Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27539
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩
dc.contributor.authorHsian-Wen Yaoen
dc.contributor.author姚先玟zh_TW
dc.date.accessioned2021-06-12T18:08:56Z-
dc.date.available2009-12-21
dc.date.copyright2007-12-21
dc.date.issued2007
dc.date.submitted2007-12-03
dc.identifier.citation黃祥恩. 1997. 水楊酸誘導百合系統性抗灰黴病之研究. 國立台灣大學植物病蟲害學系碩士論文. 66頁。
鍾瑞洲. 1999. 百合系統性誘導抗病反應之研究. 國立台灣大學植物病蟲害學系碩士論文. 60頁。
路幼妍. 2003. 葵百合誘導抗病性之研究. 國立台灣大學植物病理學系博士論文. 115頁。
彭宣傑. 2006. 利用農桿菌注入法探討葵百合LsGRP1與水楊酸誘導抗病之相關性. 56頁。
Alba, M. N., Culianez-Macia, F. A., Goday, A., Freire, M. A., Nadal, B., and Pages, M. 1994. The maize RNA-binding protein, MA16, is a nucleolar protein located in the dense fibrillar component. Plant J. 6:825-834.
Aneeta, S. M. N., Tuteja, N., and Kumar, S. S. 2002. Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem. Biophys. Res. Commun. 296:1063-1068.
Berglund, G. I., Garlsson, G. H., Smith, A. T., Szoke, H., Henriksen, A., and Hajdu, J. 2002. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463-468.
Birnboim, H. C., and Daly. J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513-1523.
Brisson, L. F., Tenhaken, R., and Lamb, C. J. 1994. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703-1712.
Carpenter, C. D., Kreps, J. A., and Simon, A. E. 1994. Genes encoding glycien-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104:1015-1025.
Cassab, G. I. 1998. Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:281-309.
Chen, A. P., Zhong, N. Q., Qu, L. Z., Wang, F., Liu, N., and Xia, G. X. 2007. Root and tissue-specific expression of glycine-rich protein AtGRP9 and its interaction with AtCAD5, a cinnamyl alcohol dehydrogenase, in Arabidopsis thaliana. J. Plant Res. 120:337-343.
Colonna, S., Gaggero, N., Richelmi, C., and Pasta, P. 1999. Recent biotechnological developments in the use of peroxidases. Trends Biotech. 17:163-168.
Condit, C. M. 1993. Developmental expression and localization of petunia glycine-rich protein 1. Plant Cell 5:277-288.
Condit, C. M., McLean, B. G., and Meagher, R. B. 1990. Characterization of the expression of the petunia glycine-rich protein-1 gene product. Plant Physiol. 93:596-602.
Condit, C. M., and Meagher, R. B. 1986. A gene encoding a novel glycien-rich structural protein of petunia. Nature 322:178-181.
Cretin, C., and Puigdomenech, P. 1990. Glycine-rich RNA-binding proteins from Sorghum vulgare. Plant Mol. Biol. 15:783-785.
de Oliveira, D. E., Franco, L. O., Simoens, C., Seurinck, J., Coppieters, J., Botterman, J., and Van-Montagu, M. 1993. Inflorescence-specific genes from Arabidopsis thaliana encoding glycine-rich proteins. Plant J. 3:495-507.
de Oliveira, D. E., Seurinck, J., Inze, D., Van Montagu, M., and Botterman, J. 1990. Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2:427-436.
Fan, X., Hou, J., Chen, X., Chaudhry, F., Staiger, C. J., and Ren, H. 2004. Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen. Plant Physiol. 136:3979-3989.
Figueroa-Espinoza, M. C., and Rouau, X. 1998. Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linking between feruloylated arabinoxylans. Cereal Chem. 75:259-265.
Goddemeier, M. L., Wulff, D., and Feix, G. 1998. Root-specific expression of a Zea mays gene encoding a navel glycine-rich protein, zmGRP3. Plant Mol. Biol. 36:799-802.
Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P., and Pages, M. 1988. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262-264.
Hanano, S., Sugita, M., and Sugiura, M. 1996. Isolation of a novel RNA-binding protein and its association with a large ribonucleoprotein particle present in the nucleoplasm of tobacco cells. Plant Mol. Biol. 31:57-68.
Heintzen, C., Melzer, S., Fischer, R., Kappeler, Z., Apel, K., and Staiger D. 1994. A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J. 5:799-813.
Horvath D. P., and Olson, P. A. 1998. Cloning and characterization of cold-regulated glycine-rich RNA-binding protein genes from leafy spurge (Euphorbia esula L.) and comparison to heterologous genomic clones. Plant Mol. Biol. 38:531-538.
Huang, J. C., Chang, F. C., and Wang, C. S. 1997. Characterization of a lily tapetal transcript that shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins. Plant Mol. Biol. 34:681-686.
Kaldenhoff, R., and Richter, G. 1989. Sequence of cDNA for a novel light-induced glycine-rich protein. Nucleic acids Res. 17:2853.
Keller, B. 1993. Structural cell wall proteins. Plant Physiol. 101:1127-1130.
Keller, B., Sauer, N., and J.Lamb, C. 1988. Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO. J. 12:3625-3633.
Keller, B., Templeton, M. D., and Lamb, C. J. 1989. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc. Natl. Acad. Sci. USA 86:1529-1533.
Lei, M., and Wu, R. 1991. A novel glycine-rich protein gene in rice. Plant Mol. Biol. 16:187-198.
Liu, S.-T., and Kado, C. I. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145(3):1365-1373.
Lu, Y. Y., and Chen, C. Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Sci. 169:1-9.
Lu, Y. Y., Liu, Y. H., and Chen, C. Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP1-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Sci. 172:913-919.
Luo, M., Liu, J. H., Mohapatra, S., Hill, R. D., and Mohapatra, S. S. 1992. Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa. J. Biol. Chem. 267:15367-15374.
Matsui, M., Toyosawa, I., and Fukuda, M. 1995. Purification and characterization of a glycine-rich protein from the aleurone layer of soybean seeds. Biosci. Biotech. Biochem. 59:2231-2234.
Matsuyama, T., Satoh, H., Yamada, Y., and Hashimoto, T. 1999. A maize glycine-rich protein is synthesized in the lateral root cap and accumulates in the mucilage. Plant Physiol. 120:665-674.
Mauch, F., Reimmann, C., Freydl, E., Schaffrath, U., and Dudler, R. 1998. Characterization of the rice pathogen-related protein Rir1a and regulation of the corresponding gene. Plant Mol. Biol. 38:577-586.
Molina, A., Mena, M., Carbonero, P., and GarciaOlmedo, F. 1997. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33:803-810.
Mousavi, A., and Hotta, Y. 2005. Glycine-rich proteins: a class of novel proteins. Appl. Biochem. Biotechnol. 120:169-174.
Mundy, J., and Chua, N. H. 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7:2279-2286.
Murphy, D. J. 1993. Structure, function and biogenesis of storage lipid bodies and oleosins in plant. Prog. Lipid Res. 32:247-280.
Murphy, D. J., and Ross, J. H. E. 1998. Biosynthesis, targeting and processing of oleosin-link proteins, which are major pollen coat components in Brassica napus. Plant J. 12:1-16.
Naqvi, S. M., Park, K. S., Yi, S. Y., Lee, H. W., Bok, S. H., and Choi D. 1998. A glycine-rich RNA-binding protein gene is differentially expression during acute hypersensitive response following Tobacco Mosaic Virus infection in tobacco. Plant Mol. Biol. 37:571-576.
Park, A. R., Cho, S. K., Yun, U. J., Jin, M. Y., Lee, S. H., Sachetto-Martins, G., and Park, O. K. 2001. Interestion of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP3. J. Biol. Chem. 276:26688-26693.
Reddy, A. S., and Poovaiah, B. W. 1987. Accumulation of a glycine rich protein in auxin-deprived strawberry fruits. Biochem. Biophys. Res. Commun. 147:885-891.
Ringli, C., Keller, B., and Ryser, U. 2001. Glycine-rich proteins as structural components of plant cell walls. Cell Mol. Life Sci. 58:1430-1441.
Rohho, W., Rosch, K., Kroger, K., and Salamini, F. 1990. Nucleotide sequence of a Hordeum vulgare gene encoding a glycine-rich protein with homology to vertebrate cytokeratins. Plant Mol. Biol. 14:1057-1059.
Ruiter, R. K., Van, G. J., Van Herpen, R. M. A., Schrauwen, J. A. M., and Wullens, G. J. 1997. Characterization of oleosins in the pollen coat of Brassica oleracea. Plant Cell 9:1621-1631.
Ryals, J. A., Neuenschwander, U. H. Willits, M. G., Molina, A., Steiner, H. Y., and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819.
Ryser, U., and Keller, B. 1992. Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxylem cell. Plant Cell 4:773-783.
Ryser, U., Schorderet, M., Zhao, G. –F., Studer, D., Ruel, K., Hauf, G., and Keller, B. 1997. Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxylem cells. Plant J. 12:460-470.
Sachetto-Martins, G., Franco, L. O., and de Oliverira, D. E. 2000. Plant glycine-rich proteins : a family or just proteins with a common motif ? Biochim. Biophys. Acta 1492:1-14.
Showalter, A. M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:9-23.
Strum, A. 1992. A wound inducible glycine-rich protein from Daucus Carota with homology to single-stranded nucleic acid-binding proteins. Plant Physiol. 99:1689-1692.
Tao, T. Y., Ouellet, T., Dadej, K., Miller, S. S., Johnson, D. A., and Singh, J. 2006. Characterization of a novel glycine-rich protein from the cell wall of maize silk tissue. Plant Cell Rep. 25:848-858.
Takai, R., Kaneda, T., Iaogai, A., Takayama, S., and Che, F. S. 2007. A new method of defense response analysis using a transient expression system in rice protoplasts. Biosci. Biotechnol. Biochem. 71:590-593.
Ting, J. T. L., Wu, S. S. H., Ratnayake, C., and Huang, A. H. C. 1998. Constituents of the tapetosomes and elaioplasts in Brassica campestris tapetum and their degradation and retention during microspogenesis. Plant J. 16:541-551.
van Nocker, S., and Vierstra, R. D. 1993. Two cDNAs from Arabidopsis thaliana encode putative RNA binding proteins containing glycine-rich domain. Plant Mol. Biol. 21:695-699.
Ueki, S., and Citovsky, V. 2005. Identification of an interactor of cadmium ion-induced glycine-rich protein involve in regulation of callose levels in plant vasculature. Proc. Natl. Acad. Sci. 102:12089-12094.
Wang, T. W., Balsamo, R. A., Ratnayake, C., Platt, K. A., Ting, J. T. L., and Huang, A. H. C. 1997. Identification, subcellular localization, and developmental studies of oleosins in the anther of Brassica napus. Plant J. 11:475-487.
Wang, W., Scali, M., Vignani, R., Spadafora, A., Sensi, E., Mazzuca, S., and Cresti, M. 2003. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369-2375.
Ye, Z. H., and Varner, J. E. 1991. Tissue-specific expression of cell wall proteins in developing soybean tissue. Plant Cell 3:23-37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27539-
dc.description.abstract為探討LsGRP1 (Lilium ‘Star Gazer’glycine-rich protein 1)蛋白質在葵百合葉片之表現,將LsGRP1之cDNA構築於大腸桿菌蛋白質表現系統之載體上,進行LsGRP1表現與純化,發現細菌表現之LsGRP1蛋白質在電泳膠體上有偏移及部分C端胺基酸缺失的現象。進一步利用所得之LsGRP1製作多元抗體,得到含有LsGRP1抗體之兔子血清。使用LsGRP1抗體血清偵測,進行經水楊酸處理之葵百合葉片蛋白質萃取條件之測試,結果顯示利用非離子界面活性劑Triton X-100及還原劑硫氫乙醇(2-mercaptoethanol)萃取所得之蛋白質樣品中可偵測到較高量之38.2 kDa蛋白質訊號,而以高溫高鹼性處理及添加聚乙烯聚吡咯烷酮(polyvinylpolypyrrolidone)成分時可以偵測到約66 kDa的蛋白質訊號,又以高溫高鹼性處理所得66 kDa訊號較強。進一歩針對不同處理之葵百合葉片進行蛋白質萃取、電泳分析及偵測,所有處理皆可穩定地偵測到38.2 kDa蛋白質訊號,且於百合灰黴病菌感染之葉片蛋白質樣品中可偵測到最強的訊號,然而僅有在系統性誘導之系統葉蛋白質樣品中可偵測到66 kDa蛋白質訊號,推測LsGRP1可以巨大複合產物或是不同後轉譯修飾形式存在於植物中,於系統性誘導之系統葉中可以66 kDa蛋白質形式存在。此外,利用抗體偵測葵百合原生質體蛋白質表現以及觀察重組螢光蛋白質標記,探討LsGRP1蛋白質於細胞層次的累積位置,結果顯示於受到水楊酸刺激之原生質體細胞內與細胞外所得之蛋白質樣品中皆可偵測到66 kDa的蛋白質訊號,且隨著處理時間原生質體細胞外所得蛋白質訊號有增加的現象;進一步利用共軛焦顯微鏡(confocol)觀察綠色螢光蛋白質(green fluorescent protein, GFP)標記,結果證明具有LsGRP1訊息序列之重組綠色螢光蛋白質累積於細胞膜內側,推測葵百合葉片中之LsGRP1可能存在於細胞外質或細胞壁。zh_TW
dc.description.abstractIn order to study expression of LsGRP1 protein in Lilum ‘Star Gazer’ leaves, LsGRP1 cDNA was constructed in protein expression vector of Escherichia coli. LsGRP1 expression and purification were carried on for preparation of LsGRP1 polyclonal antibody. Western blot analysis detected LsGRP1 as a protein of 38.2 kDa following extraction with non-ionic detergent Triton X-100 and reductant β-mercaptoethanol. A protein of 66 kDa was detected following extraction with hot water-NaOH and polyvinylpolypyrrolidone. Extracts of Lilum ‘Star Gazer’ leaves in different treatments were stably detected the protein of 38.2 kDa, but the protein of 66 kDa was only detected in the protein samples of systemic leaves, indicating that posttranslational modification(s) or large mixture composition of LsGRP1 might occur. In addition, the protein of 66 kDa could be detected in SA-treated protoplasts, and protein signal changes from the cell to culture supernatant as the time increased. Confocol microscopy study indicated that LsGRP1-GFP fusion protein was not present evenly in the protoplast cytoplasm, but accumulated inside the cell membrane. Thus, LsGRP1 may exist in the extracellular matrix or cell wall in Lilum ‘Star Gazer’ leaves was presumed.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:08:56Z (GMT). No. of bitstreams: 1
ntu-96-R94633007-1.pdf: 2974636 bytes, checksum: b3d2cec6b3a0eea40cd32cc670ef2a5c (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
壹、前言 5
貳、前人研究 7
叁、材料方法 12
一、 細菌質體 DNA 之小量製備法 12
二、 DNA 瓊脂精膠體電泳分析 12
三、 引子的設計 12
四、聚合酵素連鎖反應 13
五、限制酵素切割 13
六、DNA片段的回收與純化 13
七、DNA 黏接反應 14
八、大腸桿菌勝任細胞製備 14
九、大腸桿菌細胞轉形 15
十、大腸桿菌轉形株之篩選 15
十一、菌株的保存 15
十二、細菌重組蛋白質之抽取 16
十三、親和性管柱層析與蛋白質定量 16
十四、蛋白質透析、酵素切割與濃縮 17
十五、SDS-聚丙烯醯胺膠體電泳分析 17
十六、LsGRP1 抗原製備 18
十七、利用液相層析質譜儀分析蛋白質序列 19
十八、西方墨點法 19
十九、LsGRP1 重組蛋白質間交互鍵結作用測試 21
二十、植物材料栽植與處理 21
二十一、葵百合葉片蛋白質萃取 22
二十二、葵百合原生質體製備 22
二十三、葵百合葉片原生質體處理 23
二十四、葵百合原生質體轉型與重組螢光蛋白質暫時表現偵測 23
肆、結果 25
一、利用大腸桿菌蛋白質表現系統可得到GST-LsGRP1重組蛋白質 25
二、由重組蛋白質經酵素反應可得到抗原蛋白質以製作兔子血清抗體 25
三、萃取水楊酸處理之葵百合葉片蛋白質測試結果 26
(一)使用蛋白質常用溶液萃取所得之樣品中可偵測到微弱的38.2 kDa蛋白質訊號 26
(二)以適當之界面活性劑與還原劑萃取所得之樣品中可得較強的38.2 kDa蛋白質訊號 27
(三)NaCl、高溫-高鹼、PVPP及蔗糖萃取葵百合葉片蛋白質可得66 kDa蛋白質訊號 28
四、萃取撲殺熱處理及病原菌接種之葵百合系統葉片蛋白質可得到與水楊酸處理之葵百合葉片蛋白質相同的蛋白質訊號 29
五、受到百合灰黴病菌感染之葵百合葉片可偵測到較強的蛋白質訊號但無66 kDa蛋白質訊號 30
六、誘導處理之葵百合系統葉再接種病原菌之蛋白質分析得到與病原菌接種之葵百合接種葉相似的結果 31
七、不同處理的葵百合葉片中可偵測到38.2 kDa及66 kDa兩種不同形式之LsGRP1蛋白質 31
八、LsGRP1蛋白質間無法利用tyrosine、H2O2與HRP進行交互鍵結 32
九、葵百合原生質體蛋白質分析顯示偵測到之蛋白質可能自細胞內移動至細胞外 33
十、重組螢光蛋白質表現於葵百合原生質體細胞內側 33
伍、討論 35
一、利用大腸桿菌重組蛋白質表現系統得到兩種蛋白質產物 35
二、LsGRP1可能以巨大複合產物或是不同修飾型式存在於植物中 35
三、LsGRP1無法利用tyrosine、H2O2與HRP發生自身交互鍵結 38
四、LsGRP1可能於表現後被傳送至原生質體細胞之外 39
陸、圖表集 41
表一、供試菌株及質體 42
表二、引子對序列 43
表三、植物蛋白質萃取溶液成分(一) 44
表四、植物蛋白質萃取溶液成分(二) 45
表五、植物蛋白質萃取溶液成分(三) 46
表六、經前處理或預先接種之葵百合接種葉使用之植物蛋白質萃取液成分 47
圖一、GST-LsGRP1 重組蛋白質功能區組成及質體構築 48
圖二、GST-LsGRP1核酸序列及重組蛋白質之預測胺基酸序列 49
圖三、E. coli XL1-Blue(pGEX-GL8)及E. coli XL1-Blue(pGEX-6p-1)粗抽蛋白質電泳及西方墨點分析 51
圖四、GST-LsGRP1 重組蛋白質純化電泳分析 52
圖五、純化蛋白質LC-MS/MS分析 53
圖六、水楊酸處理之葵百合葉片萃取蛋白質西方墨點分析(一) 54
圖七、水楊酸處理之葵百合葉片萃取蛋白質西方墨點分析(二) 55
圖八、水楊酸處理之葵百合葉片萃取蛋白質西方墨點分析(三) 56
圖九、未處理之葵百合葉片萃取蛋白質西方墨點分析 57
圖十、化學物質處理與病原菌接種之葵百合系統葉萃取蛋白質之西方墨點分析(一) 58
圖十一、化學物質處理與病原菌接種之葵百合系統葉萃取蛋白質之西方墨點分析(二) 59
圖十二、百合灰黴病菌接種葵百合之接種葉與系統葉萃取蛋白質之西方墨點分析 60
圖十三、經前處理或預先接種之葵百合接種葉萃取蛋白質之西方墨點分析 61
圖十四、LsGRP1 蛋白質間交互鍵結試驗 62
圖十五、葵百合原生質體蛋白質表現之西方墨點分析 63
圖十六、葵百合原生質體轉形後8小時之重組螢光蛋白質表現 64
圖十七、葵百合原生質體轉形後16小時之重組螢光蛋白質表現 65
圖十八、葵百合原生質體轉形後24小時之重組螢光蛋白質表現 66
圖十九、葵百合原生質體轉形後8、16及24小時之重組螢光蛋白質表現 67
柒、參考文獻 68
捌、附錄 75
圖一、GFP重組蛋白質功能區組成 76
dc.language.isozh-TW
dc.title葵百合LsGRP1蛋白質於葉片中之誘導表現及定位研究zh_TW
dc.titleStudy on induced expression and localization of LsGRP1 in the leaves of Lilium cv. Star Grazeren
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強,鄭秋萍,張麗冠,賴爾?
dc.subject.keyword葵百合,LsGRP1,多元抗體,葵百合原生質體,綠色螢光蛋白質,zh_TW
dc.subject.keywordLilum ‘Star Gazer’,LsGRP1,polyclonal antibody,transient expression,protoplast,GFP fusion protein,confocol microscopy,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2007-12-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved