Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27560
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林國慶
dc.contributor.authorYu-Ming Luen
dc.contributor.author盧又銘zh_TW
dc.date.accessioned2021-06-12T18:09:48Z-
dc.date.available2017-11-19
dc.date.copyright2007-12-03
dc.date.issued2007
dc.date.submitted2007-11-08
dc.identifier.citation行政院農業委員會林務局,2007。『林業(伐木業)生產成本』。台北:行政院農業委員會林務局。
行政院農業委員會林務局木材市價資訊系統。http://woodprice.forest.gov.tw/forest-wood/index.htm
李堯賢、彭愛軒,2003。「林產經營決策分析—導入實質選擇權之應用」,『台灣銀行季刊』。54卷2期,262-289。
林國慶、柳婉郁,2007。「考慮碳吸存價格下最適輪伐期與土地期望價分析」,『農業經濟叢刊』,12卷2期。
林達榮、柯娟娟,2003。「不確定營收下實質選擇權法在高雄捷運BOT 模式之應用」,『運輸計劃季刊』。32卷1期,151-176。
柳婉郁,2004。「最適造林獎勵金之研究」。碩士論文,台灣大學農業經濟學研究所。
陳威光,2002。『選擇權理論、實務與應用』。台北:智勝。
陳麗琴、黃進睦,1992。「Weibull機率密度函數於蓮華池杉木人工林原木經濟價值之研究 」,『林業試驗所研究報告季刊』。7卷3期,221-230。
絲文銘,2006。『選擇權觀念、理論與實務』。台北:雙葉。
廖四郎、陳坤銘、鄭宗松,2003。「最適投資決策與產品生命週期實質選擇權分析法」,『中山管理評論』。11卷3期,571-596。
劉浚明、鍾旭和,1993。「台灣杉非線性收穫模式之建立」,『中華林學季刊』。26卷2期,39-49。
鄭欽龍,1994。「森林資源利用與永續性—森林最適輪伐期之探討」,『中華林學季刊』。27卷4期,63-74。
賴景昌,2004。『總體經濟學』。台北:雙葉。
譚兆平,2000。「實質選擇權於休閒產業投資決策之研究」。碩士論文,朝陽大學休閒事業管理系。
Berck, P., 1981. “Optimal management of renewable resources with growing demand and stock externalities,” Journal of Environmental Economics and Management. 8(2): 105-117.
Bierman, H., Jr., 1968. “The growth period decision,” Management Science. 14(6): 302-309.
Black, F. and M. Scholes, 1973. “The pricing of options and corporate liabilities,” The Journal of Political Economy. 81(3): 637-654.
Brazee, R. J. and R. Mendelsohn, 1988. “Timber harvesting with fluctuating prices,” Forest Science. 34(2): 359-372.
Brazee, R. J., 2001. “Introduction—The Faustmann formula: Fundamental to forest economics 150 years after publication,” Forest Science. 47(4): 441-442.
Brock, W. A., M. Rothschil, and J. E. Stiglitz, 1982. “Stochastic capital theory: I. Comparative Statistics,” Technical Paper 23, Technical Paper Series National Bureau of Economic Research, Cambridge.
Calish, S., R. D. Fight, and D. E. Teeguarden, 1978. “How do non-timber values affect Douglas-fir rotations?” Journal of Forestry. 76(4): 217-222.
Chang, S. J., 1983. “Rotation age, management intensity, and the economic factors of timber production: Do changes in stumpage price, interest rate, regeneration cost, and forest taxation matter?” Forest Science. 29(2): 267-277.
Chladna, Z., 2007. “Determination of optimal rotation period under stochastic wood and carbon price,” Forest Policy and Economics. 9(8): 1031-1045.
Copeland, J. and Antikarov V., 2000。Real Options—A Practitioner's Guide。顏錫銘譯。台北:華泰。
Dixit, A. K. and R. S. Pindyck, 1994. Investment under Uncertainty. New Jersey: Princeton University Press.
Englin, J. E. and M. S. Klan, 1990. “Optimal taxation: Timber and externalities,” Journal of Environmental Economics and Management. 18(3): 263-275.
European Climate Exchange. http://www.europeanclimateexchange.com/default_flash.asp
Faustmann, M., 1849. “Calculation of the value which forest land and immature stands possess for forestry,” Reprint, 1995, Journal of Forest Economics. 1(1): 7-44.
Fortson, J. C., 1972. “Which criterion? Effect of choice of the criterion on forest management plans,” Forest Science. 18(4): 292-297.
Gaffney, M. M., 1957. “Concepts of financial maturity of timber and other assets,” Department of Agricultural Economics, North Carolina State University, Raleigh, North Carolina.
Goundry, G. K., 1960. “Forest management and the theory of capital,” Canadian Journal of Political Economics. 26(3): 439-451.
Haight, R. G. and T. P. Holmes, 1991. “Stochastic price models and optimal tree cutting: Results for loblolly pine,” Natural Resource Modeling. 5(4): 423-443.
Hartman, R, 1976. “The harvesting decision when a standing forest has value,” Economic Inquiry. 14(1): 52-58.
Insley, M., 2002. “A real options approach to the valuation of a forestry investment,” Journal of Environmental Economics and Management. 44: 471-492.
Kester, C., 1984. “Today’s option for tomorrow’s growth,” Harvard Business Reviews. 62(2): 105-115.
Lembersky, M. R. and K. N. Johnson, 1975. “Optimal policies for managed stands: An infinite horizon Markov chain decision process approach,” Forest Science. 21(2): 109-122.
McConnell, K. E., J. N. Daberkow, and I. W. Hardie, 1983. “Planning timber production with evolving prices and costs,” Land Economics. 59(3): 292-299.
McDonald, R. L. and D. R. Siegel, 1986. “The value of waiting to invest,” Quarterly Journal of Economics. 104(4): 707-727.
Merton, R. C., 1973. “Theory of rational option pricing,” The Bell Journal of Economics and Management Science. 4(1): 141-183.
Miller, R. A. and K. Voltaire, 1980. “A sequential stochastic tree problem,” Economics Letters. 5(2): 135-140.
Morck, R., E. Schwartz, and D. Stangeland, 1989. “The valuation of forestry resources under stochastic prices and inventories,” The Journal of Financial and Quantitative Analysis. 24(4): 473-487.
Myers, S. C., 1977. “Determinants of corporate borrowing,” Journal of Financial Economics. 5: 147-175.
Newman, D. H., 2002. “Forestry’s golden rule and the development of the optimal forest rotation literature,” Journal of Forest Economics. 8(1): 5-27.
Pindyck, R., 1991. “Irreversibility, uncertainty, and investment,” Journal of Economics Literature. 29(3): 1110-1148.
Reed, W. J., 1984. “The effects of risk of fire on the optimal rotation of a forest,” Journal of Environmental Economics and Management. 11(2): 180-190.
Routledge, R. D., 1980. “The effect of potential catastrophic mortality and other unpredictable events on optimal forest rotation policy,” Forest Science. 26(3): 389-399.
Samuelson, P. A., 1976. “Economics of forestry in an evolving society,” Economic Inquiry. 14(4): 466-492.
Strang, J. W., 1983. “On the optimal forest harvesting decision,” Economic Inquiry. 11: 576-583.
Thomson, T. A., 1992. “Optimal forest rotation when stumpage prices follow a diffusion process,” Land Economics. 68(3): 329-342.
Trigeorgis, L. and S. P. Mason, 1987. “Valuing managerial flexibility,” Midland Corporate Finance Journal. 5(1): 14-21.
Trigeorgis, L., 1993. “Real options and interactions with financial flexibility,” Financial Management. 22(3): 202-224.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27560-
dc.description.abstract一般傳統上決定森林輪伐期的方法包括最大木材永續收穫法、最大淨現值法以及最大土地期望值法,此三種方法均在外生價格為確定下求解最適輪伐期。然而,實際上地主在造林時,包括林木價格以及二氧化碳價格均為不確定型態,故使用上述方法來計算最適輪伐期可能會錯估真正的造林淨現值。據此,本研究引入Chladna(2007)之實質選擇權模型,考慮木材價格及二氧化碳價格不確定下,建立我國森林最適輪伐期之理論模型,進一步以台灣杉木作為代表樹種進行實證模擬分析,估算台灣地主在面對價格不確定下之杉木最適輪伐期。本研究之主要實證結果如下:(1)杉木價格與二氧化碳價格固定時,則我國杉木之最適輪伐期為21年,而考慮任一價格隨機變動時,其輪伐期均會比價格固定下之輪伐期長,其中以杉木價格變動造成輪伐期增加之影響較為顯著。例如考慮杉木價格變動,則輪伐期增加為29年;考慮二氧化碳價格變動,則輪伐期增加為24年;考慮兩種價格均隨機變動下,則輪伐期增加為25年。(2)當考慮折現率變動下,則無論杉木價格與二氧化碳價格變動與否,折現率越高,則輪伐期均會愈短。(3)考慮杉木價格隨機變動而二氧化碳價格固定時,則當折現率為3%以上時,碳釋放比例愈小,則輪伐期愈短。(4)當杉木價格與二氧化碳價格均隨機變動時,則隨著碳釋放比例愈小,輪伐期亦愈短。zh_TW
dc.description.abstractTraditionally, the approaches of deciding the optional forest rotation period include the maximum sustainable yield, the maximum land expected value, and the maximum net present value. All these approaches are seeking to solve the optimal rotation period under an exogenously determined price of timber. However, in reality, when a landowner decides to afforest, both the prices of timber and carbon dioxide are not certain. Therefore, the above mentioned methods may not properly assess the net present value of afforestation. By assuming the uncertainty of prices of timber and carbon dioxide, based on the real option model of Chladna(2007), this study develops a theoretical model of optimal forest rotation period in Taiwan. Furthermore, under the assumption of timber price uncertainty, an empirical study is conducted to simulate and analyze the optimal rotation period of cunnignhania lancelata of landowner in Taiwan. The empirical results are summarized as follows: (1) When the prices of cunnignhania lancelata and carbon dioxide are fixed, the optimal rotation period of cunnignhania lancelata in Taiwan is 21 years. When either one of the prices of timber and carbon dioxide fluctuates randomly, the optimal rotation period will become longer than that of fix-priced one. For example, if only the price of cunnignhania lancelata fluctuates randomly, the optimal rotation period will increase to 29 years; if only the price of carbon dioxide fluctuates randomly, the optimal rotation period will increase to 24 years; if both prices fluctuate randomly, the optimal rotation period will increase to 25 years. (2) If the discount rate increases, the optimal rotation period will become shorter, whether the prices of cunnignhania lancelata and carbon fluctuate randomly or not. (3) When the price of cunnignhania lancelata fluctuates randomly and the price of carbon dioxide fixed, while the discount rate is above 3%, if the carbon release proportion becomes lower, the optimal rotation period will become shorter. (4) When both the prices of cunnignhania lancelata and carbon dioxide fluctuate randomly, the optimal rotation period will become shorter if the carbon release proportion becomes lower.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:09:48Z (GMT). No. of bitstreams: 1
ntu-96-R94627008-1.pdf: 1758685 bytes, checksum: 88ac2592b994b1ec96df751e0fe1ae87 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員審定書…………………………………………………………i
謝辭………………………………………………………………………ii
中文摘要………………………………………………………………iii
英文摘要…………………………………………………………………iv
第一章 緒論……………………………………………………………1
第一節 研究背景與研究動機…………………………………………1
第二節 研究目的………………………………………………………2
第三節 研究步驟與流程………………………………………………2
第四節 研究架構………………………………………………………3
第二章 文獻回顧………………………………………………………4
第一節 森林最適輪伐期………………………………………………4
一、森林輪伐期的意義…………………………………………………4
二、傳統森林輪伐期……………………………………………………4
三、考慮森林外部價值之森林輪伐期…………………………………6
四、考慮不確定性之森林輪伐期………………………………………8
第二節 投資決策評估方法……………………………………………9
一、傳統投資評估法─淨現值法………………………………………9
二、實質選擇權…………………………………………………………11
三、淨現值法與實質選擇權之關係……………………………………12
第三章 理論模型………………………………………………………17
第一節 未考慮碳價格之森林現值模型………………………………17
一、模型設定……………………………………………………………17
二、林主執行決策時點之性質…………………………………………22
第二節 考慮碳價格之森林現值模型…………………………………26
一、模型設定……………………………………………………………26
二、林主執行決策時點之性質…………………………………………33
第四章 實證架構與分析………………………………………………37
第一節 實證模型………………………………………………………37
一、利潤函數……………………………………………………………38
二、選擇權價值…………………………………………………………40
第二節 實證分析之變數設定…………………………………………41
一、木材價格……………………………………………………………41
二、林木生長函數………………………………………………………44
三、收穫伐木的成本……………………………………………………46
四、二氧化碳價格………………………………………………………46
五、二氧化碳釋放比例…………………………………………………48
六、折現率的估計………………………………………………………48
第三節 實證結果與分析………………………………………………48
一、杉木價格固定、二氧化碳價格固定之輪伐期……………………49
二、杉木價格固定、二氧化碳價格隨機變動之輪伐期………………50
三、杉木價格隨機變動、二氧化碳價格固定之輪伐期………………51
四、杉木價格隨機變動、二氧化碳價格隨機變動之輪伐……………52
五、固定折現率及碳釋放比例之輪伐期………………………………52
第五章 結論與建議……………………………………………………53
第一節 結論……………………………………………………………53
第二節 未來研究建議…………………………………………………54
參考文獻…………………………………………………………………55
附錄………………………………………………………………………60
dc.language.isozh-TW
dc.title最適輪伐期之分析─實質選擇權之應用zh_TW
dc.titleAnalysis of Optimal Rotation Period: The Application of Real Optionen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳吉仲,李恆綺
dc.subject.keyword實質選擇權,最適輪伐期,森林經營管理,碳吸存,碳價格,zh_TW
dc.subject.keywordReal option,Optimal forest rotation,Forest management,Carbon sequestration,Carbon price,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2007-11-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業經濟學研究所zh_TW
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved