-Shiau,S.Y., Kuo,K.L., Tsai,Y.J., and Lin,J.K. (2005) Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells. Oncol.Res, 16, 119-128.
132. Van de,S.T., De,S.E., Heyns,W., Verhoeven,G., and Swinnen,J.V. (2002) Role of the phosphatidylinositol 3'-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res, 62, 642-646.
133. Yang,Y.A., Han,W.F., Morin,P.J., Chrest,F.J., and Pizer,E.S. (2002) Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp.Cell Res, 279, 80-90.
134. Yeh,C.W., Chen,W.J., Chiang,C.T., Lin-Shiau,S.Y., and Lin,J.K. (2003) Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. Pharmacogenomics.J., 3, 267-276.
135. Yu,D., Liu,B., Tan,M., Li,J., Wang,S.S., and Hung,M.C. (1996) Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms. Oncogene, 13, 1359-1365.
136. Menendez,J.A., Vellon,L., Colomer,R., and Lupu,R. (2005) Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int.J Cancer, 115, 19-35.
137. Sarkar,F.H. and Li,Y. (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev., 21, 265-280.
138. Leger,D.Y., Liagre,B., and Beneytout,J.L. (2006) Role of MAPKs and NF-kappaB in diosgenin-induced megakaryocytic differentiation and subsequent apoptosis in HEL cells. Int.J Oncol., 28, 201-207.
139. Corbiere,C., Liagre,B., Terro,F., and Beneytout,J.L. (2004) Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res, 14, 188-196.
140. Wang,H.Q., Altomare,D.A., Skele,K.L., Poulikakos,P.I., Kuhajda,F.P., Di,C.A., and Testa,J.R. (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene.
141. Crowell,J.A., Steele,V.E., and Fay,J.R. (2007) Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther, 6, 2139-2148.
142. Yoon,S., Lee,M.Y., Park,S.W., Moon,J.S., Koh,Y.K., Ahn,Y.H., Park,B.W., and Kim,K.S. (2007) Up-regulation of Acetyl-CoA Carboxylase {alpha} and Fatty Acid Synthase by Human Epidermal Growth Factor Receptor 2 at the Translational Level in Breast Cancer Cells. J Biol.Chem., 282, 26122-26131.
143. Weston,C.R. and Davis,R.J. (2002) The JNK signal transduction pathway. Current Opinion in Genetics & Development, 12, 14-21.
144. Bode,A.M. and Dong,Z. (2007) The functional contrariety of JNK. Mol Carcinog., 46, 591-598.
145. Tseng,S.H., Wang,C.H., Lin,S.M., Chen,C.K., Huang,H.Y., and Chen,Y. (2004) Activation of c-Jun N-terminal kinase 1 and caspase 3 in the tamoxifen-induced apoptosis of rat glioma cells. J Cancer Res Clin Oncol., 130, 285-293.
146. Lu,S. and Archer,M.C. (2007) Celecoxib decreases fatty acid synthase expression via down-regulation of c-Jun N-terminal kinase-1. Exp.Biol.Med (Maywood.), 232, 643-653.
147. Wakil,S.J., Stoops,J.K., and Joshi,V.C. (1983) Fatty acid synthesis and its regulation. Annu.Rev.Biochem., 52, 537-579.
148. Park,O.J. and Surh,Y.J. (2004) Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol.Lett., 150, 43-56.
149. Sano,M., Takenaka,Y., Kojima,R., Saito,S., Tomita,I., Katou,M., and Shibuya,S. (1986) Effects of pu-erh tea on lipid metabolism in rats. Chem.Pharm.Bull.(Tokyo), 34, 221-228.
150. Duh,P.D., Yen,G.C., Yen,W.J., Wang,B.S., and Chang,L.W. (2004) Effects of pu-erh tea on oxidative damage a
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27591-
dc.description.abstractHER2 是一種已知的致癌基因,屬於表皮生長因子接受器家族 (epidermal growth factor receptor family; EGF receptor family) 的一員。臨床的研究發現,在乳癌的病人中,約有 25% 到 30% 其癌細胞有 HER2 基因放大 (amplification) 或過度表現 (overexpression) 的現象,這些 HER2 過度表現的癌症患者往往伴隨著較差的癒後,對荷爾蒙治療或化學治療的效果也較差;此外,相較於無 HER2 過度表現患者,HER2 過度表現的患者在短時間內復發的機率相對較高,甚至病人存活時間也較短。目前已知 HER2 可以藉由多個訊息傳導途徑來提高癌細胞的生長、分裂與轉移能力。由這些觀察中可以推測 HER2 過度表現與癌症有明顯的關聯性,並且導致治療上的困難,所以 HER2 被認為是預防或治療乳癌的重要標靶之一。
首先,在本論文的第二章,類黃酮化合物中的 luteolin 可以抑制 HER2 的表現,進一步的研究顯示 luteolin 可以促進 HER2 蛋白質的降解,其分子機制可能與 luteolin 可減少 HER2 與 Hsp90 的交互作用有關。此外,在 HER2 不同表現量的癌細胞中,luteolin 對於 HER2 過度表現的癌細胞具有較佳的抑制生長效果。這可能與 luteolin 會造成 HER2 過度表現的癌細胞走向細胞凋亡有關。
再者,低濃度的 luteolin 會增加 p21 蛋白質的表現,而高濃度的 luteolin 則會降低 p21 蛋白質的表現。近年來研究發現 HER2 過度表現的細胞中,p21 的高表現與細胞的存活有密切的關係;因此,推測 p21 的增加可以保護 HER2 過度表現的癌細胞不走向細胞凋亡。在過度表現 HER2 的癌細胞中,已知一個包含 Akt/mTOR 的訊息傳導途徑對於抑制細胞凋亡有重要的地位;由此引發探討此訊息傳導途徑在 p21 的增加與細胞的存活中是否扮演扮演一個重要的角色。研究結果顯示低濃度的 luteolin 只能暫時抑制 Akt/mTOR 的信號傳遞,這也暗示著若結合此訊息傳導途徑抑制劑可能可以提升 luteolin 造成細胞凋亡的效果。
同時處理 mTOR 的抑制劑 rapamycin 可以抑制由低濃度 luteolin 所引發 p21 蛋白質的增加。此外,rapamycin 也可以提升 luteolin 抑制癌細胞生長的效果,增加 luteolin 所造成的細胞凋亡。進一步利用 p21 siRNA 也能得到類似的結果。在以 SKOV3.ip1 所進行的動物實驗中,對於 HER2 過度表現的癌細胞,luteolin 不但能抑制 HER2 的表現並且抑制其生長;此外,和細胞實驗的結果類似,低濃度 luteolin 會增加 p21 的表現,而 rapamycin 不但可以抑制 p21 的表現也能提升 luteolin 抑制癌細胞的生長的效果。
由這些結果可以推測在 HER2 過度表現的癌細胞中,藥物如果不能長時間抑制 Akt/mTOR 的信號傳遞,會影響其作用的效果,這可能與 p21 的增加有關。此外,這裡的結果也暗示結合 mTOR 的抑制劑可能可以提高藥物對於 HER2 過度表現細胞的抑制效果。
脂肪酸合成酶 (Fatty acid synthase, FAS) 可將乙醯輔酶A (acetyl-CoA) 和丙二醯輔酶A (malonyl-CoA) 轉換為為棕櫚酸 (palmitate),是能量代謝過程中一個重要的酵素複合體,在肝臟和脂肪組織的脂質合成扮演著重要的角色。其表現量異常與肥胖、心血管疾病和癌症有密切關聯。

近年來的研究發現,在 HER2 過度表現的癌細胞中,FAS的表現有顯著提高的情形。抑制 FAS 的表現可以很明顯地減低 HER2 過度表現癌細胞的致癌能力,顯示 FAS 可作為預防或治療 HER2 過度表現癌細胞的重要標靶之一。在本論文的第三章,一種類似固醇類荷爾蒙化學結構式的皂素生物鹼 (diosgenin) 被發現可以抑制 HER2 過度表現癌細胞中 FAS 的表現。Diosgenin 不但對於 HER2 過度表現的癌細胞具有較佳的抑制生長效果,亦會造成 HER2 過度表現的癌細胞走向細胞凋亡。此外,HER2 過度表現的癌細胞中,diosgenin 除了可以抑制 Akt 和 mTOR 的磷酸化,還可以促進 JNK 的磷酸化。利用抑制劑進一步確認 diosgenin 可能藉由調控Akt, mTOR 以及 JNK 的磷酸化來抑制 HER2 過度表現癌細胞中 FAS 的表現。再者,diosgenin 可以專一性的針對 HER2 過度表現的癌細胞提升 paclitaxel 抑制細胞生長的能力。這些結果顯示 diosgenin 具有預防或是治療 HER2 過度表現的癌細胞的效果。
最近很多研究指出茶多酚具有改善高血脂症、糖尿病及肥胖的現象,然而其分子機制仍有待探討。在本實驗室初步的動物試驗中發現,餵以 SD rats 茶葉可以有效降低其血清中膽固醇及三酸甘油酯含量。在綠茶、紅茶、烏龍茶及普洱茶中,以普洱茶的效果最好。有趣的是,飲食攝取量並沒有顯著的改變。考量到 FAS 是能量平衡中一個重要的酵素,推測茶多酚可能藉由抑制脂肪酸合成酶的表現來達到降血脂的效果。
在本論文的第四章,首先針對 FAS 在肝臟之表現進行分析。結果顯示餵食大白鼠普洱茶可以有效降低其肝臟 FAS 的表現。為了釐清其可能的作用機制,使用 HepG2 肝臟細胞株來做進一步的探討。研究結果顯示,普洱茶的萃取物可以降低 HepG2 細胞中 FAS 的表現。在訊息傳遞途徑方面的影響,發現包括 Akt 及 JNK 的訊息傳導途徑都有受到普洱茶萃取物的抑制。利用 PI3K 及 JNK 的抑制劑也可以降低 HepG2 細胞中 FAS 的表現。這些結果顯示普洱茶可能藉由抑制 Akt 以及 JNK 的訊息傳導途徑來調控肝臟中 FAS 的表現。這些結果顯示對於普洱茶有效成分之分離與鑑定值得進一步地研究。
zh_TW
dc.description.abstractThe human epidermal growth factor 2 gene (HER2; also called ErbB2 or neu) is a proto-oncogene that belongs to the EGF receptor family. Amplification of the HER2 gene or overexpression of HER2 protein was found in up to 25-30% of breast carcinoma. Breast cancer patients whose tumor cells overexpress HER2 has a poor clinical outcome, such as shorter survival or earlier relapse. HER2 overexpression has been shown to enhance proliferative, prosurvival, and metastatic signals in breast cancer cell lines. Therefore, HER2 is an important target in the prevention or treatment of breast cancer.
In chapter II, luteolin, a naturally occurring flavonoid, was found to be a potent stimulator of HER2 degradation, and Hsp90 molecular chaperone is suggested to be involved in luteolin-induced HER2 depletion. Luteolin preferentially inhibited the growth of HER2-overexpressing cancer cells compared with cells expressing a basal level of HER2. Furthermore, the induction of apoptosis was also observed in the luteolin-treated HER2-overexpressing cancer cells as measured by flow cytometry and PARP cleavage.
Low doses of luteolin upregulated the p21 expression and high doses of luteolin downregulated its expression. Examination of the Akt/mTOR signaling revealed that this signaling was only transiently inhibited by low doses of luteolin, which suggested that the inability to cause sustained Akt/mTOR inhibition may contribute to p21 induction and provide a survival advantage to HER2-overexpressing cancer cells.
To test this hypothesis, the combined use of luteolin and mTOR inhibitor rapamycin prevented low doses of luteolin from inducing p21 expression, and HER2-overexpressing cancer cells would be sensitized towards luteolin-induced apoptosis. In addition, p21 siRNA also increased the luteolin-induced cell death. In nude mice with xenografted SKOV3.ip1-induced tumors, luteolin significantly inhibited HER2 expression and tumor growth in a dose-dependent manner, and rapamycin further enhanced the effect of luteolin with a concomitant p21 inhibition.
These results reveal an intriguing finding that suppressing p21 expression might have therapeutic implications and further suggest that combination of mTOR inhibitors may be a promising strategy to help increase the efficacy of preventive or therapeutic compounds against HER2-overexpressing tumors.
Fatty acid synthase (FAS, EC 2.3.1.85), which catalyzes the reductive synthesis of palmitate from acetyl-CoA and malonyl-CoA, plays a central role in the anabolic conversion of dietary calories into storage form of energy in mammals. The expression of FAS reflects the regulation of lipogenesis. FAS is an important enzyme participating in the energy metabolism and is related to various human diseases including obesity, cardiovascular disease and cancer.
FAS expression is markedly elevated in HER2-overexpressing breast cancer cells that are associated with poor prognosis. Pharmacological inhibition of FAS has led to a significant antitumor effect in HER2-overexpressing breast cancer cells. In chapter III, diosgenin (3B-hydroxy-5-spirostene), a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin significantly inhibited the phosphorylation of Akt and mTOR, and up-regulated JNK phosphorylation. The use of pharmacological inhibitors revealed that the modulating Akt, mTOR and JNK phosphorylation was potentially required for diosgenin-induced FAS suppression. Finally, diosgenin could specifically sensitize paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results indicate that diosgenin could down-regulate FAS expression and induce apoptosis in HER2-overexpressing cancer cells through modulating Akt, mTOR and JNK phosphorylation, and further suggest that diosgenin alone or in combination with chemotherapeutic agents may provide a new approach for prevention or treatment of cancers that overexpress HER2.
The significant hypolipidemic and growth suppressive effects of pu-erh, oolong, black and green tea leaves in Sprague-Dawley rats has been demonstrated by our laboratories. Pu-erh tea could lower the levels of cholesterol and triacylglycerol more significantly than other teas. No significant difference in food intake were observed among these tested and control groups. This striking phenomenon caused me to consider that the hypolipidemic and anti-obesity effects of tea treated groups may have come from the suppression of the key lipogenic enzymes. Considering the facts that FAS is an important enzyme participating in the energy metabolism, and the bulk of physiological lipogenesis occurs in liver, this promoted me to investigate the levels of FAS in the hepatic tissues of both control and tea-treated rats.
In chapter IV, the expression of FAS in the livers of rats fed pu-erh tea leaves was significantly suppressed. FAS expression in the hepatoma HepG2 cells were also suppressed by the extracts of pu-erh tea at both the protein and mRNA levels. FAS expression in HepG2 cells was strongly inhibited by PI3K inhibitor LY294002 and JNK inhibitor II and slightly inhibited by p38 inhibitor SB203580 and MEK inhibitor PD98059, separately. Based on these findings, it suggests that the suppression of FAS in the livers of rats fed pu-erh tea leaves may occur through down-regulation of the Akt and JNK signaling pathways. The active principles and molecular mechanisms that exerted these biological effects in pu-erh tea deserve for future exploration.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:11:06Z (GMT). No. of bitstreams: 1
ntu-96-F91442015-1.pdf: 5366846 bytes, checksum: 143722aa063afe4ef5b72fa70875b4d9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 …………………………………………………… i
誌謝 …………………………………………………………………… ii
中文摘要 …………………………………………………………… iii
Abstract ……………………………………………………………… vi
Abbreviations ............................................ x
Acknowledgments ......................................... xi
Table of Contents....................................... xii
Chapter I - Overview and Rationale ……………………… 1
1. Phytochemicals as possible chemopreventives or chemotherapeutic agents against breast cancer …………………………………………………………. 2
2. Molecular targets of phytochemicals for prevention or therapy in breast cancer ……………………………………………………………………… 10
3. Experimental rationale ……………………………………………………… 23
4. List of Figures ………………………………………………………………… 27
Chapter II - Chemosensitizing HER2-overexpressing Cancer Cells to Luteolin-Induced Apoptosis through Suppressing p21WAF1/CIP1 Expression with Rapamycin ……………………………………………………………………… 34
1. Introduction ………………………………………………………… 35
2. Material and methods …………………………………………………… 38
3. Results ………………………………………………………………………… 44
4. Discussion ……………………………………………………………………… 55
5. List of Figures ………………………………………………………………… 61
Chapter III - Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating of Akt, mTOR and JNK phosphiorylation …………………… 90
1. Introduction ………………………………………………………… 91
2. Material and methods …………………………………………………… 93
3. Results ……………………………………………………………………… 96
4. Discussion …………………………………………………………………… 101
5. List of Figures ………………………………………………………………… 105
Chapter IV - Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through down-regulating of Akt and JNK signalings as demonstrated in the human hepatoma HepG2 cells ………………………… 118
1. Introduction ……………………………………………………… 119
2. Material and methods ………………………………………………… 122
3. Results ……………………………………………………………………… 127
4. Discussion …………………………………………………………………… 131
5. List of Tables and Figures ……………………………………………… 137
Perspective …………………………………………………………… 146
Reference lists …………………………………………………………………… 149
Vita ……………………………………………………………………………… 167
Appendix ………………………………………………………………………… 168
dc.language.isoen
dc.title植物化合物於乳癌化學預防之研究zh_TW
dc.titleChemoprevention of breast cancer by phytochemicalsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee蕭水銀(Shoei-Yn Lin-Shiau),張明富(Ming-Fu Chang),楊泮池(Pan-Chyr Yang),鄭安理(Ann-Lii Cheng),高銘欽(Ming-Ching Kao),李宣佑(Shuan-Yow Li),何元順(Yuan-Soon Ho)
dc.subject.keyword乳癌,人類表皮生長因子第二接受器,脂肪酸合成&#37238,植物化合物,木犀草素,薯蕷皂素,普洱茶,zh_TW
dc.subject.keywordbreast cancer,HER2 (human epidermal growth factor receptor 2),FAS (fatty acid synthase),phytochemicals,luteolin,diosgenin,pu-erh tea,en
dc.relation.page166
dc.rights.note有償授權
dc.date.accepted2007-10-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
5.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved