Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27505
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorYu-Rong Chenen
dc.contributor.author陳昱蓉zh_TW
dc.date.accessioned2021-06-12T18:07:34Z-
dc.date.available2008-01-02
dc.date.copyright2008-01-02
dc.date.issued2007
dc.date.submitted2007-12-24
dc.identifier.citationAbe, M., K. Abe, M. Kuroda and S. Arai. 1992. Corn kernel cysteine proteinase inhibitor as a nove1 cystatin superfamily member of plant origin. Eur. J. Biochem. 209: 933-937.
Allona, I., M. Quinn, E. Shoop, K. Swope, S.ST. Cyr, J. Carlis, J. Riedl, E. Retzel, M.M. Campbell, R. Sederoff and R.W. Whetten. 1998. Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad. Sci. USA 95: 9693-9698.
Bardsley, A., K. McDonald and R.E Boswell. 1993. Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on site of localization. Development 119: 207-219.
Belanger, K.D. and R.S. Quatrano. 2000. Polarity: the role of localized secretion. Curr. Opin. Plant Biol. 3: 67-72.
Blatch, G.L. and M. Lässle. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21: 932-939.
Bolwell, G.P., K. Bozak and A. Zimmerlin. 1994. Plant cytochrome P450. Phytochemistry 37: 1491–1506.
Bosch, M., A.Y. Cheung and P.K. Hepler. 2005. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol. 138: 1334-1346.
Boswell, R.E. and A.P. Mahowald. 1985. tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43: 97-104.
Boswell, R.E., M.E. Prout and J.C. Steichen. 1991. Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development 113: 373-384.
Botella, M. A., Y. Xu, T.N. Prabha, Y. Zhao, M.L. Narasimhan, K.A. Wilson, S.S. Nielsen, R.A. Bressan and P.M. Hasegawa. 1996. Differential expression of soybean cysteine proteinase inhibitor genes during development and response to wounding and methyl jasmonate. Plant Physiol. 112: 1201-1210.
Bouget, F.Y., S. Gerttula, S.L. Shaw and R.S. Quqtrano. 1996. Localization of actin mRNA during the establishment of cell polarity and early cell divisions in Fucus embryos. Plant Cell 8: 189-201.
Breiteneder, H. 2004. Thaumatin-like proteins – a new family of pollen and fruit allergens. Allergy 59: 479-481.
Brugliera, F., T.A. Holton, T.W. Stevenson, E. Farcy, C.Y. Lu and E.C. Cornish. 1994. Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J. 5: 81-92.
Buchanan, B.B., W. Gruissm and R.L. Jones. 2000. Biochemistry and molecular biology of plants. Rockville, Maryland, USA, pp 850-923.
Burd, C.G. and G. Dreyfuss. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615-621.
Chang, S., J. Puryear and J. Cairney. 1993. A simple and efficient method for isolation RNA from pine trees. Plant Mol. Bio. Rep. 11: 113-116.
Chang, S.T., S.Y. Wang and Y.H. Kuo. 2003. Resources and bioactive substances from Taiwania. J. Wood Sci. 49: 1-4.
Chen, Y.R., Y.R. Lee, S.Y. Wang, S.T. Chang, J.F. Shaw and F.H. Chu. 2004. Establishment of expressed sequence tags from Taiwania (Taiwania crytomerioides Hayata) seedling cDNA. Plant Sci. 167: 955-957.
Chen, Y.R., J.F. Shaw, M.C. Chung and F.H. Chu. 2007. Molecular identification and characterization of Tcmago and TcY14 in Taiwania (Taiwania cryptomerioides Hayata). Tree Physiol. 27: 1261-1271.
Connors, B.J., M. Miller, C.A. Maynard and W.A. Powell. 2002. Cloning and characterization of promoters from American chestnut capable of directing reporter gene expression in transgenic Arabidopsis plants. Plant Sci. 163: 771-781.
Conti, E. and E. Izaurralde. 2001. Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol. 13: 310-319.
Conti, E. and E. Izaurralde. 2005. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17: 316-325.
Cortajarena, A.L. and L. Regan. 2006. Ligand binding by TPR domains. Protein Sci. 15: 1193-1198.
D’Andrea, L.D. and L. Regan. 2003. TPR proteins: the versatile helix. Trends Biochem. Sci. 28: 655-662.
Ephrussi, A. and R. Lehmann. 1992. Induction of germ cell formation by oskar. Nature 358: 387-392.
Farjon, A., N.T. Hiep, D.K. Harder, P.K. Loc and L. Averyanov. 2002. A new genus and species in Cupressaceae (Coniferales) from northern vitnam, Xanthocyparis vietnamensis. Novon 12: 179-189.
Fernandes, K.V.S., P.A. Sabelli, D.H.P. Barratt, M. Richardson, J. Xavier-Filho and P.R. Shewry. 1993. The resistance of cowpea seeds to bruchid beetles is not related to levels of cysteine proteinase inhibitors. Plant Mo1. Biol. 23: 215-219.
Friml, J., E. Benkova, U. Mayer, K. Palme and G. Muster. 2003. Automated whole mount localization techniques for plant seedlings. Plant J. 34: 115-124.
Fribourg, S., D. Gatfield, E. Izaurralde and E. Conti. 2003. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 10: 433-439.
Frohnhöfer, H.G. and C. Nüsslein-Volhard. 1986. The organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324: 120-125.
Fu, X.D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1: 663-680.
Fujimoto, Z., S. Kaneko, M. Momma, H. Kobayashi and H. Mizuno. 2003. Crystal structure of rice α-galactosidase complexed with D-galactose. J. Biol. Chem. 278: 20313-20318.
Gadek, P.A., D.L. Alpers, M.M. Heslewood and C.J. Quinn. 2000. Relationships within Cupressaceae sensu lato: A combined morphological and molecular approach. Amer. J. Bot. 87: 1044-1057.
Gallagher, K. and L. Smith. 1997. Asymmetric cell division and cell fate in plants. Curr. Opin. Cell Biol. 9: 842-848.
Gleave, A.P. 1992. A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20:1203-1207.
Hachet, O. and A. Ephrussi. 2001. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11: 1666-1674.
Hachet, O. and A. Ephrussi. 2004. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428: 959-963.
Higo, K., Y. Ugawa, M. Iwamoto and T. Korenaga. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297-300.
Hines, M.E., C.I. Osuala and S.S. Nielsen. 1992. Screening for cysteine proteinase inhibitor activity in legume seeds. J. Sci. Food Agric. 59: 555-557.
Holsters, M., D. De Wacek, E. Messers, M. van Montagu and J. Schell. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181-187.
Horsch, R.B., J.E. Fry, N.L. Hoffman, D. Eichholtz, S.G. Rogers and R.T. Fraley. 1985. A simple method of transferring genes into plants. Science 277:1229-1231.
Huang, T.C. 1994. Flora of Taiwania. Volume one, second edition. pp231-232.
Im, K.H., D.J. Cosgrove and A.M. Jones. 2000. Subcellular localization of expansin mRNA in xylem cells. Plant Physiol. 123: 463-470.
Jacobs, A.K., V. Lipka, R.A. Burton, P. Panstruga, N. Strizhov, P. Schulze-Lefert and G.B. Fincher. 2003. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15: 2503-2513.
Jiang, L., S.L. Yang, L.F. Xie, C.S. Puah, X.Q. Zhang, W.C. Yang, V. Sundaresan and D. Ye. 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584-596.
Johnson, M.A., K. Besser, Q. Zhou, E. Smith, G. Aux, D. Patton, J.Z. Levin and D. Preuss. 2004. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168: 971-982.
Kataoka, N., J. Yong, V.N. Kim, F. Velazquez, R.A. Perkinson, F. Wang and G. Dreyfuss. 2000. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6: 673-682.
Kaundun, S.S. and M. Matsumoto. 2003. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor. Appl. Genet. 106: 375-383.
Kawano, T., N. Kataoka, G. Dreyfuss and H. Sakamoto. 2004. Ce-Y14 and MAG-1, components of the exon-exon junction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mech. Dev. 121: 27-35.
Kim, V.N., J. Yong, N. Kataoka, L. Abel, M.D. Diem and G. Dreyfuss. 2001. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J. 20: 2062-2068.
Kuo, Y.H., M.T. Yu and L.L. Shiu. 1999. Natural products research in Taiwan V. Formosan Sci. 52: 1-145.
Lamb, J.R., S. Tugendreich and P. Hieter. 1995. Tetratrico peptide repeat interactions: to TPR or not to TPR? TIBS 20: 257-259.
Larkin, J., M. Maks, J. Nadeau and F. Sack. 1997. Epidermal cell fate and patterning in leaves. Plant Cell 9: 1109-1120.
Lau, C.K., M.D. Diem, G. Dreyfuss and G.D. Van Duyne. 2003. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol. 13: 933-941.
Lee, C.H., M.H. Chan, Y.N. Wang and F.H. Chu. 2006. Gene investigation into the inner bark of Taiwania (Taiwania cryptomerioides). Botanical studies 47: 111-118.
Le Hir, H., E. Izaurralde, L.E. Maquat and M.J. Moore. 2000. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19: 6860-6869.
Le Hir, H., D. Gatfield, I.C. Braun, D. Forler and E. Izaurralde. 2001a. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2: 1119-1124.
Le Hir, H., D. Gatfield, E. Izaurralde and M.J. Moore. 2001b. The exon-exon junction complex provides a binding platform factors involved in mRNA expot and nonsense-mediated mRNA decay. EMBO J. 20: 4987-4997.
Lehmann, R. and C. Nüsslein-Volhard. 1986. Abdominal segmentation, pole cell formation, and embryonic polarity required the localized activity of oskar, a maternal gene in Drosophila. Cell 47: 141-152.
Lehmann, R. and C. Nüsslein-Volhard. 1987. Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo. Nature 329: 167-170.
Lehmann, R. and C. Nüsslein-Volhard. 1991. The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112: 679-691.
Li, W., R. Boswell and W.B. Wood. 2000. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev. Biol. 218: 172-182.
Little, D.B. and R.B. Croteau. 2002. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch. Biochem. Biophys. 402: 102-135.
Manseau, L.J. and T. Schüobach. 1989. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3: 1437-1452.
Markovič, O. and Ś. Janeček. 2004. Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr. Res. 339: 2281-2295.
Micheli, F., B. Sundberg, R. Goldberg and L. Richard. 2000. Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol. 124: 191–199.
Micheli, F. 2001. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 6: 414–419.
Micklem, D.R., R. Dasgupta, H. Elliott, F. Gergely, C. Davidson, A. Brand, A. González-Reyes and D.S. Johnston. 1997. The mago nashi gene is required for the polarization of the oocyte and the formation of perpendicular axes in Drosophila. Curr. Biol. 7: 468-478.
Mohr, S.E., S.T. Dillon and R.E. Boswell. 2001. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev. 15: 2886-2899.
Newmark, P.A. and R.E. Boswell. 1994. The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development 120: 1303-1313.
Newmark, P.A., S.E. Mohr, L. Gong and R.E. Boswell. 1997. mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 124: 3197-3207.
Nott, A., H. Le Hir and M.J. Moore. 2004. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18: 210-222.
Nüsslein-Volhard, C., H.G. Frohnhöfer and R. Lehmann. 1987. Determination of anteroposterior polarity in Drosophila. Science 238: 1675-1681.
Palacios, I.M. and D. St. Johnston. 2001. Getting the message across: the intracellular localization of mRNAs in higher eukaryotes. Annu. Rev. Cell Dev. Biol. 17: 569-614.
Palacios, I.M. 2002. RNA processing: splicing and the cytoplasmic localization mRNA. Curr. Biol. 12: R50-R52.
Palacios, I.M., D. Gatfield, D. St. Johnston and E. Izaurralde. 2004. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427: 753-757.
Pendle, A.F., G.P. Clark, R. Boon, D. Lewandowska, Y.W. Lam, J. Andersen, M. Mann, A.I. Lamond, J.W.S. Brown and P.J. Shaw. 2005. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 16: 260-269.
Pilling, J., L. Willmitzer and J. Fisahn. 2000. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution. Planta 210: 391–399.
Pilling, J., L. Willmitzer, H. Bucking and J. Fisahn. 2004. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219: 32–40.
Pozzoli, O., C.N. Gilardelli, P. Sordino, S. Doniselli, C.L. Lamia and F. Cotelli. 2004. Identification and expression pattern of mago nashi during zebrafish development. Gene Expr. Patterns 5: 265-272.
Prestridge, D.S. 1991. SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7: 203-206.
Qbadou, S., T. Becker, O. Mirus, I. Tews, J. Soll and E. Schleiff. 2006. The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J. 25: 1836-1847.
Ren, C. and A.R. Kermode. 2000. An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiol. 124: 231-242.
Ryan, C.A. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28: 425-429.
Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, second ed, Cold Spring Harbor Laboratory.
Scheres, B. and P. Benfey. 1999. Asymmetric cell division in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 505-537.
Schuler, M.A. 1996. Plant cytochrome P450 monooxygenases. Crit. Rev. Plant Sci. 15: 235–284.
Schüpbach, T. and E. Wieschaus. 1986. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux’s Arch. Dev. Biol. 195: 302-317.
Shi, H. and R.M. Xu. 2003. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev. 17: 971-976.
St. Johnston, D. 1995. The intracellular localization of messenger RNAs. Cell 81: 161-170.
Sterky, F., S. Regan, J. Karlsson, M. Hertzberg, A. Rohde, A. Holmberg, B. Amini, R. Bhalerao, M. Larsson, R.Villarroel, M.V. Montagu, G. Sandberg, O. Olsson, T.T. Teeri, W. Boerjan, P. Gustafsson, M. Uhlén, B. Sundberg and J. Lundeberg. 1998 Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95: 13330-13335.
Swidzinski, J.A., S.T. Zaplachinski, S.D.X. Chuong, J.F.K. Wong and D.G. Muench. 2001. Molecular characterization and expression analysis of a highly conserved rice mago nashi homolog. Genome 44: 394-400.
Tieman, D.M. and A.K. Handa. 1994. Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol. 106: 429-436.
van der Weele, C.M., C.W. Tsai and S.M. Wolniak. 2007. Mago nashi is essential for spermatogenesis in marsilea. Mol. Biol. Cell 18: 3711-3722.
Wakabayashi, K., T. Hoson and D.J. Huber. 2003. Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato ( Lycopersicon esculentum) polygalacturonases. J. Plant Physiol. 160: 667-673.
Wang, C. and R. Lehmann. 1991. Nanos is the localized posterior determinant in Drosophila. Cell 66: 637-647.
Wang, S.H., S.T. Chang, Y.C. Su and Y.H. Kuo. 1997. Studies on the extractives of Taiwania (Taiwania cryptomerioides Hayata): a review. Quart. Journ. Exp. For. Nat. Taiwan Univ. 11: 67-81.
Weber, P., H. Fulgosi, I. Piven, L. Müller, K. Krupinska, V.H. Duong, R.G. Herrmann and A. Sokolenko. 2006. TCP34, a nuvlear-encoded response regulator-like TPR protein of higher plant chloroplasts. J. Mol. Biol. 357: 535-549.
Wen, F.S., Y.M. Zhu and M.C. Hawes. 1999. Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11: 1129-1140.
Wesley, S.V., C.A. Helliwell, N.A. Smith, M.B. Wang, D.T. Rouse, Q. Liu, P.S. Gooding, S.P. Singh, D. Abbott, P.A. Stoutjesdijk, S.P. Robinson, A.P. Gleave, A.G. Green and P.M. Waterhouse. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27:581-590.
Wiens, M., S.I. Belikov, O.V. Kaluzhnaya, A. Krasko, H.C. Schröder, S. Perovic-Ottstadt and W.E.G. Müller. 2005. Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev. Genes Evol. 28: 1-14.
Yang, J., D.P. Kamdem, D.E. Keathley and K.H. Han. 2004. Seasonal changes in gene expression at the sapwood-heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiology 24: 461-474.
Zhao, X.F., T. Colaizzo-Anas, N.J. Nowak, T.B. Shows, R.W. Elliott and P.D. Aplan. 1998. The mammalian homologue of mago nashi encodes a serum-inducible protein. Genomics 47: 319-322.
Zhao, X.F., N.J. Nowak, T.B. Shows and P.D. Aplan. 2000. MAGOH interacts with a novel RNA-binding protein. Genomics 63:145-148.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27505-
dc.description.abstract臺灣杉 (Taiwania cryptomerioides Hayata)為臺灣原生針葉樹種,屬於孑遺植物並且為臺灣重要之經濟樹種。為了深入解析參與臺灣杉生長發育之基因,本研究首先建構臺灣杉發育中莖部組織之cDNA基因庫,共計獲得811個隨機挑選之表現序列標籤,經重組分析定義出322個單一基因。根據BLASTX分析結果得知,11.3%表現序列標籤與細胞防禦、死亡及老化有關,其中包括高度表現之類索馬甜蛋白;3.9%表現序列標籤與蛋白質合成及修飾有關,其中包括高度表現之熱休克蛋白。此外,0.9%表現序列標籤與細胞壁結構及代謝有關,0.7%表現序列標籤與二次代謝有關。然而,有40.9%表現序列標籤並無與基因資料庫中任何蛋白質具相似性,這些序列可能象徵著臺灣杉之獨特性。
Mago nashi (mago)及Y14蛋白於真核生物間具高度之保守性,其不僅於動物卵母細胞形成、胚形成以及生殖細胞性別決定上扮演重要之角色,並且參與細胞生長過程中mRNA之局部化及剪接。為了解臺灣杉生長分化之機制,本研究將臺灣杉cDNA基因庫中所獲得之mago nashi(Tcmago)及Y14(TcY14)之同源基因,進行分子特性及其於臺灣杉中生理功能之分析。Tcmago及TcY14之轉譯區分別可轉譯出149及216個胺基酸。由TcMago及TcY14之蛋白質結構預測顯示,其與果蠅及人類之mago-Y14蛋白質結晶構造相似。此外,TcMago可分別於體內及體外與TcY14進行交互作用,並且兩者皆主要局部化表現於細胞核內。整體式原位分析顯示,Tcmago及TcY14皆可於根毛上被偵測。另外,過量表現Tcmago於菸草轉殖株中,導致植株有較長之根及較複雜之根系。此結果顯示,Tcmago及TcY14可能具有與動物Mago及Y14相似之基礎調控細胞之功能,並且可能參與植物根系之發育。
為進一步了解Tcmago及TcY14之生理調節功能,本研究乃從分析它們的啟動子著手,所選殖獲得Tcmago及TcY14之啟動子序列,其分別包括2,496及1,780個鹼基對。Tcmago及TcY14之啟動子具有相似之調控基序,包括有賀爾蒙(植物生長素、離層酸、吉貝素及水楊酸)的調控,環境逆境(光、冷、創傷及乾旱)及特定組織(種子、葉、莖、根、胚、花粉及保護細胞)的表現。經北方雜合分析,Tcmago於生殖器官中表現較豐富,TcY14則高度表現於根部,且兩者皆於形成層中表現豐富。許多有關調控生殖器官發育及分生組織形成之賀爾蒙調控基序,亦與啟動子序列分析結果相一致。其中,植物生長素與形成層細胞分裂有關,而於Tcmago及TcY14之啟動子序列中分別擁有5個及2個相關基序。此外,藉由水楊酸及甲基茉莉酸可誘導Tcmago及TcY14表現之結果,可推測其可能與植物之防禦機制有關。
Mago及Y14可構成一穩定之異質二元體,其為外顯子連接複合體之核心要素。為進一步研究Mago-Y14異質二元體參與之植物發育過程及與其具交互作用之蛋白質,本研究利用TcMago-TcY14異質二元體做為誘餌蛋白進行酵母菌雙雜合系統分析,篩選於三年生臺灣杉苗木cDNA基因庫中與其具交互作用之蛋白質。共獲得3個與TcMago-TcY14異質二元體具交互作用之蛋白質,其分別為未知蛋白(Tc61)、果膠甲基脂解酶類似蛋白(Tc62)及TPR類似蛋白(Tc72)。Tc61與TcMago-TcY14異質二元體具很強之交互作用,其表現於三年生臺灣杉苗木之莖及葉中,且微量表現於雄毬果及已受粉之雌毬果中。果膠甲基脂解酶類似蛋白(Tc62)豐富表現於三年生臺灣杉苗木之根及已受粉之雌毬果中,顯示其與TcMago-TcY14異質二元體結合,可能參與根之發育及受粉過程中花粉之生長。獲得之Tc72可轉譯完整之TPR類似蛋白,並且於植物中具高度之保守性。Tc72蛋白由10個α-螺旋構成,其中3個保守之TPR基序各包含5個保守之胺基酸殘基,此用於形成穩定之內螺旋構造。組織表現及光/暗處理試驗結果顯示,Tc72基因豐富表現於苗木之葉中,並且對光及暗具敏感性,此結果與Tcmago及TcY14基因研究之結果相一致。此意味TcMago-TcY14異質二元體與Tc72進行交互作用,可能參與光合作用或葉綠體蛋白之傳遞。
zh_TW
dc.description.abstractTaiwania (Taiwania cryptomerioides Hayata) is an indigenous conifer tree in Taiwan. It is not only a relict plant but also one of the most economically important tree species in Taiwan. To investigate the genes involved in Taiwania development in depth, a developing stem tissue cDNA library of Taiwania was firstly constructed in this study. 811 randomly selected expressed sequence tags (ESTs) clones which were identified a total of 322 unigene sets by contig analysis were obtained. According to the results of BLASTX analysis, 11.3% of these ESTs, which included the highly expressed thaumatin-like protein, were found to be related to the cell rescue, defense, death and aging; 3.9% of the ESTs, which included the highly expressed heat shock proteins, were involved in protein synthesis and processing. Moreover, 0.9% of the ESTs were related to cell wall structure and metabolism while 0.7% of these were related to secondary metabolism. However, 40.9% of ESTs has showed no significant similarity to any other protein sequences in public databases. These sequences in turn may indicate the uniqueness of Taiwania.
Mago nashi (mago) and Y14 proteins are highly conserved among eukaryotes, and not only play important roles in oogenesis, embryogenesis and ger-line sex determination during animal developmemt, but also participate in mRNA localization and splicing in cell prowth. In this study, the mago nashi (Tcmago) and Y14 (TcY14) homologues derived from cDNA library of Taiwania were obtained. To understand the molecular characteristics and physiological functions of Tcmago and TcY14 in Taiwania, the full-length of them were obtained for further analyses. Tcmago and TcY14 contained coding regions encoding 149 and 216 amino acids respectively. The predicted protein structures of TcMago and TcY14 were similar to those crystal structures of Drosophila melanogaster and human mago-Y14 proteins. Moreover, TcMago can interact with TcY14 in vivo and in vitro, and they were both predominately localized in the nucleus. Whole mount assays revealed that expression of Tcmago and TcY14 were both detected in root hairs. Additionally, the overexpession of Tcmago in transgenic tobacco plants resulted in longer roots and a more complex root system. It suggested that Tcmago and TcY14 may have essential cellular functions similar to those in animals, and also might be involved in root development of plants.
In order to further understand the physiological regulatory functions of Tcmago and TcY14, their promoters were researched in this study. A 2,496 bp promoter of Tcmago and a 1,780 bp promoter of TcY14 from Taiwania were cloned and characterized. The Tcmago promoter and TcY14 promoter had similar motif regulation patterns which were regulated by hormones (auxin, ABA, GA, SA), environmental stresses (light, cold, wounding, drought), and specific tissues (seed, leaf, shoot, root, embryo, pollen, guard cell). According to the analyses of northern blots, Tcmago was expressed more abundantly in reproductive organs, TcY14 was highly expressed in roots, and they were both expressed abundantly in cambium. Consistent with the results of promoter analysis, there were many motifs concerning hormone regulations that are important to reproductive organ development and meristem formation. More importantly, auxin, which is associated with cambial cell division, revealed five and two motifs in the Tcmago and the TcY14 promoters, respectively. Additionally, Tcmago and TcY14 may be involved in plant defense as supported by the observations of their expressions induced by SA and MeJA treatment.
Mago and Y14 can form a stable heterodimer which is the core component of the exon-exon junction complex (EJC). To further survey the proteins and the plant developmental processes that the Mago-Y14 heterodimer interacts with and is involved in, the TcMago-TcY14 heterodimer was used as the bait protein in a yeast two-hybrid screen in this study to search for its binding partners in a three-year-old Taiwania seedlings cDNA library. Three interacting clones, an unknown protein (Tc61), a PME (pectin methylesterase)-like protein (Tc62), and a TPR (tetratricopeptide repeat)-like protein (Tc72), were obtained. The Tc61 protein interacted strongly with the Mago-Y14 heterodimer, and its transcript was expressed in the stems and leaves of the three-year-old Taiwania seedlings, and slightly expressed in the microsporangiate cones and pollinated ovulate cones. The PME-like protein (Tc62) was expressed abundantly in the roots of the three-year-old Taiwania seedlings and the pollinated ovulate cones, indicating that binding with the TcMago-TcY14 heterodimer may be involved in the root development and growth of pollen tubes during pollination. The obtained Tc72 protein encoded a complete TPR (tetratricopeptide repeat)-like protein and was highly conserved among plants. The Tc72 protein had 10 α-helices and three conserved TPR motifs containing five consensus residues for forming a stable inter-helix packing. The results of a tissue expression assay and light and dark treatments showed that the Tc72 gene was expressed abundantly in the leaves of seedlings and was sensitive to light and darkness, which were the same with the investigation in Tcmago and TcY14 genes. It implied that the TcMago-TcY14 heterodimer interacting with the Tc72 may be related to photosynthesis or chloroplast protein transport.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:07:34Z (GMT). No. of bitstreams: 1
ntu-96-F92625042-1.pdf: 5101310 bytes, checksum: 391a63d8e9dfaf0870310f9b633799c9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAbstract in Chinese....................................................I
Abstract in English....................................................III
Chapter 1. Literature Review....................................................1
1.1 Taiwania (Taiwania cryptomerioides Hayata)....................................................1
1.2 Gene control in development....................................................2
1.3 Mago nashi and Y14 genes are involved in Drosophila oogenesis and regulate organism development....................................................3
1.4 Mago-Y14 heteterodimer is the core component of the exon-exon junction complex (EJC) and participates in nonsense-mediated mRNA decay (NMD)....................................................4
1.5 Structure of the Mago-Y14 complex....................................................5
1.6 Aims of this study....................................................6
Chapter 2. Materials and methods........................................................8
2.1 Plant materials and growth conditions.................................................... 8
2.2 RNA and genomic DNA isolation....................................................9
2.3 cDNA library construction....................................................10
2.4 DNA sequencing and sequence analysis....................................................10
2.5 Treatments for gene expression detection....................................................11
2.6 Cloning of Tcmago and TcY14....................................................12
2.7 Yeast two-hybrid analysis, screening and assays....................................................12
2.8 Protein expression, purification and antibody generation....................................................14
2.9 GST pull-down assays and immunoblot analysis....................................................14
2.10 Subcellular localizations....................................................15
2.11 Southern and northern blot analysis....................................................16
2.12 RT-PCR analyses....................................................16
2.13 Plant transformation....................................................17
2.14 Whole mount in situ hybridization and immunolocalization....................................................18
2.15 Genome walking assay....................................................18
2.16 Homologues of TcMago, TcY14 and Tc72 and protein structure prediction....................................................19
2.17 Promoter analysis....................................................20
Chapter 3. Results....................................................21
3.1 Functional genomics of development stem tissues in Taiwania....................................................21
3.1.1 Sequencing and assembly....................................................21
3.1.2 Characterization of the cDNA library and the EST sequences....................................................21
3.1.3 Functional classification of the database-matched ESTs....................................................23
3.1.4 Putative functions of the ESTs involved in cell wall structure and metabolism, and secondary metabolism....................................................24
3.2 Molecular identification and characterization of Tcmago and TcY14 in Taiwania....................................................26
3.2.1 Cloning and characterization of Tcmago and TcY14....................................................26
3.2.2 Protein structures and interaction predictions between TcMago and TcY14....................................................28
3.2.3 Interaction of TcMago with TcY14 in vivo....................................................29
3.2.4 TcMago physically interacts with TcY14 in vitro.................................................... 30
3.2.5 TcMago and TcY14 were predominately localized in the nucleus....................................................30
3.2.6 Tcmago and TcY14 are expressed in the root hairs of Taiwania seedlings....................................................31
3.2.7 Phenotype of the transgenic tobacco plants overexpressing Tcmago....................................................32
3.3 Differential expression of the Tcmago and TcY14 in Taiwania....................................................32
3.3.1 Cloning and sequence analysis of the Tcmago and TcY14 promoters....................................................32
3.3.2 Treatment expression patterns of Tcmago and TcY14....................................................33
3.3.3 Treatment of IAA concentration gradient....................................................34
3.4 Identification of proteins that interact with a TcMago-TcY14 heterodimer complex in Taiwania....................................................34
3.4.1 Yeast two-hybrid screening for the TcMago-TcY14 heterodimer....................................................34
3.4.2 TcMago interacts with Tc61, Tc62 and Tc72 in vitro....................................................36
3.4.3 Tissue expression patterns of Tcmago, TcY14, Tc61, Tc62, and Tc72......37
3.4.4 Expression of Tcmago, TcY14, Tc61, Tc62, and Tc72 in response to light and dark treatments....................................................38
3.4.5 Characterization of the TPR (tetratricopeptide repeat)-like protein (Tc72)....................................................38
Chapter 4. Discussion....................................................40
Chapter 5. Perspective....................................................48
References....................................................49
Appendix....................................................105
dc.language.isoen
dc.title臺灣杉生長發育基因-Mago nashi及Y14之研究zh_TW
dc.titleStudying on Mago nashi and Y14 during Taiwania (Taiwania cryptomerioides Hayata) Developmenten
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee蕭介夫,林讚標,郭幸榮,陳振榮,鍾美珠,吳素幸,葉國楨
dc.subject.keyword表現序列標籤,Mago nashi,啟動子,根發育,臺灣杉,Y14,酵母菌雙雜合分析,zh_TW
dc.subject.keywordExpressed sequence tags (ESTs),Mago nashi, promoter,root development,Taiwania (Taiwania cryptomerioides Hayata),Y14,yeast two-hybrid screen,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2007-12-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved