Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾四恭
dc.contributor.authorYu-Jou Fengen
dc.contributor.author馮宇柔zh_TW
dc.date.accessioned2021-06-12T18:05:34Z-
dc.date.available2008-01-17
dc.date.copyright2008-01-17
dc.date.issued2008
dc.date.submitted2008-01-08
dc.identifier.citationAhn, Y. H., 2006. Sustainable nitrogen elimination biotechnologies: A review. Process Biochem. 41, 1709-1721.
Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R. and Stahl D. A., 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919-1925.
Amann, R. I., Ludwig, W. and Schleifer, K. H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
Anthonisen AC, L. R., Prakasam TBS and Srinath EG., 1976. Inhibition of nitrification by ammonia and nitrous acid. J. WPCF. 48, 835-852.
Asano, H., Myoga, H., Asano, M., and Toyao, M., 1992. A study of nitrification utilizing whole microorganisms immobilized by the PVA-freezing method. Water Sci. Technol. 26, 1037-1046.
Bertanza, G.., 1997. Simultaneous nitrification-denitrification process in extended aeration plants: pilot and real scale experience. Water Sci. Technol. 35(6), 53-61.
Bickerstaff, G. F., 1997. Immobilized enzyme and cells. vol. 1. Humana Press Inc., Totowa, N.J., U.S.A.
Brindle, K., Stephensen, T. and Semen, M.J., 1998. Nitrification and oxygen utilization in a membrane aeration bioreactor. J. Membr. Sci. 144, 197-209.
Broda, E., 1997. Two kinds of lithotrophs missing in nature. Z. Allg. Microbiol. 17, 491-493.
Chang, C. C. and Tseng, S. K., 1998. Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate. Biotechnol. Tech. 12(12), 865-868.
Chang, C.C., Tseng, S.K. and Huang, S.K., 1999. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresource Technol. 69, 53-58.
Chang, Y.J. and Tseng, S.K., 1999. A novel double-membrane system for simultaneous nitrification and denitrification in a single tank. Lett. Appl. Microbiol. 28, 453-456.
Chen, K. C., Chen, S. J., and Houng, J. Y., 1996. Improvement of gas permeability of denitrifying PVA gel beads. Enzyme Microbiol. Technol. 18, 502-506.
Chui, P.C., Terashima, Y., Tay, J. H., Ozaki, H., and Jeyaseelan, S., 2000. Nitrogen removal in a submerged filter with no effluent recirculation. Water Sci. Technol. 42(3-4), 51–58.
Ciudad, G.., Rubilar, O., Munoz, P., Ruiz, G., Chamy, R., Vergara, C. and Jeison, D., 2005. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process. Process Biochem. 40, 1715-1719.
Daims H., Brühl A., Amann R., Schleifer K.-H. and Wagner M., 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434-444.
Debus, O., 1995. Transport and reaction of aromatics, O2 and CO2 within a membrane bound Biofilm in competition with suspended biomass. Waer. Science and Technology. 31, 129-141.
Debus, O. and Wanner, O., 1992. Degradation of xylene by a biofilm growing on a gas-permeable membrane. Water Science and Technology. 26(3-4), 607-616.
Dijkman, H., Strous, M., 1999. Process for ammonia removal from wastewater.
Egli, K., Fanger, U., Alvarez, P.J.J., Siegrist, H., Van der Meer, J. R., and Zehnder, A.J. B., 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archaeological Microbiol. 175, 198-207.
Ferhan Cecen, 1996. Investigation of partial and full nitrification characteristics of fertilizer wastewaters in a submerged biofilm reactor. Water Sci.Technol. 34(11), 77–85.
Gali, A., J. Dosta, M. C. M. van Loosdrecht, and J. Mata-Alvarez., Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochem. In Press.
Guven, D., A. Dapena, B. Kartal, M. C. Schmid, B. Maas, K. van de Pas-Schoonen, S. Sozen, R. Mendez, H. J. M. Op den Camp, M. S. M. Jetten, M. Strous, and I. Schmidt., 2005. Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria. Appl. Environ. Microbiol. 71, 1066-1071.
Hanaki, K., Wantawin, C. and Ogaki, S., 1990. Nitrification at low levels dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 24, 297-302.
Hanaki, K., Hirunmasuwan, S., and Matsuo, T., 1994. Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol. Water Res. 28, 877-885.
Hellinga, C., A. A. J. C. Schellen, J. W. Mulder, M. C. M. van Loosdrecht, and J. J. Heijnen., 1998. The sharon process: An innovative method for nitrogen removal from ammonium-rich wastewater. Water Sci. Technol. 37, 135.
Hendrikus, J. L., and G. Saskia., 1993. Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. Archives of Microbiology. 159, 453.
Hisashi, N., Takako, H., Kenji T., Masanori W. and Ken, S., 1999. Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. J. Biosci. Bioeng. 87(2), 189-193.
Ho, C. M., Tseng, S. K. and Chang, Y. J., 2002. Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor. Lett. Appl. Microbiol. 35, 481-485.
Ho, C.M., Tseng, S.K. and Chang, Y.J., 2001. Autotrophic denitrification via a novel membrane-attached biofilm reactor. Lett. Appl. Microbiol. 33, 201-205.
Hsieh, Y. L., Tseng, S. K. and Chang, Y. J., 2002. Nitrification using polyvinyl alcohol-immobilizes nitrifying biofilm on an O2-enriching membrane. Biotechnol. Lett. 24, 315-319.
Hunik, J., 1993. Engineering aspects of nitrification with immobilized cell. PhD Thesis. Wageningen Agricultural University, Netherlands.
Jetten, M. S. M., S. J. Horn, and M. C. M. van Loosdrecht., 1997. Towards a more sustainable municipal wastewater treatment system. Water Sci. Technol. 35, 171.
Jetten, M. S. M., Strous, M., van de Pas-Schoonen, K. T., Schalk, J., van Dongen, U. G. J. M., and van de Graaf, A. A., 1999. The anaerobic oxidation of ammonium. FEMS Microbiol. Rev. 22, 421-437.
Jetten, M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G.., and Strous, M., 2001. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Current Opinion in Biotechnol. 12(3), 283-288.
Juretschko, S., G. Timmermann, M. Schmid, K.-H. Schleifer, A. Pommerening-Roser, H.-P. Koops, and M. Wagner., 1998. Combined Molecular and Conventional Analyses of Nitrifying Bacterium Diversity in Activated Sludge: Nitrosococcus mobilis and Nitrospira-Like Bacteria as Dominant Populations. Appl. Environ. Microbiol. 64, 3042-3051.
Kazuichi, I., Yasuhiro, D., Tatsuo, S., Sachiko, Y. and Satoshi, T., 2006. Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Appl. Microbiol. Biotechnol. 70, 47-52.
Kenji, F., Joseph, D. R., Norihara, Y. and Hayato, H., 2003. Mass cultivation of anaerobic ammonium-oxidizing sludge using a novel nonwoven biomass carrier. J. Chemical Engineering of Japan 36, 1163-1169.
Khin, T., and Annachhatre, A. P., 2004. Novel microbial nitrogen removal processes. Biotechnol. Adv. 22(7), 519-532.
Knowles, G., Downing, A. L. and Barrett, M.T., 1965. Determination of Kinetics Constants for nitrifying bacteria in mixed culture with the aid of electronic computer. The Journal of general microbiol. 38, 263-278.
Kuenen, J. G., and M. S. M. Jetten., 2001. Extraordinary anaerobic ammonium-oxidizing bacteria. ASM News 67, 456.
Kuypers, M. M. M., A. O. Sliekers, G. Lavik, M. Schmid, B. B. Jorgensen, J. G. Kuenen, J. S. Sinninghe Damste, M. Strous, and M. S. M. Jetten., 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608.
Lee, C. M., Lu, C. J. and Chang, M. S., 1994. Effects of immobilized cells on the biodegradation of chlorinated phenols. Wat. Sci. Technol. 30(9), 87-90.
Lewandowski, Z., Bakke, R., and Characklis, W. G., 1987. Nitrification and autotrophic denitrification in calcium alginate beads. Water Sci. Technol. 19, 175-182.
Lindsay, M. R., Webb, R.I., Strous, M., Jetten, M.S.M., Butler, M.K., Forde, R.J. and Fuerst, J.A., 2001. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Archives of microbiol. :413-429.
Lipski, A., Friedrich, U., and Altendorf, K., 2001. Application of rRNA-targeted oligonucleotide probe in biotechnology. Appl. Microbiol. Biotechnol. 56, 40-57.
Lu, C. J., Lee, C. M. and Huang, C. Z., 1996. Biodegradation of chlorophenols by immobilized pure-culture microorganisms. Wat. Sci. Technol. 34, 67-72.
Manser, R., K. Muche, W. Gujer, and H. Siegrist., 2005. A rapid method to quantify nitrifiers in activated sludge. Water Res. 39, 1585.
Metcalf and Eddy, 2003. Wastewater Engineering, 4th ed. Mc Graw Hill.
Mulder, A., Van de Graaf, A. A., Robertson, L.A. and Kuenen, J.G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177-183.
Muyzer, G., and K. Smalla., 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73, 127.
Prakasam, and Loether, R. C., 1972. Microbial nitrification and denitrification in concentrated waste. Water Res. 6, 859-869.
Rittmann, B. E., and McCarty, P. L., 2001. Environmental Biotechnology: Principles and Applications.
Ruiz, G., Jeison, D. and Chamy, R., 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 37, 1371-1377.
Schmid, M. C., Maas, B., Dapena, A., van de Pas-Schoonen, K., van de Vossenberg, J., Kartal, B,, van Niftrik, L., Schmidt, I., Cirpus, I., Kuenen, J. G., Wagner, M., Damsté, J. S. S., Kuypers, M., Revsbech, N. P., Mendez, R., Jetten, M. S. M. and Strous, M., 2005. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl. Environ. Microbiol. 71(4), 1677–1684.
Schmid, M., Wachtmann, U. T., Klein, M., Strous, M., Juretschko, S., Jetten, M. S. M., Metzger, J. W., Schleifer, K. H. and Wagner, M., 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93-106.
Schmid, M., Walsh K. , Webb, R., Rijpstra, W. I. C., van de Pas-Schoonen, K. T., Verbruggen, M. J., Hill, T.,Moffett, B., Fuerst, J., Schouten, S., Damste´, J. S. S., Harris, J., Shaw, P., Jetten, M. S, M. and Strous, M., 2003. Candidatus“Scalindua brodae,” sp. nov., Candidatus “Scalindua wagneri,” sp. nov.: two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 26, 529–538.
Schmidt, I., and Bock, E., 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Archaeological Microbiol. 167, 106-111.
Schmidt, I., Sliekers, O., Schmid, M., and Bock, E., 2003. New concept of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev. 27(4), 481-492.
Schoberl, R. F. and Ahlert, R. C., 1975. Kinetics response of pure bed marine nitrification system. J. WPCF. 47(3), 472.
Seung, H. S., Suk, S. C., Kyungmoon, P. and Young J. Y., 2005. Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme Microbiol. Technol. 37, 567-573.
Sliekers, A. O., Derworth, N., Gomez, J. L. C., Strous, M., Kuenen, J. G. and Jetten, M. S. M., 2002. Completely autotrophic nitrogen removal over nitrite in one single reactor. Wat. Res. 36, 2475-2482.
Sliekers, A., Third, K. A., Abma, W., Kuenen, J. G.., and Jetten, M. S. M., 2003. CANON and anammox in a gas-lift reactor. FEMS Microbiol. Lett. 218(2), 339-344.
Stenstorm, M. K. and Podusaka, P. A., 1979. The effect of dissolved oxygen on nitrification, Water Res. 14, 643-649.
Strous, M., Gerven, E., Kuenen, J. G., and Jetten, M. S. M., 1997. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl. Environ. Microbiol. 63, 2446-2448.
Strous, M., Heijnen, J. J., Kuenen, J. G. and Jetten, M. S. M., 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganism. Appl. Microbiol. Biotechnol. 50, 589-596.
Strous, M., Kuenen, J. G. and Jetten, M. S. M., 1999. Key physiology of anaerobic ammonia oxidation. Appl. Environ. Microbiol. 65, 3248-3250.
Third, K. A., Paxman, J., Schmid, M., Strous, M., Jetten, M. S. M. and Cord-Ruwisch, R., 2005. Enrichment of anammox from activated sludge and its application in CANON process. Microbiol. Ecol. 49, 236-244.
Third, K. A., Sliekers, A. O., Kuenen, J. G., and Jetten, M. S. M., 2001. The CANON System (Completely Autotrophic Nitrogen-Removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24(4), 588-596.
Tsuneda, S., T. Nagano, T. Hoshino, Y. Ejiri, N. Noda, and A. Hirata., 2003. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 37, 4965.
Van de Graaf, A. A., De Bruijn, P., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G., 1996. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor. Microbiol. 142, 2187-2196.
Van de Graaf, A. A., De Bruijn, P., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G., 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fuidized bed reactor. Microbiol. 143, 2415-2421.
Van Dongen, U., Jetten, M. S. M., van Loosdrecht, M. C. M., 2001. The SHARON-ANAMMOX process for treatment of ammonium rich wastewater. Water Sci. Technol. 44, 153-60.
Van Loosdrecht MCM and Jetten MSM., 1998. Microbiological conversions in nitrogen removal. Water Sci. Technol. 38, 1-7.
Van Niftrik, L. A., J. A. Fuerst, J. S. S. Damste, J. G. Kuenen, M. S. M. Jetten, and M. Strous., 2004. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol. Lett. 233, 7.
Wang, J. and Kang, J., 2005. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochem. 40, 1973-1978.
Wang, J., and Ning, Y., 2004. Partial nitrification under limited dissolved oxygen condition. Process Biochem. 39(10), 1223-1229.
White, G. F., and Thomas, R. T., 1990. Immobilization of the surfactant-degrading bacterium Pseudomonas C12B in polyacrylamide gel beads:effect of immobilization on the primary and ultimate biodegradation of SDS, and redistribution of bacteria within beads during use. Enzyme Microbiol. Technol. 12, 697-705.
Wu, K. A., and Wisecarver, K. D., 1990. Biological Phenol degradation in a countercurrent three-phase fluidized bed using a novel cell immobilization technique. AICHE Symposium Series. San Francisco. 86, 113-118.
Yamamoto, K., and Win, K. M., 1991. Tannery wastewater treatment using a sequencing batch membrane reactor. Water Sci. Technol. 23, 639-648.
Zhao, H. W., Mavnic, D. S., Oldham, W. K., and Koch, F. A., 1999. Controlling factors for simultaneous nitrification and denitrification in two stage intermittent aeration process treating domestic sewage. Water Res. l33(4), 961-970.
陳國誠, 1992. 微生物酵素工程學, 藝軒圖書出版社.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27454-
dc.description.abstract在低碳氮比廢水之生物除氮技術發展方面,諸多學者投入部分硝化及厭氧氨氧化等自營脫硝程序之研究,前者係將廢水中大約一半之氨氮氧化為亞硝酸鹽氮,後者則以氨氮為電子供給者並以亞硝酸鹽氮為電子接受者,將部分硝化反應槽出流水之殘餘氨氮與亞硝酸鹽氮一併轉變為氮氣。相較於傳統生物除氮程序,其不但節省氧氣需求量、免除有機碳添加,更可縮短生物脫氮流程,故能提升脫硝速率並大幅節省操作成本。
本研究乃基於上述原理,藉由適當之反應槽設計與操作條件之控制,針對低碳氮比廢水或地下水進行本土化自營性生物除氮技術之開發。在反應槽的設計上包括通氣式薄膜硝化反應槽,以及填充床式厭氧氨氧化反應系統,廢水須先行部分硝化至氨氮與亞硝酸鹽氮之濃度大致相等,之後再進行厭氧氨氧化反應,此外並以分子生物技術進行各反應槽菌相之定性與定量分析,以為日後反應槽實際應用之參考。
研究結果顯示此薄膜生物反應器對於低碳氮比廢水之部份硝化極為有利,其操作穩定性高乃一般生物處理所罕見。開放式矽膠管為該反應器之供氣系統,僅通入空氣於矽膠管內即可使反應槽液相維持在低溶氧之狀況,初始鹼度添加量適當可使50%的部份硝化反應在短時間內達成,而產生NO2-/NH4+之比值接近1:1的出流水,由於在反應過程當中無需再添加鹼液來維持適當之pH值,故可省卻一般生物處理程序pH調控之費用;至於系統操作彈性方面則可藉由反應槽氨氮表面負荷(ASL)來加以調控,由廢水氨氮濃度範圍來決定反應槽內矽膠管之長度。綜上所述,此一薄膜生物反應器應可做為Anammox process之理想的前置處理程序。
在厭氧氨氧化微生物之馴養方面,以一般都市污水處理廠之活性污泥於適當條件馴養約四個月,即可獲得具有穩定活性之Anammox biomass,其沉降性良好呈淡褐色且無臭味。研究結果顯示NO2-之消耗速率較NH4+為快,在適當之濃度範圍內且二者初始濃度相近時,NO2-在短時間內有將近100%的去除率,過多的NO2-對於Anammox反應活性有顯著之負面影響, NO2-初始濃度為60~70 mg-N/L之時有最大反應速率,超過80 mg-N/L則除氮效率受限。填充床式厭氧氨氧化反應系統長時間連續進流後,管柱內多孔隙網格擔體或因代謝產物累積而有活性降低之情形,此時若改以循環批次式操作即可獲得改善而逐漸恢復活性。Anammox反應之進行係以NH4+為電子供給者,並優先以NO2-為電子接受者,待NO2-用罄則以NO3-為電子接受者繼續反應,此一現象於本研究中獲得印證。
本研究以PVA-褐藻膠共聚包埋法將馴化之Anammox biomass加以固定化處理,並探討固定化球形顆粒之反應活性,研究顯示此一技術適用於屬性特殊之厭氧氨氧化微生物,其包埋於顆粒中受到良好之保護,外在環境不良亦能存活並保有活性;此外固定化技術有利於固液分離,應用於廢水處理實務應可免除固液分離及污泥流失(biomass washout)之問題。
zh_TW
dc.description.abstractIn the last decade, some new biological nitrogen removal processes have been developed to reduce operational costs related to the oxygen and organic carbon source requirements. Many studies focused on the development of autotrophic nitrogen elimination technology such as combination of partial nitrification and the Anammox process, which is regarded as a promising new method for removing nitrogen from wastewater or groundwater with a low C/N ratio and a fairly large quantity of ammonium.
In this study, a combined partial nitrification MABR-Anammox system was developed to achieve a condition wherein only approximately one-half of ammonium is converted to nitrite, followed by the Anammox process to ensure total nitrogen removal. In addition, a molecular biotechnology method was applied to identify the bacterial community of the biofilm and the acclimated biomass.
The experimental results showed that the developed membrane aeration bioreactor is an efficient, economical system to achieve 50% partial nitrification for ammonium-rich wastewater. The open-ended silicone tube in this bioreactor provided a large specific surface area for oxygen transfer and biofilm attachment. An appropriate initial alkalinity was also an important factor to achieve stable partial nitrification. Bicarbonate that serves carbon and alkalinity sources was added into the wastewater only once from the beginning. There is no need for pH adjustment by adding a base or an acid throughout the reaction if the initial alkalinity is appropriately controlled. Furthermore, an appropriate ammonium surface loading resulted in approximately 50% partial nitrification within a short period of time by adjusting the tube’s length in accordance with the range of initial ammonium loading. As mentioned above, the MABR system developed in this study is very stable and easy to operate. This system has great flexibility for partial nitrification, making it an ideal pretreatment system for Anammox.
Regarding the acclimation of Anammox biomass, the concentrated activated sludge collected from a local municipal WWTP was used as seed sludge. The macroscopic appearance of the enriched biomass remained a light brown color after cultivation under appropriate conditions for about 4 months. Additionally the settling efficiency of the biomass was very remarkable; the consumption of ammonium and nitrite resulted in the production of N2 and a small amount of nitrate. Anammox is denitrification of nitrite with ammonium as the electron donor to yield nitrogen gas, in which reaction nitrite is consumed faster than ammonium. The batch experimental results showed that the maximum anammox reaction rate occurred when the nitrite concentration ranged from 60 to 70 mg-N/L, whereas the activity was inhibited when higher than 80 mg-N/L.
With regard to cell-immobilization technique, the PVA-alginate sodium nitrate method was proven appropriate for enriched anammox biomass because the nitrogen removal activity of immobilized anammox beads was quite satisfactory. This approach demonstrated that the established immobilization technique offers a promising way to granulate valuable anammox biomass, to protect these microorganisms against the unfavorable surroundings, and to efficiently retain anammox activity in the reactor. Therefore, the problems encountered in conventional bioprocesses for nitrogen elimination such as solid-liquid separation and biomass washout could be solved simultaneously.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:05:34Z (GMT). No. of bitstreams: 1
ntu-97-D90541005-1.pdf: 2423051 bytes, checksum: 063b761900073110a81a1384e88b187c (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents第一章 緒論……………………………………………………… ……… 1-1
1-1研究緣起…………………………………………………………………1-1
1-2研究內容及流程…………………………………………………………1-3
第二章 文獻回顧……………………………………… ………………… 2-1
2-1水中氨氮之來源與影響…………………………………………………2-1
2-2生物除氮之基本原理……………………………………………………2-2
2-2-1完全硝化與部分硝化反應之原理……………………………… 2-2
2-2-2部分硝化反應之影響因素……………………………………… 2-4
2-2-3脫硝作用之原理………………………………………………… 2-7
2-2-4厭氧氨氧化作用之原理………………………………………… 2-9
2-2-5厭氧氨氧化反應之影響因素 ………………………………… 2-11
2-3生物除氮技術之發展………………………………………… ……… 2-13
2-3-1傳統生物除氮技術之改良 …………………………………… 2-13
2-3-2利用部分硝化原理之生物除氮技術 ………………………… 2-13
2-4薄膜生物程序之發展與應用………………………………… ……… 2-17
2-5微生物固定化技術之發展與應用…………………………… ……… 2-19
2-5-1微生物固定化技術…………………………………… … …… 2-19
2-5-2微生物包埋劑…………………………………………… … … 2-20
2-6分子生物技術於廢水生物處理之應用…………………………… … 2-23
第三章 以「通氣式薄膜生物反應槽」進行部分硝化反應…………… 3-1
3-1前言………………………………………………………………………3-1
3-2材料與方法………………………………………………………………3-3
3-2-1通氣式薄膜生物反應槽之配置………………………………… 3-3
3-2-2人工合成廢水…………………………………………………… 3-4
3-2-3通氣式薄膜生物反應槽之操作………………………………… 3-5
3-2-4分析方法………………………………………………………… 3-7
3-3結果與討論………………………………………………… ………… 3-13
3-3-1矽膠管空氣擴散試驗 ………………………………………… 3-13
3-3-2生物膜之馴養結果 …………………………………………… 3-13
3-3-3矽膠管通入空氣與否對反應之影響 ………………………… 3-15
3-3-4 初始鹼度值對部分硝化反應之影響………………… ……… 3-17
3-3-5氨氮負荷對部分硝化反應之影響 …………………………… 3-18
3-3-5-1含氮化合物濃度隨時間之變化………………………………3-18
3-3-5-2氨氮表面負荷之探討…………………………………………3-19
3-3-5-3系統NH4+-N/NO2--N比值之變化……………………………3-20
3-3-5-4部份硝化反應各項重要參數之變化…………………………3-21
3-3-5-5部份硝化反應動力常數之探討………………………………3-23
3-3-5-6高氨氮廢水進行部分硝化反應之綜合比較…………………3-24
3-3-6通氣式薄膜硝化反應槽生物膜之菌相分析結果 …………… 3-27
3-4結論…………………………………………………………… ……… 3-28
第四章 以「厭氧氨氧化程序」進行自營脫硝反應………………………4-1
4-1前言………………………………………………………………………4-1
4-2材料與方法………………………………………………………………4-1
4-2-1厭氧氨氧化菌之馴養……………………………………………4-1
4-2-2人工合成廢水……………………………………………………4-2
4-2-3厭氧氨氧化菌液批次式反應器之配置…………………………4-3
4-2-4厭氧氨氧化菌液批次式反應器之操作…………………………4-4
4-2-5填充床式厭氧氨氧化系統之配置………………………………4-5
4-2-6填充床式厭氧氨氧化系統之操作………………………………4-6
4-2-6-1填充床內含菌擔體反應活性之確認…………………………4-6
4-2-6-2連續向上流式操作……………………………………………4-7
4-2-6-3循環批次式操作………………………………………………4-9
4-2-7分析方法 ……………………………………………………… 4-10
4-3結果與討論………………………………………………………… … 4-13
4-3-1厭氧氨氧化菌之馴養結果 …………………………………… 4-13
4-3-1-1馴養階段前期之污泥外觀及反應特性 ……………… 4-13
4-3-1-2馴養階段後期含氮化合物之消長………………………4-14
4-3-2厭氧氨氧化菌之菌相分析結果 ………………………………4-16
4-3-3厭氧氨氧化菌液之批次試驗結果 …………………………… 4-18
4-3-3-1初始濃度高低與含氮化合物消長之關係……………………4-18
4-3-3-2含氮化合物去除率隨時間之變化……………………………4-21
4-3-3-3亞硝酸鹽氮濃度對Anammox反應速率之影響……………4-24
4-3-3-4含氮化合物濃度變化之Anammox反應計量關係……… …4-25
4-3-4填充床式厭氧氨氧化反應系統之試驗結果 ………………… 4-27
4-3-4-1填充床內含菌擔體反應活性之確認…………………………4-27
4-3-4-2連續向上流式操作之試驗結果………………………………4-30
4-3-4-3循環批次式操作之試驗結果…………………………………4-39
4-4結論………………………………………………… ……… …… 4-41
第五章 生物固定化技術於厭氧氨氧化程序之應用………………………5-1
5-1前言………………………………………………………………………5-1
5-2材料與方法………………………………………………………………5-2
5-2-1人工合成廢水…………………………………………………… 5-2
5-2-2微生物包埋試劑………………………………………………… 5-2
5-2-3厭氧氨氧化菌之固定化………………………………………… 5-2
5-2-4 Anammox固定化細胞之活化……………………………………5-3
5-2-5 Anammox固定化細胞之批次試驗………………………………5-4
5-2-6分析方法………………………………………………………… 5-4
5-3結果與討論………………………………………………………………5-5
5-3-1厭氧氨氧化菌之固定化結果…………………………………… 5-5
5-3-2 Anammox固定化細胞之活化結果………………………………5-5
5-3-3 Anammox固定化細胞之批次試驗結果…………………………5-6
5-3-3-1初始濃度高低與含氮化合物消長之關係…………………… 5-6
5-3-3-2含氮化合物去除率隨時間之變化……………………… ……5-8
5-3-3-3含氮化合物濃度變化之Anammox反應計量關係……… … 5-10
5-4結論………………………………………………… …………… ……5-12
第六章 結論與建議………………………………………… …………… 6-1
6-1結論………………………………………………………………………6-1
6-1-1部分硝化程序………………………………………………… ………6-1
6-1-2厭氧氨氧化程序…………………………………………… …………6-2
6-2建議………………………………………………………………………6-3

參考文獻…………………………………………………………………… R-1
附錄一 水質檢測方法…………………………………………………… A-1
附錄二 DNA之萃取(Extraction) …………………………………………A-2
附錄三 聚合酶鏈鎖反應(PCR) ………………………………… ……… A-4
附錄四 DNA之純化(Purification) …………………………… …………A-5
附錄五 變性梯度明膠電泳法(DGGE)………………………… … … …A-7
附錄六 螢光原位雜交法(FISH)…………………………………………A-11

圖目錄
圖2-1 Anammox 反應之機制 …………………………………………… 2-11
圖2-2 應用部分硝化原理之生物除氮程序示意圖………………………2-14
圖3-1 通氣式薄膜硝化反應槽之原理示意圖……………………… …… 3-2
圖3-2通氣式薄膜生物反應槽配置圖………………………………………3-3
圖3-3 反應槽生物膜菌相之定性分析流程圖……………………… …… 3-9
圖3-4 反應槽生物膜菌相之定量分析流程圖……………………………3-12
圖3-5通氣式薄膜硝化反應槽之矽膠管空氣擴散試驗………………… 3-13
圖3-6 通氣式薄膜硝化反應槽生物膜馴養前後之實際狀況……………3-15
圖3-7 液相NH4+、NO2- 及pH值之變化與曝氣與否之影響……………3-16
圖3-8 初始鹼度值對含氮化合物消長之影響……………………… … 3-18
圖3-9 含氮化合物濃度隨時間之變化……………………………………3-20
圖3-10 系統NH4+-N/NO2--N比值之變化……………………………… 3-21
圖3-11 部份硝化反應各項重要參數之變化…………………………… 3-22
圖3-12 部份硝化反應動力常數之比較………………………………… 3-23
圖3-13 以通氣式薄膜生物反應槽進行高氨氮廢水部分硝化反應之情形(初始氨氮濃度為510 mg-N/L) …………………………………… 3-25
圖3-14以通氣式薄膜生物反應槽進行高氨氮廢水部分硝化反應之情形(初始氨氮濃度為250 mg-N/L) …………………………………… 3-26
圖4-1 厭氧氨氧化菌液批次反應器示意圖……………………………… 4-4
圖4-2 恆溫雙匣層填充床式厭氧氨氧化系統配置圖…………………… 4-6
圖4-3 填充床式厭氧氨氧化系統連續向上流式操作示意圖…………… 4-8
圖4-4 填充床式厭氧氨氧化系統循環批次式操作示意圖………………4-10
圖4-5 厭氧氨氧化菌馴養期間之反應情形……………………………4-14
圖4-6 馴養階段後期含氮化合物之濃度變化……………………………4-15
圖4-7 馴養階段後期產氣之組成分析( GC spectrum ) ………………… 4-15
圖4-8 馴養後厭氧氨氧化污泥之顯微鏡檢照片. …………………… …4-17
圖4-9 Anammox菌液批次試驗於不同濃度時含氮化合物之消長………4-19
圖4-10 Anammox菌液批次試驗於不同濃度時含氮化合物去除率之變化 ………………………………………………………………… 4-22
圖4-11 Anammox菌液批次試驗亞硝酸鹽氮初始濃度與反應速率之關係………………………………………………………… ………4-24
圖4-12 Anammox菌液批次試驗於亞硝酸鹽氮初始濃度低於80 mg-N/L時之反應計量關係圖 ……………………………………………… 4-26
圖4-13 連續試驗前含菌擔體第一階段準備期之Anammox反應情形…4-28
圖4-14 連續試驗前含菌擔體第二階段準備期之Anammox反應情形…4-29
圖4-15 填充床式厭氧氨氧化系統在不同水力停留時間下進行連續試驗之情形……………………………………………………………… 4-31
圖4-16 填充床式厭氧氨氧化系統在不同水力停留時間下進行連續試驗之除氮效率比較 (a)氨氮去除率, (b)亞硝酸鹽氮去除率, (c)總氮去除率…………………………………………………………………4-32
圖4-17 填充床式厭氧氨氧化系統在HRT≒36 h及不同初始總氮濃度時進行連續試驗之情形………………………………………………4-34
圖4-18 填充床式厭氧氨氧化系統在HRT≒36 h及不同初始總氮濃度時進行連續試驗之除氮效率 (a)氨氮去除率, (b)亞硝酸鹽氮去除率, (c)總氮去除率………………………………………………………4-35
圖4-19 填充床式厭氧氨氧化系統連續試驗進流水亞硝酸鹽氮濃度之影響…………………………………………………………………4-36
圖4-20填充床式厭氧氨氧化系統連續試驗後之活性檢視…………………………………………………………………4-37
圖4-21 填充床式厭氧氨氧化系統連續試驗後之擔體活化情形 (a)含氮化合物之濃度變化, (b)氨氮及亞硝酸鹽氮去除速率之變化 ……4-38
圖4-22 填充床式厭氧氨氧化系統循環批次試驗含氮化合物之濃度變化…………………………………………………………………4-39
圖4-23 填充床式厭氧氨氧化系統循環批次試驗結果 (a)亞硝酸鹽氮先行用罄之情形, (b)氨氮與硝酸鹽氮之Anammox反應化學計量關係…………………………………………………………………4-40
圖 5-1厭氧氨氧化污泥固定化之結果……………………………………5-5
圖 5-2 Anammox固定化細胞批次試驗於不同初始濃度時含氮化合物之消長…………………………………………………………………5-7
圖 5-3 Anammox固定化細胞批次試驗於不同初始濃度時含氮化合物去除率之變化……………………………………………………………5-9
圖5-4 Anammox固定化細胞批次試驗於不同初始濃度時之反應計量關係…………………………………………………………… ……5-11

表目錄
表2-1 厭氧氨氧化菌(Anammox bcateria)之種類………………………… 2-9
表3-1 通氣式薄膜生物反應槽人工合成廢水之組成……………… …… 3-4
表3-2 通氣式薄膜生物反應槽批次試驗操作條件……………… ……… 3-7
表 3-3 通氣式薄膜硝化反應槽生物膜批次馴養之條件與結果 ……… 3-14
表3-4 通氣式薄膜硝化反應槽生物膜菌相之序列分析結果……………3-27
表4-1 厭氧氨氧化反應槽人工合成廢水之組成………………………… 4-3
表4-2 填充床式厭氧氨氧化系統連續試驗操作條件…………………… 4-9
表4-3 厭氧氨氧化菌FISH鑑定之探針特性………………………… … 4-12
表4-4 Anammox菌液批次試驗化學計量參數……………………………4-25
dc.language.isozh-TW
dc.title利用通氣式薄膜生物反應槽與厭氧氨氧化程序進行廢水除氮之研究zh_TW
dc.titleBiological Denitrification by MABR and ANAMMOX Processen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee歐陽嶠暉,李志源,黃汝賢,張慶源,馬鴻文
dc.subject.keyword部分硝化,薄膜生物反應槽,厭氧氨氧化,生物除氮,zh_TW
dc.subject.keywordpartial nitrification,MBR,ANAMMOX,biological denitrification,en
dc.relation.page140
dc.rights.note有償授權
dc.date.accepted2008-01-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved