Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27534
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林欽塘
dc.contributor.authorDah-Yeou Huangen
dc.contributor.author黃大有zh_TW
dc.date.accessioned2021-06-12T18:08:44Z-
dc.date.available2010-02-19
dc.date.copyright2008-02-19
dc.date.issued2007
dc.date.submitted2007-12-07
dc.identifier.citationAkiyama H, Chaboissier M-C, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Gene Dev 2002;16:2813-28.
Albeck H, Bentzen J, Ockelmann HH, Nielsen NH, Bretlau P, Hansen HS. Familial clusters of nasopharyngeal carcinoma and salivary gland carcinoma in Greenland natives. Cancer 1993;72:196-200.
Alford AI, Hankenson KD. Matricellular proteins: Extracellular modulators of bone development, remodeling, and regeneration. Bone 2006;38(6):749-57.
Alonso SR, Tracey L, Ortiz P, Perez-Gomez B, Palacios J, Pollan M, et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 2007;67:3450-3460
Bradshaw AD, Sage EH. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 2001;107(9):1049-54.
Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matix communication. Matrix Biol 2001;19(8):816-27.
Brinkman,BMN. Splice variants as cancer biomarkers. Clin Biochem 2004;37:584-94.
Burdan F. Development and congenital malformations of the skeleton. Pol Merkur Lekarski 2005; 19(109):94-7.
Cao Y, Miao XP, Huang MY, Deng L, Hu LF, Ernberg I, Zeng YX, Lin DX, Shao JY. Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population. BMC Cancer 2006;6:167.
Cheng YJ, Hildesheim A, Hsu MM, Chen IH, Brinton LA, Levine PH, Chen CJ, Yang CJ. Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control 1999;10(3):201-7.
Cho WCS. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol. Cancer 2007;6:1.
Chow LS, Lam CW, Chan SY, et al. Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 2006; 25:310-16.
Chua DT, Sham JS, Wei WI, Ho WK, Au GK. The predictive value of the 1997 American Joint Committee on Cancer stage classification in determining failure patterns in nasopharyngeal carcinoma. Cancer 2001;92(11):2845-55.
Connor F, Cary PD, Read CM, et al. DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5. Nucleic Acids Res 1994;22(16):3339-46.
Copenhaver WM, Kelly DK, Wood RL. Bailey’s textbook of histology. 17th ed. Asian ed. The Williams and Wilkins Co. Baltimore, USA.
Dalla-Torre CA, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, Petrilli AS, et al. 2006, Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 2006;6:237.
Denny P, Swift S, Connor F, Ashworth A. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 1992;11(10):3705-12.
Framson PE, Sage EH. SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 2004;92(4):679-90.
Funk SE, Sage EH. The Ca2(+)-binding glycoprotein SPARC modulates cell cycle progression in bovine aortic endothelial cells. Proc Natl Acad Sci USA 1991;88(7):2648-52.
Girard M, Goossens M. Sumoylation of the SOX10 transcription factor regulates its transcriptional activity. FEBS letters 2006;580:1635-41.
Guyton AC. Anatomy and physiology. Holt-Saundrs Japan. 1985.
Hattori T, Eberspaecher H, Lu J, et al. Interactions between PIAS proteins and SOX9 result in an increase in the cellular concentrations of SOX9. J Bio Chem 2006;281(20):14417-28.
Hendrix MJ, Seftor EA, Seftor RE, Fidler IJ. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett 1987;38(1-2):137-47.
Ho JH, Huang DP, Fong YY. Salted fish and nasopharyngeal carcinoma in southern Chinese. Lancet 1978;2(8090):626.
Ho C-K, Lo WCH, Huang P-H, Wu M-T, Christiani DC, Lin C-T. Suspected nasopharyngeal carcinoma in three workers with long term exposure to sulphuric acid vapour. Occup Environ Med 1999;56(6):426-8.
Horikawa T, Kaizaki Y, Kato H, Furukawa M, Yoshizaki T. Expression of interleukin-8 receptor A predicts poor outcome in patients with nasopharyngeal carcinoma. Laryngoscope 2005;115:62-7.
Huang DP, Ho JHC, Henle W, Henle G. Demonstration of Epstein-Barr virus-associated nuclear antigen in nasopharyngeal carcinoma cells from fresh biopsies. Intl J Cancer 1974;14:580-8.
Huang YT, Sheen TS, Chen CL, et al. Profile of cytokine expression in nasopharyngeal carcinomas: a distinct expression of interleukin in tumor and CD4+ T cells. Cancer Res 1999;59(7):1599-605.
Ikeda T, Kamejura S, Mabuchi A, et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum 2004;50(11):3561-73.
International Agency for Research on Cancer, International Association of Cancer Registries. Cancer incidence in five continents. World Health Organization 1976.
Jia WH, Collins A, Zeng YX, et al. Complex segregation analysis of nasopharyngeal carcinoma in Guangdong, China: evidence for a multifactorial mode of inheritance (complex segregation analysis of NPC in China). Eur J Hum Genet 2005;13(2):248-52.
Kamihagi K, Katayama M, Ouchi R, Kato I. Osteonectin/SPARC regulates cellular secretion rates of fibronectin and laminin extracellular matrix proteins. Biochem Biophys Res Comm 1994;200(1):423-8.
Kato Y, Nagashima Y, Baba Y, Kawano T, Furukawa M, Kubota A, et al. Expression of SPARC in tongue carcinoma of stage II is associated with poor prognosis: an immunohistochemical study of 86 cases. Int J Mol Med 2005;16:263-268.
Klein G, Giovanella BC, Lindahl T, Fialkow PJ, Singh S, Stehlin JS. Direct evidence for the presence of Epstein-Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx. Proc Natl Acad Sci USA 1974;71(12):4737-41.
Koblinski JE, Kaplan-Singer BR, VanOsdol SJ, Wu M, Engbring JA, Wang S, et al. Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-M-231 breast cancer cell metastasis. Cancer Res 2005;65:7370-7377.
Kong WJ, Zhang S, Guo CK, et al. Effect of methylation-associated silencing of the death-associated protein kinase gene on nasopharyngeal carcinoma. Anticancer Drugs 2006;17:251-9.
Kunigal S, Gondi CS, Gujrati M, et al. SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. Int J Oncol 2006;29(6):1349-57.
Kupprion C, Motamed K, Sage EH. SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 1998;273:29635-40.
Lane TF, Sage EH. The biology of SPARC, a protein that modulates cell matrix interactions. FASEB J 1994;8:163-73.
Lau CP, Poon RT, Cheung ST, Yu WC, Fan ST. SPARC and Hevin expression correlate with tumor angiogenesis in hepatocellular carcinoma. J Pathol 2007;210:459-468.
Lee YCG, Hwang YC, Chen KC, Lin YS, HuangDY, Huang TW, et al. 2007, Effect of Epstein-Barr virus infection on global gene expression in nasopharyngeal carcinoma. Funct Integr Genomics 2007;7:79-93.
Lee TY, Wu HC, Tseng YL, Lin CT. A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer Res 2004;62:8002-8008.
Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 1998;17(19):5718-33.
Li C, Kato M, Shiue L, Shively JE, Ares M Jr, Lin RJ. Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays. Cancer Res 2006;66(4):1990-9.
Licitra L, Bernier J, Cvitkovic E, Grandi C, Spinazze S, Bruzzi P, Gatta G, Molinari R. Cancer of the nasopharynx. Crit. Rev. Oncol. Hematol. 2003;45:199-214.
Lin CT. Epstein-Bar virus: new research in epithelial carcinoma. In: Umar CS, ed. New developments in EBV research. New York: Nova Science Publishers, Inc.; 2006. p. 71-91.
Lin Y-T. Functional analysis of SPARC gene expression in nasopharyngeal carcinoma and hepatocellular carcinoma. Master Thesis, Graduate Institute of Pathology, College of Medicine, National Taiwan University. 2005.
Lin C-T, Chan WY, Chen W, et al. Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 1993;68:716-27.
Lin TM, Chen KP, Lin CC, Hsu MM, Tu SM, Chiang TC, Jung PF, Hirayama T. Retrospective study on nasopharyngeal carcinoma. J Natl Cancer Inst 1973;51:1403.
Lin C-T, Dee AN, Chen W, Chan W-Y. Association of Epstein-Barr virus, human papilloma virus, and cytomegalovirus with nine nasopharyngeal carcinoma cell lines. Lab Invest 1994;71(5):731-6.
Lin C-T, Lin C-R, Tan G-K, Chen W, Dee AN, Chan W-Y. The mechanism of Epstein-Barr virus infection in nasopharyngeal carcinoma cells. Am J Pathol 1997;150(5):1745-56.
Lin C-T, Kao H-J, Lin J-L, Chan W-Y, Wu H-C, Liang S-T. Response of nasopharyngeal carcinoma cells to Epstein-Barr virus infection in vitro. Lab Invest 2000;80(8):1149-60.
Lin C-T, Wong CI, Chan WY, et al. Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest 1990;62:713-24.
Lin YC, You L, Xu Z, et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun 2006;341:635-40.
Linne OC, Sakamoto G, Lynn TC, Tu SM. Nasopharyngeal carcinoma in twins. J Otol Soc R.O.C. 1980;15:50-6.
Liu Y-H, Du C-L, Lin C-T, Chen C-J, Wang J-D. Increased morbidity from nasopharyngeal carcinoma and chronic pharyngitis or sinusitis among workers at a newspaper printing company. Occup Environ Med 2002;59:18-22.
Lu SJ, Day NE, Degos L, Lepage V, Wang PC. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 1990;346:470-1.
Lung HL, Bangarusamy DK, Xie D, et al. THY1 is a candidate tumor suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 2005;24:6525-32.
Maurer P, Mayer U, Bruch M, et al. High-affinity and low-affinity calcium binding and stability of the multidomain extracellular 40-kDa basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur J Biochem 1992;205:233-40.
McClung HM, Thomas SL, Osenkowski P, Toth M, Menon P, Raz A, et al. SPARC upregulates MT1-MMP expression, MMP2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neurosci Lett 2007;419:172-7.
Miller WE, Cheshire JL, Baldwin AS Jr, Raab-Traub N. The NPC derived C15 LMP1 protein confers ehnanced activation of NF-keppa B and induction of the EGFR in epithelial cells. Oncogene 1998;16(14):1869-77.
Mo L, Wang H, Huang G, Zhao H, Kuang G. Correlation between expression of the Tiam1 gene and the invasion and metastasis in nasopharyngeal carcinoma. Lin Chuang Er Bi Yan hou Ke Za Zhi 2005;19:785-7.
Mok SC, Chan WY, Wong KK, Muto MG, Berkowitz RS. SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene 1996;12:1895-901.
Motamed K, Sage EH. SPARC inhibits endothelial cell adhesion but not proliferation through a tyrosine phosphorylation-dependent pathway. J Cell Biochem 1998;70:543-52.
Niedobitek G, Young LS, Sam CK, Brooks L, Prasad U, Rickinson AB. Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas. Am J Pathol 1992;140(4):879-87.
Nonoyama M, Huang CH, Pagano JS, Klein G, Singh S. DNA of Epstein-Barr virus detected in tissue of Burkitt’s lymphoma and nasopharyngeal carcinoma. Proc Natl Acad Sci USA 1973;70(11):3265-8.
Ostler KR, Davis EM, Payne SL, et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 2007;26(38):5553-63.
Peng D, Ren CP, Yi HM et al. Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai) 2006;38:349-55.
Rous GC, Walrath J, Stayner LT, Kaplan SA, Flannery JT, Blair A. Nasopharyngeal cancer, sinonasal cancer and occupation related to formaldehyde: a case control study. J Natl Cancer Inst 1987;76(6):1221-4.
Said NA, Najwer I, Socha MJ, Fulton DJ, Mok SC, Motamed K. SPARC inhibits LPA-mediated mesothelial-ovarian cancer cell crosstalk. Neoplasia 2007;9:23-35.
Sakai N, Baba M, Nagasima Y, Kato Y, Hirai K, Kondo K, et al. SPARC expression in primary human renal cell carcinoma: upregulation of SPARC in sarcomatoid renal carcinoma. Hum Pathol 2001;32:1064-1070.
Sato N, Fukushima N, Maehara N, et al. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stomal interactions. Oncogene 2003;22(32):5021-30.
Sasaki T, Gohring W, Mann K, et al. Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 1997;272:9237-43.
Sasaki T, Hohenester E, Gohring W, Timpl R. Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin. EMBO J 1998;17:1625-34.
Schlott T, Middel P, Laskawi R, Brinck U, Ruschenburg I, Droese M. Relationship between GAGE-1/-2 expression, EBV infection and interferon-gamma expression in undifferentiated carcinoma of nasopharyngeal type. Anticancer Res 2000;20(3A):1727-32.
Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 2000;46:69-81.
Shanmugaratnam K. Histological typing of tumours of the upper respiratory tract and ear, 2nd ed. New York: Springer-Verlag; 1991.
Sheen TS, Huang YT, Chang YL, et al. Epstein-Barr virus-encoded latent membrane protein 1 co-expresses with epidermal growth factor receptor in nasopharyngeal carcinoma. Japanese J Cancer Res 1999;90(12):1285-92.
Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 1996;36(2):271-9.
Smits P, Li P, Mandel J, Zhang Z, et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 2001;1(2):277-90.
Sobin LH, Wittekind C, editors. UICC (International Union Against Cancer). TNM classification of malignant tumors, 5th ed. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: Wiley-Liss, 1997.
Song LB, Zeng MS, Liao WT, et al. Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res 2006;66:6225-32.
Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci 2006;119:2635-41.
Sternsdorf T, Jensen K, Reich B, Will H. The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem 1999 ;274(18):12555-66.
Storlazzi CT, Albano F, Lo Cunsolo C, et al. Upregulation of the SOX5 by promoter swapping with the P2RY8 gene in primary splenic follicular lymphoma. Leukemia 2007;21(10):2221-5.
Strathdee CA, McLeod MR, Hall JR. Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 1999;229:21-9.
Sun Y, Fry DW, Vincent P, Nelson JM, Elliott W, Leopold WR. Growth inhibition of nasopharyngeal carcinoma cells by EGF receptor tyrosine kinase inhibitors. Anticancer Res 1999;19(2A):919-24.
Suzuki M, Hao C, Takahashi T, Shigematsu H, Shivapurkar N, Sathyanarayana UC, et al. Aberrant methylation of SPARC in human lung cancers. Br J Cancer 2005;92:942-948.
Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation. Biotechniques 2000;29:332-7.
Swaroop A, Hogan BL, Francke U. Molecular analysis of the cDNA for human SPARC_osteonectin_BM-40: sequence, expression, and localization of the gene to chromosome 5q31-q33. Genomics 1988;2:37-47.
Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 1981;26:99-105.
Thomas R, True LD, Bassuk JA, Lange PH, Vessella RL. Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin Cancer Res 2000;6:1140-1149.
Tiwawech D, Srivatanakul P, Karalak A, Ishida T. Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma. Cancer Lett 2005;241:135-41.
Tricarico C, Pinzani P, Bianchi S, et al. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 2002;309:293-300.
Ueda R, Yoshida K, Kawase T, Kawakami Y, Toda M. Preferential expression and frequent IgG responses of a tumor antigen, SOX5, in glioma patients. Int J Cancer 2007;120:1704-11.
Uleckiene S, Griciute L. Carcinogenicity of sulfuric acid in rats and mice. Pathol Oncol Res 1997;3(1):38-43.
Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3(7):research0034.1- research0034.11.
Venables JP. Aberrant and alternative splicing in cancer. Cancer Res 2004;64:7647-54.
Wang CS, Lin KH, Chen SL, Chan YF, Hsueh S. Overexpression of SPARC gene in human gastric carcinoma and its clinic-pathologic significance. Br J Cancer 2004;91:1924-1930.
Wingender E. Modeling regulatory pathways with the use of the TRANSFAC systems. Gene Funct Dis 2002;3(1-2):9-17.
Wolf H, zur Hausen H, Becker V. EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nature 1973;244:245-7.
Wu HC, Lin JY, Lee JJ, et al. Functional analysis of EBV in nasopharyngeal carcinoma cells. Lab Invest 2003;83(6):797-812.
Wu HC, Lu TY, Lee JJ, et al. MDM2 expression in EBV-infected nasopharyngeal carcinoma cells. Lab Invest 2004;84(12):1547-56.
Xu J, Menezes J, Prasad U, Ahmad A. Elevated serum levels of transforming growth factor beta1 in Epstein-Barr virus-associated nasopharyngeal carcinoma patients. Intl J Cancer 1999;84(4):396-9.
Yamashita R, Suzuki Y, Sugano S, Nakai K. DBTSS : DataBase of human transcriptional start sites and full-length cDNA. Genome Informatics 2001;12:488-489.
Yang E, Kang HJ, Koh KH, Rhee H, Kim NK, Kim H. Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. Int J Cancer 2007;121:567-575.
Yao M, Ohshima K, Suzumiya J, Kume T, Shiroshita T, Kikuchi M. Interleukin-10 expression and cytotoxic-T-cell response in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Intl J Cancer 1997;72(3):398-402.
Yoshida R, Numata K, Imoto S, et al. A statistical framework for genome-wide discovery of biomarker splice variations with GeneChip Human Exon 1.0 ST Arrays. Genome Inform 2006;17(1):88-99.
Young LS, Dawson CW, Clark D, et al. Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 1988;69:1051-65.
Yu MC, Nichiks PW, Zou XN, Estes J, Henderson BE. Induction of malignant nasal cavity tumor in Swistar rats fed Chinese salted fish. Br J Cancer 1989;60(2):198-201.
Zafarana G, Gillis AJ, van Gurp RJ, et al. Coamplification of DAD-R, SOX5, and EKI1 in human testicular seminoma, with specific overexpression of DAD-R, correlates with reduced level of apoptosis and erlier clinical manifestation. Cancer Res 2002;62(6):1822-31.
Zeng Y, Zhang LG, Li HY, et al. Serological mass survey for early detection of nasopharyngeal carcinoma in Wuzhou city, China. Intl J Cancer 1982;29:139-41.
Zeng Z, Zhou Y, Zhang W, Li X, Xiong W, Liu H, Fan S, Qian J, Wang L, Li Z, Shen S, Li G. Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus. Genet Med 2006;8:156-60.
Zhou M, Liu H, Xu X, et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem 2006;98:920-30.
Zou L, Zou X, Li H, et al. Molecular mechanism of osteochondroprogenitor fate determination during bone formation. Adv Exp Med Biol 2006;585:431-41.
zur Hausen H, Schulte-Holthausen H, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 1970;228:1056-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27534-
dc.description.abstract鼻咽癌在東南亞一帶,是一常見的疾病,其致病的原因相當複雜,至今仍未能完全明瞭。本論文研究的主要目的,就是想找出與鼻咽癌早期致病有關的主要基因,研究這些基因在好發初期之鼻咽癌中的改變。我們用微陣列分析 (Microarray Analysis) 的方法,比較鼻咽癌細胞株以及鼻腔內膜上表皮細胞的初次培養 (Primary Culture),兩者之間基因表現的差異。結果選出了十一個在兩者之間有差異表現的基因。再經由定量聚合酶連鎖反應 (Quantitative RT-PCR) 以及西方吸漬法 (Western Blotting) 的確認分析,發現 SPARC 基因在鼻咽癌細胞中的表現量顯著減少。進一步研究 SPARC 基因表現量減少的分子機制時,我們發現轉錄因子 (Transcription Factor) SOX-5 在鼻咽癌細胞中的表現量增加。如果用 shRNA抑制掉鼻咽癌細胞中 SOX-5 的表現,那麼 SPARC 基因的表現量就會增加。染色質免疫沉澱分析 (Chromosome Immunoprecipitation Assay, ChIP) 的結果,更證明 SOX-5 可以直接結合到 SPARC 基因的促進序列 (Promoter Region),並抑制 SPARC 基因的表現。我們也發現,抑制掉鼻咽癌細胞中的 SOX-5 之後,鼻咽癌細胞的生長速率以及爬行速度均減緩;同樣的生理現象也發生在大量表現 SPARC 基因的鼻咽癌細胞之中。如果我們在抑制掉 SOX-5 的鼻咽癌細胞培養液中,加入抑制 SPARC 的抗體,則可以反轉抑制掉 SOX-5 所造成的生理現象。分析了六十六個鼻咽癌病人的檢體之後,我們發現 SOX-5 表現越多的病人檢體,該病人的預後也越差。根據我們的實驗結果,我們認為 SOX-5 可透過抑制 SPARC 基因的表現來影響鼻咽癌病程的進展,並且 SOX-5 很有可能是鼻咽癌的標的基因。zh_TW
dc.description.abstractNasopharyngeal carcinoma (NPC) is prevalent in southeastern Asia, and its tumorigenesis is rather complex. The purpose of this research was to identify the pivotal genes that may be altered during the early stage of NPC progression. Eleven genes were selected by comparative microarray analysis of NPC versus normal nasomucosal cells. The expression of SPARC (secreted protein, acidic, cysteine-rich) was statistically significantly downregulated in NPC cells. In exploring the mechanism underlying the decreased transcription of SPARC in NPC cells, we found that the transcription factor SRY (sex-determining region Y)-box 5 (SOX-5) is upregulated in NPC cells. RNA interference of SOX-5 by short hairpin RNA (shRNA) in NPC cells caused a dramatic increase in SPARC and chromosome immunoprecipitation assay showed SOX-5 can bind directly to SPARC promoter, suggesting that SOX-5 acts as a key transcriptional repressor of SPARC. We further demonstrate that shRNA knockdown of SOX-5 suppressed the proliferation of NPC cells, as well as their migratory ability, which was also observed when SPARC was overexpressed in NPC cells. Alternatively, blocking SPARC with an antagonistic antibody reversed the effects of SOX-5 knockdown. In 66 NPC patients’ biopsy specimens, overexpression of SOX-5 in tumor cells correlated clinically with poor survival. Our study suggests that SOX-5 transcriptionally downregulates SPARC expression and plays an important role in regulation of NPC progression. SOX-5 is a potential tumor marker for advanced NPC prognosis.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:08:44Z (GMT). No. of bitstreams: 1
ntu-96-D87444001-1.pdf: 1639168 bytes, checksum: c5f41482c81a9fa8d41ce5aee77c9b13 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 ………………………………………………………………………… 1
Abstract ………………………………………………………………………… 2
Chapter 1. Introduction ………………………………………………………… 3
Chapter 2. Materials and Methods ………………………………………………13
Chapter 3. Results ……………………………………………………………… 21
Chapter 4. Discussion …………………………………………………………… 27
References …………………………………………………………………… 34
Tables ………………………………………………………………………… 46
Figures ………………………………………………………………………… 51
dc.language.isoen
dc.subject鼻咽癌zh_TW
dc.subjectSOX5zh_TW
dc.subjectSPARCzh_TW
dc.subjectnasopharyngeal carcinomaen
dc.subjectSOX5en
dc.subjectSPARCen
dc.titleSOX-5 轉錄因子可能經由抑制 SPARC 基因的表現來強化鼻咽癌病程的進展zh_TW
dc.titleTranscription factor SOX-5 may enhances nasopharyngeal carcinoma progression by downregulating SPARC gene expressionen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.coadvisor吳漢忠
dc.contributor.oralexamcommittee林中梧,徐明達,唐堂,陳鈴津,黃奇英,蕭水銀
dc.subject.keyword鼻咽癌,SOX5,SPARC,zh_TW
dc.subject.keywordnasopharyngeal carcinoma,SOX5,SPARC,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2007-12-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved