Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢(Tsung_Hsien Lin)
dc.contributor.authorYu-Chih Chenen
dc.contributor.author陳昱志zh_TW
dc.date.accessioned2021-06-12T18:06:45Z-
dc.date.available2009-01-10
dc.date.copyright2008-01-10
dc.date.issued2007
dc.date.submitted2007-12-28
dc.identifier.citation[1]R.S. Hughes, Logarithmic Amplification with Application to Radar and EW. Dedham, MA: Artech, 1986.
[2]R. P. Jindal, “Gigahertz-band high-gain low-noise AGC amplifiers in fine-line NMOS,” IEEE J. Solid-State Circuits, vol. 22, no. 4, pp. 512-521, Aug. 1987.
[3]S. Galal and B. Razavi, ”10-Gb/s Limiting amplifier and laser/modulator driver in 0.18-um CMOS Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp.2138-2146, Dec. 2003.
[4]K. Kimura, ”A CMOS Logarithmic IF amplifier with unbalanced source-coupled pairs,” IEEE J. Solid-State Circuits, vol. 28, no.1, pp. 78-83, Jan 1993.
[5]A. B. Williams and F. J. Taylor, Electronic Filter Design Handbook. New York: McGraw-Hill, Inc. 1995.
[6]M. Banu and Y. Tsividis, “An elliptic continuous-time CMOS filter with on-chip automatic tuning,” IEEE J. Solid-State Circuits, vol. 20, no. 6, pp. 1114-1121, Dec. 1985.
[7]S. Kousai, M. Hamada, R. Ito, and T. Itakura, “A 19.7 MHz, Fifth-order active-RC Chebyshev LPF for draft IEEE802.11n with automatic quality-factor tuning scheme,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2326-2337, Nov. 2007.
[8]U. Moon, 'Linearity improvement technique for CMOS continuous-time filters,' Ph.D. Dissertation, University of Illinois, Urbana-Champaign, Feb. 1994.
[9]Y. Tsividis, M. Banu, and J. Khoury, “Continuous-time MOSFET-C filters in VLSI,” IEEE J. Solid-State Circuits, vol. 21, no. 1, pp. 15-29, Feb. 1986.
[10]D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: John Wiley & Sons, 1997.
[11]T. Oshima, K. Maio, W. Hioe, and Y. Shibahara, “Novel automatic tuning method of RC filters using a digital-DLL technique,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 2052-2054, Nov. 2004.
[12]A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” IEE Electron. Letters, vol. 32, no. 12, pp. 1055–1057, June 1996.
[13]G. K. Dehng, J. M. Hsu, C. Y. Yang, and S. I. Liu, “Clock-deskew buffer using a SAR-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1128-1136, Aug. 2000.
[14]K. N. Leung, P. K. T. Mok, W. H. Ki, and J. K. O. Sin, “Three-stage large capacitive load amplifier with damping-factor-control frequency compensation,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 221-230, Feb.1997.
[15]K. N. Leung and P. K. T. Mok, “Analysis of multistage amplifier-frequency compensation”, IEEE Trans. Circuit Syst. I, Fumdam. Theory Appl., vol. 48, no. 9 pp. 1041-1056, Sep. 2001.
[16]F. You, S. H. K. Embadi, and E. Sanchez-Sinencio, “A multistage amplifier topology with nested Gm-C compensation for low-voltage application,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 2000-2011, Dec.1997.
[17]R. Eschauzier, L. P. T. Kerklaan, and J. H. Huijsing, “A 100-MHz 100-dB opearional amplifier topology with multipath nested Miller compensation structure”, IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1709-1717, Dec. 1992.
[18]P. R. Gray, P. J. Hurst, S.H. Lewis, and R. G. Meyer, Analysis and design of analog integrated circuits. New York: John Wiley & Sons, 2001.
[19]B. K. Thandri and J. Silva-Martinez, “A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 237-243, Feb. 2003.
[20]J. Harrison and N. Weste,”350 MHz opamp-RC filter in 0.18-um CMOS,” IEE Electronics Letters, vol. 38, no. 6, pp. 259–260, Mar. 2002.
[21]B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid-State Circuits, vol. 27, no. 2, pp. 142-153, Feb. 1992.
[22]S. Pavan and T. Laxminidhi, “.Accurate characterization of integrated continuous- time filters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1758-1766, Aug. 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27484-
dc.description.abstract自從60-GHz的頻帶開放後,應用在此頻帶的無線通訊系統成為了熱門的研究主題。本論文的重點在於應用於60-GHz接收機的高效能類比基頻電路。在論文中我們提出了5-GHz的信號強度偵測器以及120-MHz的連續時間低頻濾波器。
信號強度偵測器一般都是以對數放大器的架構實現,並且得到接受信號強度的近似結果。它包含了一組限制放大器以及一些全波整流器。為了實現寬頻的設計,我們在限制放大器的放大級中採用了主動回授的技巧。此電路採用台積電0.13微米的製程設計,模擬得到的整體增益為41 dB、頻寬為6.8 GHz。此信號強度偵測器的動態範圍大於40 dB,在1.2伏特電源供應下消耗30毫瓦。
120-MHz 的連續時間低頻濾波器採用了主動電阻電容的架構,比起其他種類的濾波器,此架構可以提供較佳的線性度以及動態範圍。為了實現此主動電阻電容濾波器,需要有寬頻的運算放大器。採用的運算放大器採用了前饋式補償技巧,而沒有使用米勒補償電容。對連續時間濾波器來說,元件的變異是非常嚴重的問題,因為濾波器的參數會因此受到影響,例如頻寬、品質因子等等。因此,內建了自動頻率校正電路,以減少元件變異的影響。為了縮短頻率校正的時間,我們採用了連續近似的計數器。此濾波器採用台積電0.18微米的製程製造,可達到120 MHz的頻寬以及21 dBm的IIP3。使用10 MHz的參考頻率量測到的頻率校正時間為,並且在1.8伏特電源供應下消耗43毫瓦。
zh_TW
dc.description.abstract60-GHz wireless communication has been a thriving research topic since 60-GHz unlicensed band is opened. The thesis focuses on the design of high-performance analog baseband circuits for 60-GHz receivers. The presented circuits are a 5-GHz received signal strength indicator (RSSI) and an 120-MHz continuous-time lowpass filter.
The RSSI is generally realized in the logarithmic form to approximate the strength of received signals. The structure comprises a limiting amplifier and some full-wave rectifiers. Active-feedback is introduced in the gain cells to achieve wide bandwidth. The circuit is designed in the TSMC 0.13-um CMOS process. The simulated overall gain is 41 dB and the bandwidth is 6.8 GHz. The dynamic range of the RSSI is larger than 40 dB. The total power consumption is 30 mW from a 1.2-V supply.
The 120-MHz continuous-time lowpass filter belongs to the active-RC type and provides better linearity and dynamic range than other types. In order to implement the active-RC filter, a wide bandwidth operational amplifier (op amp) is required. Unlike the conventional compensation techniques, the op amp adopts the feedforward compensation technique without using the Miller capacitor. For a continuous-time filter, component variation is a serious problem because the parameters of the filter will be affected, such as bandwidth, quality factor, etc.. Therefore, an on-chip automatic tuning circuit is implemented to alleviate the effect of variations. The SAR scheme is applied in the tuning circuit so as to accomplish short tuning time. This filter is fabricated in the TSMC 0.18-um CMOS process. The filter achieves 120-MHz bandwidth and 21-dBm IIP3. The measured tuning time is about 8 us with a 10-MHz reference clock. The filter consumes 43 mW from a 1.8-V supply.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:06:45Z (GMT). No. of bitstreams: 1
ntu-96-R94943085-1.pdf: 3453372 bytes, checksum: 8683ff58787cfc28aa66647e9b287f4f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Motivation 1
1.2 System Specification 2
1.3 Thesis Overview 3
Chapter 2 Received Signal Strength Indicator 4
2.1 Introduction 4
2.2 The Architecture and Theory of the RSSI 5
2.2.1 Input Dynamic Range of RSSI 5
2.2.2 Logarithmic Approximation 6
2.3 Circuit Implementation 8
2.3.1 Limiting Amplifier 9
2.3.2 Full-wave Rectifier 13
2.4 Simulation Results 15
Chapter 3 Filter Design 19
3.1 Introduction 19
3.2 Filter Specification 20
3.2.1 Magnitude Characteristics 20
3.2.2 Phase Characteristics 21
3.2.3 The Quality Factor and Pole-Zero Plots 23
3.2.4 Conventional Filter Approximation Types 23
3.3 Leapfrog Filter Design 26
3.3.1 Introduction 26
3.3.2 Ladder Prototype of 5th-order Elliptic Filter 26
3.3.3 Signal Flow Graph 28
3.3.4 Balanced Active-RC Filter 31
3.3.5 Analysis of Effects of Nonideal Operational Amplifier 32
3.3.6 Implementation of Resistor Arrays 35
3.3.7 Simulation Results 38
3.4 Automatic Tuning in Continuous-Time Filters 40
3.4.1 Introduction 40
3.4.2 Direct and Indirect Tuning 40
3.4.3 An Example of Master-Slave Tuning – PLL-based Tuning 42
3.4.4 Proposed Agile Frequency Tuning Circuit 43
3.4.5 Simulation Results 47
3.5 Summary of the Simulation Result 50
Chapter 4 Wide Bandwidth Operational Amplifier 51
4.1 Introduction 51
4.2 Frequency Compensation Schemes in Operational Amplifier 52
4.2.1 Miller Compensation 52
4.2.2 Feedforward Compensation Scheme with No Miller Capacitors 54
4.3 Implementation of the Operational Amplifier 57
4.4 Simulation Results 59
Chapter 5 Experimental Results 62
5.1 Chip Pin Configurations and Printed Circuit Board Design 62
5.1.1 Chip Pin Configurations 62
5.1.2 PCB Design 63
5.2 Frequency Response Measurement 64
5.3 Linearity Measurement 69
5.4 Distortion Measurement 76
5.5 Noise Measurement 77
5.6 Summary of Measured Results 80
Chapter 6 Conclusions and Future Works 81
6.1 Conclusions 81
6.2 Future Works 81
References 83
dc.language.isoen
dc.subject濾波器zh_TW
dc.subject信號強度偵測器zh_TW
dc.subject無線接收機zh_TW
dc.subjectWireless Receiveren
dc.subjectRSSIen
dc.subjectFilteren
dc.title應用於無線接收機之寬頻低通濾波器與接收信號強度偵測器zh_TW
dc.titleWideband Lowpass Filter and Received Signal Strength Indicator for Wireless Receiver Applicationsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信樹(Hsin-Shu Chen),李泰成(Tai-Cheng Lee),曹恆偉(Hen-Wai Tsao),曾英哲(Ying-Che Tseng)
dc.subject.keyword濾波器,信號強度偵測器,無線接收機,zh_TW
dc.subject.keywordFilter,RSSI,Wireless Receiver,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2007-12-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved