Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27557
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許文翰
dc.contributor.authorChang-Hung Hsiehen
dc.contributor.author謝長宏zh_TW
dc.date.accessioned2021-06-12T18:09:41Z-
dc.date.available2007-11-15
dc.date.copyright2007-11-15
dc.date.issued2007
dc.date.submitted2007-11-12
dc.identifier.citation[1] Dewey, J.: 1977,The Middle Works, 1899–1924, vol. 4: 1907–1909. Southern
Illinois University Press, Carbondale.
[2] G. S. Kino, Acoustic waves, Devices, imaging & una106 signul
procesJing.Englewood Cliffs, NJ: Prentice Hall, 1987.
[3] J. W. Hunt. M. Arditi, and F. S. Foster, “Ultrasound transducers for pulse-echo
medical imaging,” IEEE Trans. Biomed. Eng., vol. BME-30. no. 8, 453-481 (1983).
[4] G. R. Harris, “Review of transient field theory for a baffled planar piston,” J.
Acoust. Soc. Am., v01 70, 1-20 (1981).
[5] G. E. Tupholme, “Generation of acoustic pulses by baffled plane pistons,”
Mathematika 16, 209-224 (1969).
[6] P. R. Stepanishen, “The time-dependent force and radiation impedance on a
piston in a rigid infinite planar baffle,” J. Acoust. Soc. Am. 49, 3, 841-849 (1971).
[7] -------, “Transient radiation from pistons in a infinite planar baffle,” J. Acoust.
Soc. 49, 1627-1638 (1971).
[8] A. C. Baker and V. F. Humphrey, “Distortion and high-frequency generation due
to nonlinear propagation of short ultrasonic pulses from a plane circular piston,” J.
Acoust. Soc. Am. 92, 1699-1705 (1992).
[9] A.C. Baker and V. F. Humphrey, ”Nonlinear propagation of short ultrasonic
pulses in focused fields,” in Frontiers of Nonlinear Acoustics: Proceedings of 12th
ISNA,edited by M.F. Hamilton and D.T. Blackstock, 185-190 (1990).
[10] A. C. Baker and V. F. Humphrey, ”Nonlinear propagation in pulsed ultrasonic
transducers,” in Proceedings of Ultrasonics Iternational 89, 691-696 (1989).
[11] E. A. Zabolotskaya and R. V. Khokhlov, “Quasi-plane waves in the nonlinear
acoustics of confined beams,” Sov. Phys. Acoust.15, 35-40 (1969).
[12] V. P. Kuznetsov, “Equation of nonlinear acoustics,” Sov. Phys. Acoust.16,
467-470 (1970).
[13] W. J. Fry and R. B. Fry, “determination of absolute sound levels and acoustic
absorption coefficients by thermocouple probes-theory,” J. Acoust. Soc. Am. 26,
311-317 (1950).
[14] P. P. Lele, “A simple method for the production of trackless focal lesions with
focused ultrasound: Physical factors,” J. Physiol. 160, 494-512 (1962).
[15] K. J. Parker, “The thermal pulse decay technique for measuring ultrasonic
absorption coefficients,” J. Acoust. Soc. Am. 74, 1356-1361 (1983).
[16] K. J. Parker, “Effects of heat conduction and sample size on ultrasonic absorption
measurements,” J. Acoust. Soc. Am. 77, 1719-725 (1985).
[17] J. B. Pond, “The role of heat in the production of ultrasonic focal lesions,” J.
Acoust. Soc. Am. 47, 1607-1611 (1970).
[18] T. C. Robinson and P. P. Lele, “An analysis of lesion development in the brain
and in plastics by high-intensity focused ultrasound at low-megahertz frequencies,” J.
Acoust. Soc. Am. 51, 1333-1351 (1972).
[19] T. G. Muir and E. L. Carstensen, “Prediction of nonlinear acoustic effects at
biomedical frequencies and intensities,” Ultrasound Med. Biol. 6(4), 345-357 (1980).
[20] F. L. Lizzi, J. Driller, and M. Ostromogilsky, “Thermal model for ultrasound
treatment of glaucoma,” Ultrasound Med. Biol. 10(3), 289-298 (1984).
[21] F. L. Lizzi, J. Driller, B. Lunzer, A. Kalisz, and D. J. Coleman, “Computer model
of ultrasound hyperthermia and ablation of tissue volumes using high intensity
focused ultrasound,” Ultrasound Med. Biol. 18(1), 59-73 (1992).
[22] H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting
human forearm,” J. Appl. Physiol. 2, 93-122 (1948).
[23] C. R. Hill, I. H. Rivens, M. G. Vaughan, and G. ter Harr, “Lesion development in
focused ultrasound surgery: a general model,” Ultrasound Med. Biol. 20(3), 259-269
(1994).
[24] J. Wu and G. Du, “Temperature elevation generated by a focused Gaussian beam
of ultrasound,” Ultrasound Med. Biol. 16(5), 489-498 (1990).
[25] M. C. Kolios, M. D. Sherar, and J. W. Hunt, “Blood flow cooling and ultrasound
lesion formation,” Med. Phys. 23, 1287-1298 (1996).
[26] F. P. Curra, P. D. Mourad, V. A. Khokhlova, R. O. Cleveland, and L. A. Crum,
“Numerical simulations of heating patterns and tissue temperature response due to
high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47(4), 1077-1088 (2000).
[27] X. Fan and K. Hynynen, “A study of various parameters of spherically curved
phased arrays for non-invasive ultrasound surgery,” Phys. Med. Biol. 41(4), 591-608
(1996).
[28] J. Hoffelner, H. Landes, M. Kaltenbacher, and R. Lerch, “Finite element
simulation of nonlinear wave propagation in thermoviscous fluids including
dissipation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(3), 779-786 (2001).
[29] B. Krasovitski and E. Kimmel, “A blood vessel exposed to ultrasound: A
mathematical simulation of the temperature field,” J. Acoust. Soc. Am. 111, 1454-1459
(2002).
[30] M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum,
“Physical mechanisms of the therapeutic effect of ultrasound (A review),” Acoust.
Phys. 49(4), 369-388 (2003).
[31]Mark F. Hamilton and David T. Blackstock, “Nonlinear Acoustics,” Academic
Press(1998)
[32]李百祺,”醫用超音波學,”上課講義chapter3(2002)
[33] D. R. Daum, K. Hynynen, “A 256 Element Ultrasonic Phased Array System for
Treatment of Large Volumes of Deep Seated Tissue,” IEEE Trans Ultrason.
Ferroelect. Freq Contr. 46(5), 1254-1268 (1999).
[34] P. A. Narayana, J. Ophir, and N. F. Maklad, “Attenuation of ultrasound in
biological fluids,” J. Acoust. Soc. Am. 76(1), 1-4 (1984).
[35] K. J. Parker, “Comparison of techniques for in vivo attenuation measurements,”
IEEE Trans. Biomed. Eng. 35(12), 1064-1068 (1988).
[36] Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation
in human liver with diffuse disease,” Ultrasou. Med. Biol. 25(7), 1047-1054 (1999).
[37] R. M. Alford, K. R. Kelly, and D. M. Boore, “Accuracy of finite-difference
modeling of the acoustic wave equation,” Geophysics, 39(6), 834-841 (1974).
[38] A. Ilan and J. P. Weight, “The propagation of short pulses of ultrasound from a
circular source coupled to an isotropic solid,” J. Acoust. Soc. Am. 88, 1142-1151
(1990).
[39] Tony W. H. Sheu, ”Three-dimensional analysis for radio-frequency ablation of
liver tumor whit blood perfusion effect,” Comp. Method Biomed. Biomedical Eng.
8(4), 229-240 (2005).
[40] CFD research corporation (CFDRC), 216 Wynn Drive Huntsville, AL 35805,
USA.
[41] J. P. Van doormaal and G. D. Raithby, “Enhancements of the simple method for
predicting incompressible fluid flows,” Numer. Heat transfer 7, 147-163 (1984).
[42] L. H. Robert, “Absorbing boundary conditions for difference approximations to
the multi-dimensional wave equation,” mathematics of computation 47, 437-459
(1986).
[43] 林瑞國, “不可壓縮黏性熱磁流之科學計算方法,” 博士論文,國立台灣大學工
科海洋所, 36-40, 107-110, 233-240, 259-263, 2005.
[44] David K. Gartling, “A test problem for outflow boundary conditions-flow over a
backward-facing step,” J. Numer. Methods fluids 11, 953-967.
[45] S. J. Sherwin and H. M. Blackburn, “Three-dimensional instabilities and
transition of steady and pulsatile axisymmetric stenotic flows,” J. Fluid Mech. 533,
297-327 (2005).
[46] A. Alia, H. Djelouah, and N. Bouaoua, “Finite difference modeling of ultrasonic
field radiated by circular transducers,” J. Comp. Acoust. 12(4), 475-499 (2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27557-
dc.description.abstract肝癌涉及肝臟內某些細胞不正常且大量的增生之現象。基於非侵入式的優
點,超音波熱治療是肝癌治療的理想方式之一。過往研究所建立的幾何模型大多
以規則的外型為主,本研究利用MRI 所切片重建的肝臟外型,並保留主要的動脈
血管,探討肝腫瘤在血管附近的超音波燒灼問題,三維血液灌流效應對超音波熱
治療的影響,即當熱傳導效應將熱從超音波聚焦處帶至血管附近時,會因血液的
流動把些許的熱能帶走。
由於組織的吸收參數對於組織的吸熱有著顯著的影響,因此整理文獻資料並
比較肝腫瘤在不同吸收參數時的組織的吸熱情況。當腫瘤的吸收參數較大時,使
用超音波照射12 秒,腫瘤內最高溫度為83°C;當腫瘤的吸收參數較小時,腫瘤內
最高溫度為62°C ,由於人體內此一參數取得不易,所以在模擬之前取得適當的參
數對模擬的正確性是必要的。
zh_TW
dc.description.abstractHepatocellular carcinoma is a group of diseases in which cells are aggressive.
Because of the advantage of focused ultrasound surgery(FUS), which is a non-invasive
system, the focused ultrasound surgery becomes one of the ideal ways to kill the tumor.
Most of the geometrical models considered in the previous studies were regular. In this
study, the liver model containing a liver, blood vessel(artery), and a liver tumor, which
is closed to the blood vessels, and considered. Since the presence of blood perfusion can
limit the ability of elevating the temperature owing to convective heat transport, the
reduction of lesion area is investigated.
Tissue absorbing coefficients play an important role in raising tumor temperature.
The range of the absorbing coefficients (liver tumor) is 0.0529(nepes/cm/MHz) to
0.1473(nepes/cm/MHz). After exposing to a high intensity focused ultrasound(HIHU)
for 12sec, the highest temperature with large absorbing coefficient can reach 83°C , and
the highest temperature with a lower absorbing coefficient is predicted to be 62°C . It is
difficult to get the coefficients in human body. Prior to the simulation, to acquire the
absorbing coefficients is essential to predict good quality solution.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:09:41Z (GMT). No. of bitstreams: 1
ntu-96-R94525007-1.pdf: 2084853 bytes, checksum: 436041733e23587b4fcced5282757ded (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents摘要.............................................................................................................. II
Abstract ....................................................................................................... III
目錄.............................................................................................................IV
圖目錄....................................................................................................... VII
表目錄.........................................................................................................IX
符號說明......................................................................................................X
第一章 導論.................................................................................................1
1.1 肝腫瘤手術之介紹.........................................................................1
1.2 超音波之簡介.................................................................................3
1.2.1 診斷用超音波.......................................................................3
1.2.2 治療用超音波.......................................................................4
1.3 超音波熱治療之介紹......................................................................4
1.4 研究動機與主題.............................................................................7
1.5 文獻回顧.........................................................................................7
1.6 論文之研究內容.............................................................................8
第二章 理論架構.......................................................................................10
2.1 生物熱傳方程式...........................................................................10
2.2 超音波波動方程式..................................................................... 11
2.3 介質的能量衰減與吸收...............................................................19
2.4 超音波熱治療之統御方程式.......................................................23
2.5 物理模型及邊界條件...................................................................26
第三章 數值方法.......................................................................................31
3.1 有限差分法離散超音波聲場方程式...........................................31
3.1.1 波動方程式之離散.............................................................31
3.2 離散方程之基本分析...................................................................32
3.3 CFDRC軟體簡介...........................................................................36
3.4 有限體積之離散方法...................................................................37
第四章 程式之驗證...................................................................................46
4.1 超音波聲場方程式之數值驗證...................................................46
4.2 輻射邊界條件之討論...................................................................48
4.3 利用商用軟體CFDRC求解後向台階流及血管拴塞問題..........49
第五章 計算結果.......................................................................................52
5.1 超音波聲場干涉之設計與結果...................................................52
5.2 超音波熱治療模擬結果及討論...................................................55
5.2.1 比較不同吸收參數所造成腫瘤燒灼體積大小的差異....55
5.2.2 考慮血液灌流之超音波熱治療模擬...............................56
第六章 結論與未來展望........................................................................58
6.1 結論............................................................................................58
6.2 未來展望....................................................................................58
參考文獻.....................................................................................................59
dc.language.isozh-TW
dc.subject三維zh_TW
dc.subject肝癌zh_TW
dc.subject超音波熱治&#63937zh_TW
dc.subject高能聚焦超音波zh_TW
dc.subject血液灌&#63946zh_TW
dc.subject吸收&#63851zh_TW
dc.subjectHigh Intensityen
dc.subjectFocused Ultrasound Surgery(FUS)en
dc.subjectHepatocellular carcinomaen
dc.title以超音波燒灼肝臟腫瘤過程之模擬zh_TW
dc.titleDepartment of Engineering Science & Ocean Engineeringen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommitteeGilbert-Thiriet Marc,林文澧,李佳翰
dc.subject.keyword肝癌,超音波熱治&#63937,高能聚焦超音波,血液灌&#63946,吸收&#63851,&#63849,三維,zh_TW
dc.subject.keywordHepatocellular carcinoma,Focused Ultrasound Surgery(FUS),High Intensity,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2007-11-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved