Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃銓珍(Chang-Jen Huang)
dc.contributor.authorCheng-Ying Chuen
dc.contributor.author朱珍瑩zh_TW
dc.date.accessioned2021-06-12T18:05:41Z-
dc.date.available2009-01-10
dc.date.copyright2008-01-10
dc.date.issued2008
dc.date.submitted2008-01-07
dc.identifier.citationAkimoto, T., Kusano, E., Inaba, T., Iimura, O., Takahashi, H., Ikeda, H., Ito, C., Ando, Y., Ozawa, K., and Asano, Y. (2000). Erythropoietin regulates vascular smooth muscle cell apoptosis by a phosphatidylinositol 3 kinase-dependent pathway. Kidney Int 58, 269-282.
Amacher, S. L., Buskin, J. N., and Hauschka, S. D. (1993). Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol Cell Biol 13, 2753-2764.
Apone, S., and Hauschka, S. D. (1995). Muscle gene E-box control elements. Evidence for quantitatively different transcriptional activities and the binding of distinct regulatory factors. J Biol Chem 270, 21420-21427.
Arenander, A. T., and de Vellis, J. (1981). Glial-released proteins: III. Influence on neuronal morphological differentiation. Brain Res 224, 117-127.
Baka, I. D., Ninkina, N. N., Pinon, L. G., Adu, J., Davies, A. M., Georgiev, G. P., and Buchman, V. L. (1996). Intracellular compartmentalization of two differentially spliced s-rex/NSP mRNAs in neurons. Mol Cell Neurosci 7, 289-303.
Baker, S. J., and Reddy, E. P. (1998). Modulation of life and death by the TNF receptor superfamily. Oncogene 17, 3261-3270.
Baldwin, A. N., Bitler, C. M., Welcher, A. A., and Shooter, E. M. (1992). Studies on the structure and binding properties of the cysteine-rich domain of rat low affinity nerve growth factor receptor (p75NGFR). J Biol Chem 267, 8352-8359.
Bandtlow, C. E., Schmidt, M. F., Hassinger, T. D., Schwab, M. E., and Kater, S. B. (1993). Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science 259, 80-83.
Barton, W. A., Liu, B. P., Tzvetkova, D., Jeffrey, P. D., Fournier, A. E., Sah, D., Cate, R., Strittmatter, S. M., and Nikolov, D. B. (2003). Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. Embo J 22, 3291-3302.
Bastmeyer, M., Beckmann, M., Schwab, M. E., and Stuermer, C. A. (1991). Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not but not by goldfish optic nerve tract oligodendrocytelike cells and fish CNS myelin. J Neurosci 11, 626-640.
Becker, T., Wullimann, M. F., Becker, C. G., Bernhardt, R. R., and Schachner, M. (1997). Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377, 577-595.
Berry, M. (1982). Post-injury myelin-breakdown products inhibit axonal growth: an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibl Anat, 1-11.
Bocker-Meffert, S., Rosenstiel, P., Rohl, C., Warneke, N., Held-Feindt, J., Sievers, J., and Lucius, R. (2002). Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 43, 2021-2026.
Boissel, J. P., Lee, W. R., Presnell, S. R., Cohen, F. E., and Bunn, H. F. (1993). Erythropoietin structure-function relationships. Mutant proteins that test a model of tertiary structure. J Biol Chem 268, 15983-15993.
Caroni, P., Savio, T., and Schwab, M. E. (1988). Central nervous system regeneration: oligodendrocytes and myelin as non-permissive substrates for neurite growth. Prog Brain Res 78, 363-370.
Caroni, P., and Schwab, M. E. (1988a). Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85-96.
Caroni, P., and Schwab, M. E. (1988b). Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 106, 1281-1288.
Chan, F. Y., Robinson, J., Brownlie, A., Shivdasani, R. A., Donovan, A., Brugnara, C., Kim, J., Lau, B. C., Witkowska, H. E., and Zon, L. I. (1997). Characterization of adult alpha- and beta-globin genes in the zebrafish. Blood 89, 688-700.
Chang, M. H., Huang, C. J., Hwang, S. P., Lu, I. C., Lin, C. M., Kuo, T. F., and Chou, C. M. (2004). Zebrafish heparin-binding neurotrophic factor enhances neurite outgrowth during its development. Biochem Biophys Res Commun 321, 502-509.
Chao, M. V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4, 299-309.
Chen, G. D., Chou, C. M., Hwang, S. P., Wang, F. F., Chen, Y. C., Hung, C. C., Chen, J. Y., and Huang, C. J. (2006). Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay. Biochem Biophys Res Commun 344, 272-282.
Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., Christ, F., and Schwab, M. E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439.
Chong, S. W., Emelyanov, A., Gong, Z., and Korzh, V. (2001). Expression pattern of two zebrafish genes, cxcr4a and cxcr4b. Mech Dev 109, 347-354.
Chong, Z. Z., Kang, J. Q., and Maiese, K. (2002a). Angiogenesis and plasticity: role of erythropoietin in vascular systems. J Hematother Stem Cell Res 11, 863-871.
Chong, Z. Z., Kang, J. Q., and Maiese, K. (2002b). Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106, 2973-2979.
Chou, C. F., Tohari, S., Brenner, S., and Venkatesh, B. (2004). Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104, 1498-1503.
Delorme, E., Lorenzini, T., Giffin, J., Martin, F., Jacobsen, F., Boone, T., and Elliott, S. (1992). Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31, 9871-9876.
Detrich, H. W. r., Kieran, M. W., Chan, F. Y., Barone, L. M., Yee, K., Rundstadler, J. A., Pratt, S., Ransom, D., and Zon, L. I. (1995). Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci U S A 92, 10713-10717.
Dickson, B. J. (2001). Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11, 103-110.
Diekmann, H., Klinger, M., Oertle, T., Heinz, D., Pogoda, H. M., Schwab, M. E., and Stuermer, C. A. (2005). Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo-A in fish. Mol Biol Evol 22, 1635-1648.
Domeniconi, M., Cao, Z., Spencer, T., Sivasankaran, R., Wang, K., Nikulina, E., Kimura, N., Cai, H., Deng, K., Gao, Y., et al. (2002). Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283-290.
Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C., Malicki, J., Stemple, D. L., Stainier, D. Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., et al. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37-46.
Elliott, S., Bartley, T., Delorme, E., Derby, P., Hunt, R., Lorenzini, T., Parker, V., Rohde, M. F., and Stoney, K. (1994). Structural requirements for addition of O-linked carbohydrate to recombinant erythropoietin. Biochemistry 33, 11237-11245.
Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629-635.
Filbin, M. T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4, 703-713.
Flanagan, J. G., and Cheng, H. J. (2000). Alkaline phosphatase fusion proteins for molecular characterization and cloning of receptors and their ligands. Methods Enzymol 327, 198-210.
Fournier, A. E., GrandPre, T., and Strittmatter, S. M. (2001). Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341-346.
Fournier, A. E., Takizawa, B. T., and Strittmatter, S. M. (2003). Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23, 1416-1423.
Gomez, T. M., and Spitzer, N. C. (1999). In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. . Nature 397, 350-355.
Gong, Z., Ju, B., and Wan, H. (2001). Green fluorescent protein (GFP) transgenic fish and their applications. Genetica 111, 213-225.
GrandPre, T., Li, S., and Strittmatter, S. M. (2002). Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547-551.
GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S. M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444.
Greene, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73, 2424-2428.
Gregory, T., Yu, C., Ma, A., Orkin, S. H., Blobel, G. A., and Weiss, M. J. (1999). GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94, 87-96.
Grunwald, D. J., and Eisen, J. S. (2002). Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet 3, 717-724.
Gu, X., and Spitzer, N. C. (1995). Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. . Nature 375, 784-787.
Habib, A. A., Marton, L. S., Allwardt, B., Gulcher, J. R., Mikol, D. D., Hognason, T., Chattopadhyay, N., and Stefansson, K. (1998). Expression of the oligodendrocyte-myelin glycoprotein by neurons in the mouse central nervous system. J Neurochem 70, 1704-1711.
Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., van Eeden, F. J., Jiang, Y. J., Heisenberg, C. P., et al. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36.
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514.
He, X. L., Bazan, J. F., McDermott, G., Park, J. B., Wang, K., Tessier-Lavigne, M., He, Z., and Garcia, K. C. (2003). Structure of the Nogo receptor ectodomain: a recognition module implicated in myelin inhibition. Neuron 38, 177-185.
Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y., and Eguchi, G. (1997). High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192, 289-299.
Hisaoka, T., Morikawa, Y., Komori, T., Sugiyama, T., Kitamura, T., and Senba, E. (2006). Characterization of TROY-expressing cells in the developing and postnatal CNS: the possible role in neuronal and glial cell development. Eur J Neurosci 23, 3149-3160.
Hu, F., Liu, B. P., Budel, S., Liao, J., Chin, J., Fournier, A., and Strittmatter, S. M. (2005). Nogo-A interacts with the Nogo-66 receptor through multiple sites to create an isoform-selective subnanomolar agonist. J Neurosci 25, 5298-5304.
Hunt, D., Coffin, R. S., and Anderson, P. N. (2002a). The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. J Neurocytol 31, 93-120.
Hunt, D., Mason, M. R., Campbell, G., Coffin, R., and Anderson, P. N. (2002b). Nogo receptor mRNA expression in intact and regenerating CNS neurons. Mol Cell Neurosci 20, 537-552.
Ishii, I., Contos, J. J., Fukushima, N., and Chun, J. (2000). Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol 58, 895-902.
Josephson, A., Widenfalk, J., Widmer, H. W., Olson, L., and Spenger, C. (2001). NOGO mRNA expression in adult and fetal human and rat nervous tissue and in weight drop injury. Exp Neurol 169, 319-328.
Kennedy, S. G., Kandel, E. S., Cross, T. K., and Hay, N. (1999). Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19, 5800-5810.
Keswani, S. C., Buldanlioglu, U., Fischer, A., Reed, N., Polley, M., Liang, H., Zhou, C., Jack, C., Leitz, G. J., and Hoke, A. (2004). A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol 56, 815-826.
Key, B., and Devine, C. A. (2003). Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 25, 1-6.
King, C. E., Rodger, J., Bartlett, C., Esmaili, T., Dunlop, S. A., and Beazley, L. D. (2007). Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection. Exp Neurol 205, 48-55.
Klinger, M., Taylor, J. S., Oertle, T., Schwab, M. E., Stuermer, C. A., and Diekmann, H. (2004). Identification of Nogo-66 receptor (NgR) and homologous genes in fish. Mol Biol Evol 21, 76-85.
Kojima, T., Morikawa, Y., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Senba, E., and Kitamura, T. (2000). TROY, a newly identified member of the tumor necrosis factor receptor superfamily, exhibits a homology with Edar and is expressed in embryonic skin and hair follicles. J Biol Chem 275, 20742-20747.
Koury, M. J., and Bondurant, M. C. (1992). The molecular mechanism of erythropoietin action. Eur J Biochem 210, 649-663.
Krantz, S. B. (1991). Erythropoietin. Blood 77, 419-434.
Kretz, A., Happold, C. J., Marticke, J. K., and Isenmann, S. (2005). Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol Cell Neurosci 29, 569-579.
Lacombe, C., and Mayeux, P. (1999). The molecular biology of erythropoietin. Nephrol Dial Transplant 14 Suppl 2, 22-28.
Lai, P. H., Everett, R., Wang, F. F., Arakawa, T., and Goldwasser, E. (1986). Structural characterization of human erythropoietin. J Biol Chem 261, 3116-3121.
Lauren, J., Hu, F., Chin, J., Liao, J., Airaksinen, M. S., and Strittmatter, S. M. (2007). Characterization of myelin ligand complexes with neuronal Nogo-66 receptor family members. J Biol Chem 282, 5715-5725.
Lawson, N. D., and Weinstein, B. M. (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248, 307-318.
Li, Q., Qi, B., Oka, K., Shimakage, M., Yoshioka, N., Inoue, H., Hakura, A., Kodama, K., Stanbridge, E. J., and Yutsudo, M. (2001). Link of a new type of apoptosis-inducing gene ASY/Nogo-B to human cancer. . Oncogene 20, 3929-3936.
Liao, E. C., Paw, B. H., Oates, A. C., Pratt, S. J., Postlethwait, J. H., and Zon, L. I. (1998). SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev 126, 621-626.
Lin, C. S., Lim, S. K., D'Agati, V., and Costantini, F. (1996). Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 10, 154-164.
Lin, F. K., Suggs, S., Lin, C. H., Browne, J. K., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. M., Martin, F., and Stabinsky, Z. (1985). Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A 82, 7580-7584.
Liu, B. P., Cafferty, W. B., Budel, S. O., and Strittmatter, S. M. (2006). Extracellular regulators of axonal growth in the adult central nervous system. Philos Trans R Soc Lond B Biol Sci 361, 1593-1610.
Liu, B. P., Fournier, A., GrandPre, T., and Strittmatter, S. M. (2002). Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190-1193.
Luo, L. (2000). Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1, 173-180.
Maiese, K. (2001). The dynamics of cellular injury: transformation into neuronal and vascular protection. Histol Histopathol 16, 633-644.
Mandemakers, W. J., and Barres, B. A. (2005). Axon regeneration: it's getting crowded at the gates of TROY. Curr Biol 15, R302-305.
Marti, H. H., Wenger, R. H., Rivas, L. A., Straumann, U., Digicaylioglu, M., Henn, V., Yonekawa, Y., Bauer, C., and Gassmann, M. (1996). Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8, 666-676.
Martini, R. (1994). Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocytol 23, 1-28.
Masuda, S., Nagao, M., Takahata, K., Konishi, Y., Gallyas, F. J., Tabira, T., and Sasaki, R. (1993). Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 268, 11208-11216.
McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J., and Braun, P. E. (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805-811.
Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., Levesque, M., Allaire, N., Perrin, S., Sands, B., et al. (2004). LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7, 221-228.
Miao, R. Q., Gao, Y., Harrison, K. D., Prendergast, J., Acevedo, L. M., Yu, J., Hu, F., Strittmatter, S. M., and Sessa, W. C. (2006). Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc Natl Acad Sci U S A 103, 10997-11002.
Miura, O., Nakamura, N., Ihle, J. N., and Aoki, N. (1994). Erythropoietin-dependent association of phosphatidylinositol 3-kinase with tyrosine-phosphorylated erythropoietin receptor. J Biol Chem 269, 614-620.
Moreira, E. F., Jaworski, C. J., and Rodriguez, I. R. (1999). Cloning of a novel member of the reticulon gene family (RTN3): gene structure and chromosomal localization to 11q13. Genomics 58, 73-81.
Morishita, E., Masuda, S., Nagao, M., Yasuda, Y., and Sasaki, R. (1997). Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76, 105-116.
Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R., and Filbin, M. T. (1994). A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757-767.
Nagai, A., Nakagawa, E., Choi, H. B., Hatori, K., Kobayashi, S., and Kim, S. U. (2001). Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60, 386-392.
Nasevicius, A., and Ekker, S. C. (2000a). Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26, 216-220.
Nasevicius, A., and Ekker, S. C. (2000b). Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26, 216-220.
Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., and Pfeffer, K. (1998). Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397-409.
Nguyen, M. H., Ho, J. M., Beattie, B. K., and Barber, D. L. (2001). TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway. J Biol Chem 276, 32704-32713.
Nielsen, A. L., and Jorgensen, A. L. (2003). Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP. Gene 310, 123-132.
Oates, A. C., Brownlie, A., Pratt, S. J., Irvine, D. V., Liao, E. C., Paw, B. H., Dorian, K. J., Johnson, S. L., Postlethwait, J. H., Zon, L. I., and Wilks, A. F. (1999). Gene duplication of zebrafish JAK2 homologs is accompanied by divergent embryonic expression patterns: only jak2a is expressed during erythropoiesis. Blood 94, 2622-2636.
Oertle, T., Huber, C., van der Putten, H., and Schwab, M. E. (2003a). Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4. J Mol Biol 325, 299-323.
Oertle, T., Klinger, M., Stuermer, C. A., and Schwab, M. E. (2003b). A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. Faseb J 17, 1238-1247.
Oertle, T., van der Haar, M. E., Bandtlow, C. E., Robeva, A., Burfeind, P., Buss, A., Huber, A. B., Simonen, M., Schnell, L., Brosamle, C., et al. (2003c). Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci 23, 5393-5406.
Parganas, E., Wang, D., Stravopodis, D., Topham, D. J., Marine, J. C., Teglund, S., Vanin, E. F., Bodner, S., Colamonici, O. R., van Deursen, J. M., et al. (1998). Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385-395.
Park, H. C., Kim, C. H., Bae, Y. K., Yeo, S. Y., Kim, S. H., Hong, S. K., Shin, J., Yoo, K. W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227, 279-293.
Park, J. B., Yiu, G., Kaneko, S., Wang, J., Chang, J., He, X. L., Garcia, K. C., and He, Z. (2005). A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45, 345-351.
Parng, C., Seng, W. L., Semino, C., and McGrath, P. (2002). Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1, 41-48.
Penberthy, W. T., Shafizadeh, E., and Lin, S. (2002). The zebrafish as a model for human disease. Front Biosci 7, d1439-1453.
Pignot, V., Hein, A. E., Barske, C., Wiessner, C., Walmsley, A. R., Kaupmann, K., Mayeur, H., Sommer, B., Mir, A. K., and Frentzel, S. (2003). Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo-66 receptor. J Neurochem 85, 717-728.
Prinjha, R., Moore, S. E., Vinson, M., Blake, S., Morrow, R., Christie, G., Michalovich, D., Simmons, D. L., and Walsh, F. S. (2000). Inhibitor of neurite outgrowth in humans. Nature 403, 383-384.
Quinkertz, A., and Campos-Ortega, J. A. (1999). A new beta-globin gene from the zebrafish, betaE1, and its pattern of transcription during embryogenesis. Dev Genes Evol 209, 126-131.
Rajarao, S. J., Canfield, V. A., Mohideen, M. A., Yan, Y. L., Postlethwait, J. H., Cheng, K. C., and Levenson, R. (2001). The repertoire of Na,K-ATPase alpha and beta subunit genes expressed in the zebrafish, Danio rerio. Genome Res 11, 1211-1220.
Richter-Landsberg, C., and Jastorff, B. (1986). The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells. J Cell Biol 102, 821-829.
Roebroek, A. J., Contreras, B., Pauli, I. G., and Van de Ven, W. J. (1998). cDNA cloning, genomic organization, and expression of the human RTN2 gene, a member of a gene family encoding reticulons. Genomics 51, 98-106.
Roebroek, A. J., van de Velde, H. J., Van Bokhoven, A., Broers, J. L., Ramaekers, F. C., and Van de Ven, W. J. (1993). Cloning and expression of alternative transcripts of a novel neuroendocrine-specific gene and identification of its 135-kDa translational product. J Biol Chem 268, 13439-13447.
Sadamoto, Y., Igase, K., Sakanaka, M., Sato, K., Otsuka, H., Sakaki, S., Masuda, S., and Sasaki, R. (1998). Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253, 26-32.
Sato, K., Tomura, H., Igarashi, Y., Ui, M., and Okajima, F. (1997). Exogenous sphingosine 1-phosphate induces neurite retraction possibly through a cell surface receptor in PC12 cells. Biochem Biophys Res Commun 240, 329-334.
Schnell, L., Schneider, R., Kolbeck, R., Barde, Y. A., and Schwab, M. E. (1994). Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170-173.
Schnell, L., and Schwab, M. E. (1990). Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269-272.
Schnell, L., and Schwab, M. E. (1993). Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Eur J Neurosci 5, 1156-1171.
Schwab, M. E. (2004). Nogo and axon regeneration. Curr Opin Neurobiol 14, 118-124.
Schwab, M. E., and Caroni, P. (1988). Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 8, 2381-2393.
Schwab, M. E., and Thoenen, H. (1985). Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci 5, 2415-2423.
Schweitzer, J., Becker, T., Becker, C. G., and Schachner, M. (2003). Expression of protein zero is increased in lesioned axon pathways in the central nervous system of adult zebrafish. Glia 41, 301-317.
Shao, Z., Browning, J. L., Lee, X., Scott, M. L., Shulga-Morskaya, S., Allaire, N., Thill, G., Levesque, M., Sah, D., McCoy, J. M., et al. (2005). TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45, 353-359.
Shentu, H., Wen, H. J., Her, G. M., Huang, C. J., Wu, J. L., and Hwang, S. P. (2003). Proximal upstream region of zebrafish bone morphogenetic protein 4 promoter directs heart expression of green fluorescent protein. Genesis 37, 103-112.
Shimizu-Okabe, C., Matsuda, Y., Koito, H., and Yoshida, S. (2001). L-isoform but not S-isoform of myelin associated glycoprotein promotes neurite outgrowth of mouse cerebellar neurons. Neurosci Lett 311, 203-205.
Shoemaker, C. B., and Mitsock, L. D. (1986). Murine erythropoietin gene: cloning, expression, and human gene homology. Mol Cell Biol 6, 849-858.
Siren, A. L., Fratelli, M., Brines, M., Goemans, C., Casagrande, S., Lewczuk, P., Keenan, S., Gleiter, C., Pasquali, C., Capobianco, A., et al. (2001). Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98, 4044-4049.
Spillmann, A. A., Bandtlow, C. E., Lottspeich, F., Keller, F., and Schwab, M. E. (1998). Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Biol Chem 273, 19283-19293.
Stuermer, C. A. (1988). Trajectories of regenerating retinal axons in the goldfish tectum: I. A comparison of normal and regenerated axons at late regeneration stages. J Comp Neurol 267, 55-68.
Tagami, S., Eguchi, Y., Kinoshita, M., Takeda, M., and Tsujimoto, Y. (2000). A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 19, 5736-5746.
Tigyi, G., Fischer, D. J., Sebok, A., Yang, C., Dyer, D. L., and Miledi, R. (1996). Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J Neurochem 66, 537-548.
Turnley, A. M., and Bartlett, P. F. (1998). MAG and MOG enhance neurite outgrowth of embryonic mouse spinal cord neurons. Neuroreport 9, 1987-1990.
Urtishak, K. A., Choob, M., Tian, X., Sternheim, N., Talbot, W. S., Wickstrom, E., and Farber, S. A. (2003). Targeted gene knockdown in zebrafish using negatively charged peptide nucleic acid mimics. Dev Dyn 228, 405-413.
van de Velde, H. J., Roebroek, A. J., Senden, N. H., Ramaekers, F. C., and Van de Ven, W. J. (1994). NSP-encoded reticulons, neuroendocrine proteins of a novel gene family associated with membranes of the endoplasmic reticulum. J Cell Sci 107 ( Pt 9), 2403-2416.
Venkatesh, K., Chivatakarn, O., Lee, H., Joshi, P. S., Kantor, D. B., Newman, B. A., Mage, R., Rader, C., and Giger, R. J. (2005). The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci 25, 808-822.
Wang, H., Yao, Y., Jiang, X., Chen, D., Xiong, Y., and Mu, D. (2006). Expression of Nogo-A and NgR in the developing rat brain after hypoxia-ischemia. Brain Res 1114, 212-220.
Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R., and He, Z. (2002a). P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74-78.
Wang, K. C., Koprivica, V., Kim, J. A., Sivasankaran, R., Guo, Y., Neve, R. L., and He, Z. (2002b). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941-944.
Wang, Y. C. (2002) Promoter assay and fuctional characterization of Nogo-related genes from zebrafish (Danio rerio), National Taiwan University, Taipei.
Wanner, M., Lang, D. M., Bandtlow, C. E., Schwab, M. E., Bastmeyer, M., and Stuermer, C. A. (1995). Reevaluation of the growth-permissive substrate properties of goldfish optic nerve myelin and myelin proteins. J Neurosci 15, 7500-7508.
Wen, D., Boissel, J. P., Tracy, T. E., Gruninger, R. H., Mulcahy, L. S., Czelusniak, J., Goodman, M., and Bunn, H. F. (1993). Erythropoietin structure-function relationships: high degree of sequence homology among mammals. Blood 82, 1507-1516.
Westerfield, M. (1995). The Zebrafish Book (Eugene, OR, USA: University of Oregon Press).
Winkler, C., Schafer, M., Duschl, J., Schartl, M., and Volff, J. N. (2003). Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Genome Res 13, 1067-1081.
Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T., Tang, B., Miura, O., and Ihle, J. N. (1993). JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74, 227-236.
Wong, S. T., Henley, J. R., Kanning, K. C., Huang, K. H., Bothwell, M., and Poo, M. M. (2002). A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5, 1302-1308.
Wu, H., Liu, X., Jaenisch, R., and Lodish, H. F. (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83, 59-67.
Yamashita, T., and Tohyama, M. (2003). The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6, 461-467.
Yiu, G., and He, Z. (2003). Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr Opin Neurobiol 13, 545-551.
Yoshimura, A., and Arai, K. (1996). Physician Education: The Erythropoietin Receptor and Signal Transduction. Oncologist 1, 337-339.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27457-
dc.description.abstract哺乳類在中樞神經受損後,其神經再生會受到抑制,目前的相關研究指出Nogo-A /Rtn4是神經膠質細胞所分泌來抑制中樞神經再生的重要抑制物之一;相對於哺乳類,低等脊椎動物在中樞神經受損後則會進行神經再生。為了了解Nogo基因在魚類中所扮演的角色,我們從斑馬魚找到三個與RTN同源的異構型,分別是zNogo-B、zNogo-C1及zNogo-C2,這些異構型是由於使用不同的啟動子及另類剪接所造成的;我們並選殖出這三個基因的啟動子,發現其在細胞及斑馬魚體內都具有功能及表現,在經由基因體資料庫比對後,證實斑馬魚並不會表現Nogo-A。
在本研究中,我們建立了新的分析系統來研究神經元細胞及神經膠質細胞的相互關係。離體實驗中,利用大量表現斑馬魚Nogo基因的大鼠神經膠質瘤穩定細胞株,來和表現紅色螢光基因的大鼠嗜鉻細胞瘤穩定細胞株相接觸,發現只有zNogo-C2此基因會抑制由神經生長因子(Nerve growth factor, NGF)所誘發的神經突觸生長,且處理重組的紅血球生成素(Erythropoietin, EPO)會讓zNogo-C2蛋白的抑制作用消失。在斑馬魚的活體實驗中,已經發現由神經細胞專一性啟動子所驅動的綠色螢光蛋白會受到神經生長因子或肝素神經促進生長因子(Heparin-binding neurotrophic factor, HBNF)的誘導而產生神經外生長,同時表現由神經膠質細胞專一性啟動子所驅動的zNogo-C2蛋白則發現有神經突觸退縮的現象;再者,同時表現斑馬魚的紅血球生成素會回復神經外生的功能,證明紅血球生成素在離體及活體實驗中皆可促進神經纖維生長。利用配體與受體的結合分析,我們發現zNogo-C2會經由N端片段及Nogo-66片段與斑馬魚的受體zNgRH1b相結合,經由全覆式原位雜交技術也發現zNogo-C2及zNgRH1b基因皆會表現在斑馬魚的腦部。總而言之,在本研究中發現斑馬魚Nogo-C2擔任類似哺乳類Nogo-A的角色來抑制神經突觸生長。
另一方面,我們選殖出斑馬魚的紅血球生成素三種異構型,分別為zEPO-L1、zEPO-L2及zEPO-S,是經由使用不同的啟動子及另類剪接所造成,此三種異構型只有N端訊號序列的差異,表現的成熟蛋白則完全相同,且具有可被醣基化修飾的位置;利用西方墨點法及免疫細胞化學染色法,我們發現zEPO-L1和zEPO-L2都是分泌型的醣蛋白,但zEPO-S則因為缺乏訊號序列而無法被分泌到細胞外。此外,我們利用全覆式原位雜交技術及反轉錄PCR來研究其表現區域及時間點,發現這三種異構型在受精後12小時便都有表現,在成體組織內的表現三者在腦部、心臟、鰓及眼部均有表現,但在其他部位則有表現量的差異。我們進一步利用反義寡核苷酸(morpholino)來研究紅血球生成素蛋白對斑馬魚血球生成的影響,發現在zEPO-L2被基因抑制的斑馬魚胚胎有嚴重的貧血及死亡發生,且下游和造血作用相關的部分基因表現也受到影響。
zh_TW
dc.description.abstractIn mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C, and Nogo-A is the longest variant that interferes with axon regrowth after spinal cord injury. In contrast to mammals, we cloned three zebrafish Nogo-related transcripts, termed nogo-B, nogo-C1, and nogo-C2, which are generated by alternative promoter usage and alternative RNA splicing. In addition to the common C-terminal region, the N-terminal regions of Nogo-C1, Nogo-C2 and Nogo-B contain 9, 25 and 132 distinct amino acid residues, respectively. We also isolated the 5’-upstream region of each gene from a BAC clone and demonstrated that these promoter regions are functional in cultured cells and in zebrafish embryos. We developed both in vivo and in vitro glia-neuron interaction assay systems to explore the role of zebrafish Nogo-related proteins in NGF-induced neurite outgrowth. Our results showed that only Nogo-C was able to induce neurite retraction in zebrafish embryos and in co-cultures of Nogo-transfected glioma C6 cells and PC-12 cells, and such neurite retraction could be rescued by Erythropoietin (EPO) administration. Ligand and receptor binding assays also demonstrated that zebrafish Nogo-C2 binds to the zebrafish Nogo receptor NgRH1b via its unique N-terminal of 25 amino acid residues and the Nogo-66 domain. These results indicate that zebrafish Nogo-C2 has a similar function to mammalian Nogo-A in the induction of neurite retraction both in vitro and in vivo.
We also cloned three zebrafish EPO-related transcripts, termed epo-L1, epo-L2 and epo-S, which are generated by alternative promoter usage and alternative RNA splicing. Both zEPO-L1 and zEPO-L2 contain two N-glycosylation sites and they were efficiently secreted by COS-1 cells into the culture medium as a glycoprotein. Through RT-PCR and whole-mount in situ hybridization, the expressions of various zepo transcripts were investigated that all three transcripts are detected in all developmental stages and adult brain, heart, gill and eye. Using morpholino approach, we showed that zepo-L2 morphants displayed severe anemia leading to high mortality during development. Furthermore, in the absence of functional zEPO-L2, the expression of erythroid specific markers, such as adult globin genes and the embryonic
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:05:41Z (GMT). No. of bitstreams: 1
ntu-97-F90242004-1.pdf: 6525855 bytes, checksum: 857fd3c25c46729d730f53dae2d5a5b3 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAbstract (Chinese)… i
Abstract (English)… iii
Abbreviation… v
Introduction… 1
The discovery of Nogo… 1
The nogo gene and Nogo proteins…2
The Reticulon (RTN) family… 4
The functions of Nogo proteins…4
The Nogo-66 receptor (NgR) and its ligands..… 5
The co-receptors of NgR and their intracellular messengers…. 8
Neuronal regeneration in fish…10
The role of Erythropoietin in the nervous system… 11
The Erythropoietin of zebrafish… 13
Zebrafish as an experimental model… 14
Zebrafish as a model for reverse genetic study…14
Specific aims…16
Materials and methods… 19
Materials…19
Fish… 19
Cell cultures..… 19
Cloning of the P1, P2 and P3 promoter regions of Nogo-related genes.… 20
Transactivation assay…. 20
Total RNA isolation and first-stranded cDNA synthesis…21
Cloning of the full-length cDNAs encoding Nogo-B, Nogo-C1, Nogo-C2 and Nogo receptors from zebrafish and rat…. 21
Cloning of the full-length cDNAs encoding zEPO and hEPO... 23
RT-PCR analysis of zebrafish erythropoietin transcripts… 24
Construction of expression plasmids… 25
Co-culture of PC-12-RFP cells and different C6 stable lines... 27
Western blot and immunocytochemistry assay… 27
Alkaline phosphatase binding assay… 29
Microinjection of expression plasmids into zebrafish embryos.…30
Morpholino injection… 30
Morpholino rescue experiment by mRNA injection… 31
o-dianisidine staining… 31
Whole-mount in situ hybridization… 31
Results… 33
Three Nogo-related transcripts, Nogo-B, Nogo-C1 and Nogo-C2, were generated by alternative promoter usage and alternative RNA splicing…33
Expression profiles of zebrafish Nogo-related genes at different developmental stages and in different adult tissues… 34
Analysis of the P1 promoter activity in cultured cells and zebrafish embryos…34
Analysis of the P2 and P3 promoter activities in cultured cells and zebrafish embryos…….. 35
Cellular localization of zebrafish Nogo-related proteins in COS-1 and C6 giloma cells… 36
Expression and cellular localization of receptors of zebrafish Nogo-related proteins in COS-1 cells… 37
Differential expression of all four Nogo receptor mRNAs during embryogenesis… 38
Zebrafish Nogo-C2 caused neurite retraction in the co-culture of C6 glioma and PC-12 cells which could be rescued by EPO…39
Only Nogo-C2 is able to elicit retraction of NGF-induced neurite outgrowth in zebrafish embryos…41
Zebrafish Nogo-C2 binds to Nogo receptor NgRH1b via its unique N-terminal 25 amino acid residues and the common Nogo-66 domain…42
Cloning of the erythropoietin gene from zebrafish… 44
Secretion of zebrafish EPO in COS-1 cells… 44
Retraction of NGF-induced neurite outgrowth by zNogo-C2 can be rescued by zEPO in zebrafish embryos… 45
Knockdown of zepo resulted in strong suppression of hemoglobin production in zebrafish embryos and reduction of erythroid-specific gene expression…. 46
Three EPO-related transcripts, EPO-L1, EPO-L2 and EPO-S, were generated by alternative RNA splicing……47
Expression profiles of EPO-realted genes in different developmental stages and adult tissues in zebrafish….. 48
Secretion of zEPO-L1, zEPO-L2 and zEPO-S in COS-1 cells…49
Discussion…51
Conclusion and perspective…61
Figures…. 63
Reference… 113
Appendix…. 127
Publications..… 129
dc.language.isoen
dc.subject斑馬魚zh_TW
dc.subject紅血球生成素zh_TW
dc.subject酸zh_TW
dc.subject神經生長因子zh_TW
dc.subject神經突觸退縮zh_TW
dc.subject脊髓受損zh_TW
dc.subject醣蛋白zh_TW
dc.subject反義寡核&#33527zh_TW
dc.subjectZebrafishen
dc.subjectSpinal cord injuryen
dc.subjectNogoen
dc.subjectNeurite retractionen
dc.subjectNGFen
dc.subjectEPOen
dc.subjectMorpholino oligonucleotideen
dc.subjectGlycoproteinen
dc.title斑馬魚Nogo相關蛋白及其受體表現與結合之分析與紅血球生成素促進神經纖維生長之研究zh_TW
dc.titleStudy of zebrafish Nogo-related proteins and their receptors: expression pattern analysis, binding properties and EPO-mediated neuritogenesisen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee張震東(Geen-Dong Chang),李明亭(Ming-Ting Lee),余榮熾(Lung-Chih Yu),黃聲蘋(Sheng-Ping L. Hwang)
dc.subject.keyword脊髓受損,神經突觸退縮,神經生長因子,紅血球生成素,反義寡核&#33527,酸,醣蛋白,斑馬魚,zh_TW
dc.subject.keywordSpinal cord injury,Nogo,Neurite retraction,NGF,EPO,Morpholino oligonucleotide,Glycoprotein,Zebrafish,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2008-01-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
6.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved