Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文澧(Win-Li Lin)
dc.contributor.authorFeng-Yi Yangen
dc.contributor.author楊逢羿zh_TW
dc.date.accessioned2021-06-12T18:10:33Z-
dc.date.available2007-11-15
dc.date.copyright2007-11-15
dc.date.issued2007
dc.date.submitted2007-10-20
dc.identifier.citationReferences
Apfel RE, Holland CK, Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 1991;17:179-85.
Clement GT, Sun J, Giesecke T, Hynynen K, A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol 2000;45:3707-19.
Fry FJ, Barger JE, Acoustical properties of the human skull. J Acoust Soc Am 1978;63:1576-90.
Gramiak R, Shah PM, Echocardiography of the aortic root. Invest Radiol 1968;3:356-66.
Hutchinson EB, Hynynen K, Intracavitary ultrasound phased arrays for noninvasive prostate surgery. Ieee T Ultrason Ferr 1996;43:1032-42.
Hynynen K, The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol 1991;17:157-69.
Hynynen K, Jolesz FA, Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 1998;24:275-83.
Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N, Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 2005;24:12-20.
Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA, Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001;220:640-6.
Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N, Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 2006;105:445-54.
Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA, Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 1997;204:247-53.
Kimmel CA, Stratmeyer ME, Galloway WD, Laborde JB, Brown N, Pinkavitch F, The embryotoxic effects of ultrasound exposure in pregnant ICR mice. Teratology 1983;27:245-51.
Kroll RA, Neuwelt EA, Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 1998;42:1083-99; discussion 99-100.
Lai CY, Wu CH, Chen CC, Li PC, Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability. Ultrasound Med Biol 2006;32:1931-41.
Liu Y, Miyoshi H, Nakamura M, Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release 2006;114:89-99.
McDannold N, Vykhodtseva N, Hynynen K, Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 2006;51:793-807.
Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, Winn HR, Mourad PD, High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol 2002;28:389-400.
Mulvagh SL, DeMaria AN, Feinstein SB, Burns PN, Kaul S, Miller JG, Monaghan M, Porter TR, Shaw LJ, Villanueva FS, Contrast echocardiography: current and future applications. J Am Soc Echocardiogr 2000;13:331-42.
Ohmoto Y, Fujisawa H, Ishikawa T, Koizumi H, Matsuda T, Ito H, Sequential changes in cerebral blood flow, early neuropathological consequences and blood-brain barrier disruption following radiofrequency-induced localized hyperthermia in the rat. Int J Hyperthermia 1996;12:321-34.
Oztas B, Kucuk M, Reversible blood-brain barrier dysfunction after intracarotid hyperthermic saline infusion. Int J Hyperthermia 1998;14:395-401.
Pardridge WM, Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002a;1:131-9.
Pardridge WM, Drug and gene delivery to the brain: the vascular route. Neuron 2002b;36:555-8.
Pardridge WM, Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain. Curr Opin Drug Discov Devel 2003;6:683-91.
Pardridge WM, The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005;2:3-14.
Robinson TC, Lele PP, An analysis of lesion development in the brain and in plastics by high-intensity focused ultrasound at low-megahertz frequencies. J Acoust Soc Am 1972;51:1333-51.
Rubin LL, Staddon JM, The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999;22:11-28.
Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K, Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004;30:979-89.
Sun J, Hynynen K, Focusing of therapeutic ultrasound through a human skull: a numerical study. J Acoust Soc Am 1998;104:1705-15.
Takegami K, Kaneko Y, Watanabe T, Watanabe S, Maruyama T, Matsumoto Y, Nagawa H, Heating and coagulation volume obtained with high-intensity focused ultrasound therapy: comparison of perflutren protein-type A microspheres and MRX-133 in rabbits. Radiology 2005;237:132-6.
Tran BC, Seo J, Hall TL, Fowlkes JB, Cain CA, Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control 2003;50:1296-304.
Treat HL, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K, Targeted Drug Delivery to the Brain by MRI-guided Focused Ultrasound. AIP Conf. Proc. 2006;829:266-70.
Tung YS, Liu HL, Wu CC, Ju KC, Chen WS, Lin WL, Contrast-agent-enhanced ultrasound thermal ablation. Ultrasound Med Biol 2006;32:1103-10.
Urakawa M, Yamaguchi K, Tsuchida E, Kashiwagi S, Ito H, Matsuda T, Blood-brain barrier disturbance following localized hyperthermia in rats. Int J Hyperthermia 1995;11:709-18.
Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M, Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 1988;8:282-4.
Vykhodtseva NI, Hynynen K, Damianou C, Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 1995;21:969-79.
Yang FY, Fu WM, Yang RS, Liou HC, Kang KH, Lin WL, Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound Med Biol 2007;33:1421-7.
Yin X, Hynynen K, A numerical study of transcranial focused ultrasound beam propagation at low frequency. Phys Med Biol 2005;50:1821-36.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27578-
dc.description.abstract前人的研究指出聚焦式超音波結合超音波顯影劑能以非侵入方式將特定區域的血腦屏障暫時開啟。本研究是探討超音波顯影劑濃度與超音波聲壓力對局部開啟血腦屏障影響的定量分析。所使用的脈波超音波其操作頻率為1 MHz,重複頻率為1Hz。雄性Wistar大白鼠在分別注射不同的顯影劑濃度下施打超音波,之後並經股靜脈注射Evans blue 4小時後將其犧牲。由Evans blue在腦組織的滲出量得知,在相同的聲壓力下高濃度的顯影劑可造成較高的Evans blue的滲出量,而當顯影劑濃度相同時,較高的聲壓力也可以得到類似的結果。此外,在高濃度的顯影劑下,可以使血腦屏障的開啟較集中於焦點區域。從組織切片觀察得知,在適當的低濃度顯影劑時,可以在不傷害正常腦組織的情況下將血腦屏障開啟,然而在高濃度時會造成細胞凋亡的現象而其凋亡數量隨著距離焦點位置的增加而遞減。此研究驗證適當的顯影劑濃度能在不傷害正常腦組織的情況下增強穿顱式超音波將血腦屏障開啟的效率並且更集中於焦點區域。
在進行高能聚焦超音波腦部手術時,頭蓋骨對於超音波的相位扭曲以及振幅衰減有很大的影響。本研究探討半球狀超音波換能器在不須做相位修正的情形下,電子式焦點移動與聚焦能力評估。所選擇進行穿過頭蓋骨聚焦超音波頻率為0.1,0.15,0.25和0.5 MHz。換能器陣列是沿著頭蓋骨外型,以直接接觸頭皮的方式放置,使入射方向盡可能接近正向入射,俾使超音波束在通過不同介質面所發生的反射量降至最低。由模擬結果得知,當頻率為0.1 MHz時,在不產生重大側波瓣之情形下,焦點可成功以調整陣列相位的方式在幾乎全腦範圍內移動達到治療效果。
zh_TW
dc.description.abstractIt has been shown that focused ultrasound (FUS) can disrupt the blood–brain barrier (BBB) noninvasively and reversibly at target locations when applied in the presence of ultrasound contrast agent (UCA). In this study, the dose-dependent effects of UCA on BBB disruption were investigated in the brains of male Wistar rats sonicated by 1.0-MHz pulsed FUS, with the UCA present at different doses. The BBB disruption was evaluated quantitatively based on the extravasation of Evans Blue (EB). The amount of EB extravasation in the brain increased with the quantity of UCA injected into the femoral vein prior to sonication. The use of a suitable dose of UCA resulted in the BBB disruption being concentrated in the focal region instead of the entire brain. From the histological examination, there was no neuronal damage when UCA was used at a low dose, but the higher doses result in the appearance of apoptotic cells and the number of apoptotic cells decreased symmetrically with distance from the focus. Moreover, comparing the effects of UCA at the various doses reveals no obvious differences in the temperature rise at the inner and outer skull surfaces. Our results indicate that a local BBB disruption combined with an acceptable impact on the brain tissue can be produced by using an appropriate UCA dose with transcranial FUS sonication.
Finally, this study was to examine the steering and focusing ability of a contact hemispherical ultrasound transducer (80 mm radius of curvature, 160 mm diameter) for transskull brain diseases therapy without skull-specific aberration correction. A simulation program was used to investigate the effect of ultrasound transducer parameters on the steering and focusing ability for transskull therapy. The acoustic pressure distribution and the grating lobes in tissues were used to determine the steering and focusing ability of this transducer for a set of given conditions. Simulation results demonstrated that this hemispherical phased array transducer with low frequencies can steer a high-pressure focal zone for a large range in the brain. The peak and size of the high-pressure focal zone mainly depend on ultrasound frequency and the steering distance of the focal zone. By comparing the peak pressures between the focal zone and the grating lobe, 0.1 MHz transducer performed the desired results for large ranges (140 mm x-y direction and 138 mm z direction) of beam steering.The results reveal the feasibility of using a hemispherical phased array transducer with beam steering method at low frequency for brain diseases therapy within almost full range of the brain without performing a craniectomy.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:10:33Z (GMT). No. of bitstreams: 1
ntu-96-D93548002-1.pdf: 2960552 bytes, checksum: c5de193fae5cc037430e695a38d5e02a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Introduction to blood-brain barrier 1
1.2 Ultrasound 3
1.2.1 Properties of ultrasound 3
1.2.2 Bioeffects of ultrasound 3
1.2.3 Ultrasound contrast agents 5
1.3 Therapeutic Ultrasound System 7
1.4 Purposes 8
1.5 Overview 8
Chapter 2 Quantitative Evaluation of Focused Ultrasound with a Contrast Agent on Blood-Brain Barrier Disruption 10
2.1 Introduction 10
2.2 Methods 11
2.2.1 Experimental animals 11
2.2.2 Ultrasound equipment 12
2.2.3 Ultrasound field measurement 13
2.2.4 Sonications 16
2.2.5 Evaluation of BBB integrity 16
2.2.6 Light microscopy 18
2.3 Results 20
2.3.1 Assessment of BBB disruption 20
2.3.2 Apoptosis in response to sonication 27
2.4 Discussion 30
2.5 Conclusion 34
Chapter 3 Quantitative Evaluation of the Use of Microbubbles with Transcranial Focused Ultrasound on Blood–Brain-Barrier Disruption 35
3.1 Introduction 35
3.2 Methods 38
3.2.1 Experimental animals 38
3.2.2 Ultrasound equipment 38
3.2.3 Sonications 39
3.2.4 Assessment of blood–brain-barrier integrity 40
3.2.5 Temperature measurements 41
3.2.6 Cavitation detection 42
3.2.7 Light microscopy 43
3.3 Results 44
3.3.1 Assessment of BBB disruption 44
3.3.2 Temperature rising on skull surfaces 48
3.3.3 Inertial cavitation and apoptosis 50
3.4 Discussion and Conclusion 52
Chapter 4 Beam Steering and Focusing Ability of a Contact Ultrasound Transducer for Transskull Brain Disease Therapy 57
4.1 Introduction 57
4.2 Methods 58
4.2.1 Acoustic model 58
4.2.2 Transducer array design 61
4.2.3 Focusing technique 65
4.3 Results 66
4.3.1 Comparison of the size of transducer 66
4.3.2 Effects of ultrasound frequency 69
4.4 Discussion 75
4.5 Conclusion 78
Chapter 5 Contributions 79
Chapter 6 Future Work 81
References 82
List of Figures
Fig. 1.1 The real blood-brain barriers are the tight junctions between endothelial cells in the capillary lining. (From Miller Science 2002) 2
Fig. 1.2 The generation process of the acoustic bubble. 5
Fig. 1.3 Schematic diagram of targeted drug- or gene-delivery to tissue by ultrasound with microbubbles. (a) Microbubbles and drugs flow through capillaries. (b) Microbubbles are vibrated and destroyed under the ultrasound field. (c) The drugs are delivered to the tissue following the microbubbles destruction and subsequent vessel permeabilization. 6
Fig. 2.1 Schematic diagram of the experimental setup. The positioner was also mounted on a stereotaxic apparatus. PE, polyurethane. 13
Fig. 2.2 Characteristics of the acoustic field for the focused ultrasound transducer with a cone. (a) Axial beam profile; the origin indicates the interface of the tip of transducer’s cone and the brain’s surface, while the transducer’s focus is located at about 5.3 mm deep in the brain. (b) Transverse beam profile at the focal depth. 15
Fig. 2.3 Illustration of the positions of ultrasound sonications. The right and left hemispheres of the brain were sectioned into six 2-mm-thick coronal slices to allow the tissue content of Evans blue (EB) to be evaluated. The ultrasound beam was delivered through the center of the fifth slice. 17
Fig. 2.4 Distributions of EB on the six coronal slices for the injection of ultrasound contrast agent (UCA) at 30 μL/kg and an ultrasound pressure of 1.2 MPa on the front (a) and reverse (b) sides. The regions of interest are circled on the left hemisphere. 21
Fig. 2.5 Distributions of EB extravasation in the focal region (the fifth slice) for UCA at four doses and ultrasound pressures of 0.9 MPa (a) and 1.2 MPa (b). 23
Fig. 2.6 Relationship between EB extravasation (mean ± SEM values) and the dose of UCA injected into each brain hemisphere for different ultrasound pressures. The values plotted correspond to the between-rat means of data averaged over all six slices within each rat. The EB extravasation is greater for an UCA dose of 30 μL/kg than for a dose of 0 μL/kg with 1.2 MPa sonication (*, P < 0.05). 24
Fig. 2.7 Measurements of EB in the focal and neighboring regions for different doses of UCA and 0.9 MPa (a) and 1.2 MPa (b) sonications. Data are mean ± SEM values. The EB extravasation was significantly greater in the focal region than in the neighboring region for 30 μL/kg UCA and 1.2 MPa sonication (*, P < 0.05) 26
Fig. 2.8 TUNEL staining in the focal region 24 hours after sonication in the presence of UCA. The rats were injected intravenously with UCA at doses of 30 μL/kg (b) and 60 μL/kg (c), with 1.2 MPa sonication applied for 30 s. The brain sections were then subjected to TUNEL staining 24 hours after sonication. (a) Positive control (
dc.language.isoen
dc.subject超音波顯影劑zh_TW
dc.subject電子式焦點移動zh_TW
dc.subject超音波換能器zh_TW
dc.subject血腦屏障zh_TW
dc.subject穿顱zh_TW
dc.subject聚焦式超音波zh_TW
dc.subjectUltrasound transduceren
dc.subjectUltrasound contrast agenten
dc.subjectTranscranialen
dc.subjectBlood–brain-barrier disruptionen
dc.subjectBeam steeringen
dc.subjectFocused ultrasounden
dc.title聚焦式超音波與超音波顯影劑應用於血腦屏障局部開啟之探討zh_TW
dc.titleInvestigation of Focused Ultrasound with a Contrast Agent on Local Blood-Brain Barrier Disruptionen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.coadvisor符文美(Wen-Mei Fu)
dc.contributor.oralexamcommittee江惠華(Hui-Hua Chiang),王士豪(Shyh-Hau Wang),謝松蒼(Sung-Tsang Hsieh),許重義(Chung-Yi Hsu)
dc.subject.keyword聚焦式超音波,超音波顯影劑,穿顱,血腦屏障,電子式焦點移動,超音波換能器,zh_TW
dc.subject.keywordFocused ultrasound,Ultrasound contrast agent,Transcranial,Blood–brain-barrier disruption,Beam steering,Ultrasound transducer,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2007-10-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved