請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉倬騰 | |
dc.contributor.author | Yung-Ching Fu | en |
dc.contributor.author | 符勇慶 | zh_TW |
dc.date.accessioned | 2021-06-12T18:04:18Z | - |
dc.date.available | 2008-01-25 | |
dc.date.copyright | 2008-01-25 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-01-17 | |
dc.identifier.citation | Apel, J. R., J. R. Holbrook, A. K. Liu and J. T. Tsai, 1985: The Sulu Sea internal soliton experiment. J. Phys. Oceanogr. 15, 1625-1651.
Apel, J. R., 1987: Principles of Ocean Physics. Academic Press, London, pp. 634. Apel, J. R., M. Badiey, C. S. Chiu, S. Finette, R. Headrick, J. Kemp, J. F. Lynch, A. Newhall, M. H. Orr, B. H. Pasewark, D. Tielbuerger, A. Turgut, K. von der Heydt and S. Wolf, 1997: An overview of the 1995 SWARM shallow water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng. 22, 465-500. Apel, J. R, 2003: A new analytical model for internal solitons in the ocean. J. Phys. Oceanogr. 33, 2247-2269. Barr, B, 2001: Internal solitary waves: a numerical investigation. Ph.D. Dissertation, Clarkson University. Beardsley, R. C., T. F. Duda, J. F. Lynch, J. D. Irish, S. R. Ramp, C. S. Chiu, T. Y. Tang, Y. J. Yang and G. Fang, 2004: Barotropic tide in the northeast South China Sea. IEEE J. Ocean Eng. 29, 1075-1086. Benjamin, T. B., 1966: Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241-270. Benjamin, T. B., 1967: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559-592. Benney, D. J., 1966: Long non-linear waves in fluid flows. J. Math. Phys, 45, 52-63. Bole, J. B., C. C. Ebbesmeyer and R. D. Romea, 1994: Soliton currents in the South China Sea: measurement and theoretical modeling. Paper OTC 7417, presented at the 1994 Offshore Technology Conference, Houston, Texas, May 2-5 1994, 367-376. Chao, S. Y., D. S. Ko, R. C. Lien and P. T. Shaw, 2007: Assessing the west ridge of Luzon Strait as an internal wave mediator. J. Oceanogr., 63, 897-911. Choi, W, and R. Camassa, 1999: Fully nonlinear internal waves in a two-layer system. J. Fluid Mech., 396: 1-36. Farmer, D.M.,1978:Observations of long nonlinear internal waves in a lake. J. Phys. Oceanogr., 8: 63-73. Farmer, D. and L. Armi, 1999: The generation and trapping of internal solitary over topography. Science, 283, 188-190. Fett, R. and K. Rabe, 1977: Satellite observation of internal wave refraction in the South China Sea. Geophys. Res. Lett., 4, 189-191. Grue, J.,1997: A method for computing unsteady fully nonlinear interfacial waves . Journal of Fluid Mechanics, 351: 223-252. Grue, J., A. Jensen, P.O. Rusas and J.K. Sveen, 1999: Properties of large-amplitude internal waves. J. Fluid Mech., 38, 257-278. Grue, J., 2002: On four highly nonlinear phenomena in wave theory and marine hydrodynamics. Appl. Ocean Res., 24, 261-274. Hsu, M. K. and A. K. Liu, 2000: Nonlinear internal waves in the South China Sea. Can. J. of Rem. Sens., 26(2), 72-81. Hsu, M. K., A. K. Liu and C. Liu, 2000: A study of internal waves in the China Seas and Yellow Sea using SAR. Cont. Shelf Res., 20, 389-410. Joseph, R. I., 1977: Solitary waves in a finite depth fluid. J. Phys., A:Math. Gen, 10, 225-227. Kao, T. W., H. P. Pao and D. Renouard, 1985: Internal solitons on the pycnocline: generation, propagation, and shoaling on breaking over a slope. J. Fluid Mech., 159, 19-53. Klymak, J. M., R. Pinkel, C. T. Liu, A. K. Liu and L. David, 2006: Prototypical solitons in the South China Sea. Geophys. Res. Lett., 33, 1029-1033. Koop, C. G. and Butler, G., 1981: An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112, 225-251 Kubota, T., D. R. S. Ko and L. D. Dobbs, 1978: Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth. J. Hydronaut., 12, 157-165. Liu, A. K., J. R. Apel and J. R. Holbrook, 1985: Nonlinear internal wave evolution in the Sulu Sea. J. Phys. Oceanogr., 15, 1613-1624. Liu, A. K., Y. S. Chang, M. K. Hsu and N. K. Liang, 1998: Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res., 103, 7995-8008. Liu, A. K. and M. K. Hsu, 2004: Internal wave study in the South China Sea using Synthetic Aperture Radar (SAR). Int. J. Rem. Sens., 10-20, 25, No. 7-8, 1261-1264. Liu A. K., S. R. Ramp, Y. Zhao and T. Y. Tang, 2004: A case study of internal solitary wave propagation during ASIAEX 2001. IEEE J. Ocean Eng., 29, 1144-1156. Liu, C. T., R. Pinkel, M. K. Hsu, J.M. Klymak, H. W. Chen and C. Villanoy, 2006: Non-linear internal waves from Luzon Strait. EOS, 87(42), 449-451. Liu, C. T, M. K. Hsu, H. W. Chen and Y Yang, 2007: Remote sensing and in situ observation of internal wave generation in the Luzon Strait. ONR report. Maxworthy, T., 1979: A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, 338-346. Ono, H., 1975: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan, 39, 1082-1091. Osborn, A. R. and T. L. Burch, 1980: Internal solitons in the Andaman Sea. Science, 208, 451-460. Pickard, G. L. and W. J. Emery, 1982: Descriptive Physical Oceanography, 4th ed. Ramp, S. R., T. Y. Tang, T. F. Duda and J. F. Lynch, 2004: Internal solitons in the northeastern South China Sea. IEEE J. Ocean Eng., 29, 1157-1181. Saffarinia, K., 1991: Numerical and experimental study of the interaction of an internal solitary wave with a slope-shelf topography. Ph.D. Dissertation, The Catholic University of America. Stastna, M., 2004: Upstream-propagating solitary waves and forced internal-wave breaking in stratified flow over a sill. Royal Soc., 02, 161-193 Valentine, D.T., 1987: Comparison of finite difference methods to predict passive contaminant transport. ASME Computers in Engineering, 3, 263-269. Vlasenko, V. I. and K. Hutter, 2000: Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Process Geophys., 8, 223-239. Winters, K. B. and E. A. D’Asaro, 1997: Direct simulation of internal wave energy transfer. J. Phys. Oceanogr., 27, 1937-1945. Yang, Y. J., T. Y. Tang and S. R. Ramp, 2004: Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Ocean Eng., 29, 1182-1199. Zheng, Q. A, V. Klemas, Y. L Yuan and X. H. Yan, 2001: Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J. Geophys. Res., 106, 31415-31423. 趙彥翔 (2006),非線性內波在南海北部大陸棚傳遞之模擬。國立臺灣大學理學院海洋研究所碩士論文, 李昶緯 (2007),南海北部深水區非線性內波之傳遞特性。國立臺灣大學理學院海洋研究所碩士論文,. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27418 | - |
dc.description.abstract | 由歷年衛星影像資料中顯示,南海北部的非線性內波運動十分頻繁,從東邊的呂宋海峽到南海西北邊的大陸棚區可以明顯的觀察到非線性內波訊號。關於南海非線性內波的研究多集中於南海大陸棚上,多數研究的結果推測南海北部非線性內波起源於南海東緣的呂宋海峽區域,但是對於非線性內波如何產生與演化、如何從深水區傳遞到南海大陸棚的研究相對較少,也尚未有明確的結論。
在2005年與2006年的內波起源實驗中,於呂宋海峽先後施放五組溫度計串錨碇進行短期的觀測,藉由量測海水等溫線隨時間變化的情形,研究非線性內波在此深水區中傳遞時隨距離演化的情形,亦由溫度計串錨碇上觀測到最大振幅約140公尺的非線性內波。在2007年同區域的實驗中,經過長距離追蹤內波的第一個波前,發現從表層以下,內波波形及振幅幾乎未改變,振幅和半高寬都很大,各層深度內波的振幅η與深度h的比值 η/h 接近於1,應該屬於強非線性內波。之後經過實測資料以及衛星影像的比較,發現此強非線性內波在118.5°E時已經演化為4個波前的波包,與過去資料的演化情形相當,但其空間尺度較2005及2006年的觀測資料來的大上許多,其半高寬 (L) 約為5.5公里,而推算出來的半寬 (Δ) 則為2.9公里。 當η/h~1時,一階弱非線性的KdV理論已經不能適用(Grue, 1999),所以本研究採用數值方法來模擬南海北部發現之強非線性內波,數值模式使用完整非線性項的Navier-Stokes 方程式、擴散方程式及連續方程式。依照Liu (2006) 的推論結果,南海北部非線性內波的發生處位於呂宋海峽西側的恆春海脊位置,故在此處放置一內孤立波波前用以模擬其傳遞的過程。模擬結果顯現非線性內波的傳遞情形類似實測資料,數值模擬中的強非線性內波其半寬和振幅皆很大,隨著傳遞距離的增加同樣會產生波包演化的情形,而其波包演化的數目、時間、距離以及傳遞速度與過去的資料亦相當接近;例如,在恆春海脊西方100 km處,模擬的結果顯示非線性內波演化為3個波前,其傳遞速度約為2.76 m/s,與實測現象類似。 伴隨著電腦效能的提昇以及改進數值運算方法的效率,相信更好解析度的數值模式不僅在模擬的物理現象更真實,在內波形成過程的動力研究上,更可模擬非線性內波的形成過程。 | zh_TW |
dc.description.abstract | Nonlinear internal waves (NLIWs) are very active in the northern South China Sea (SCS). Historical satellite images show that NLIWs appear often between Luzon Strait in the east and the continental shelf at northwest of SCS. Most of the researches of NLIW concentrate over the shelf of SCS, but not much on the propagation and the generation process of NLIW in the deep sea region of SCS. So far, lots of researches suggest that the source of NLIW is in the Luzon Strait, but there is no definitive conclusion about how it happens and where the locations of source regions are.
In the field experiment to find the source of NLIWs in 2005 and 2006, total 5 T-strings were deployed in Luzon Strait for a week long observation. By the record of isotherm displacement during the passage of NLIW at different locations, we derived information on the evolution of NLIW (from single wave front to wave packets) west of HengChun Ridge, and found maximum amplitude about 140 m. In 2007 experiment, the focus was closer to HengChun Ridge and the NLIWs again have big amplitude (η) and large half-length from surface down to 500 m depth. The ratio of η to upper layer thickness (h) was nearly 1. They are categorized as strongly NLIWs, while KdV theory can only simulate the wave form and propagation of a weakly NLIW, i.e. η/h < 0.4 (Grue, 1999). From the analysis of field data and satellite images of these NLIWs, we found that the width between points of vertical displacement equal to half amplitude, is about 5.5 km, that is equivalent to half-width of 2.9 km, according to KdV theory. To account for the strong non-linearity of NLIWs, a fully non-linear Navier-Stokes equation, along with diffusion and continuity equations, are used to construct a numerical model studying strong NLIWs. Simulation starts with a solitary wave at the left side of the model that represents the source of NLIW and the location of HengChun Ridge (Liu et al, 2006). The model-simulated propagation of NLIW looks similar to that observed in the field, in the sense of (1) the propagation speed, amplitude and half-width of NLIWS, (2) the number of wave packets that increases with the distance of propagation, or the evolution of NLIW. With the advancement of computer technology and the improvement of numerical method, this numerical model may imitate the NLIW evolution with details and become a more powerful tool in studying the generation process of NLIW. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:04:18Z (GMT). No. of bitstreams: 1 ntu-97-R94241102-1.pdf: 6631827 bytes, checksum: f690d92da3b1172e1dc7081f09b20bf7 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目 錄
頁碼 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 表目錄 Ⅷ 方程式目錄 Ⅸ 詞彙表 Ⅹ 符號表 XI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 前人相關研究 3 1-2.1 南海北部非線性內波之研究 3 1-2.2 KdV方程式 5 1-2.3 各種理論的適用範圍 7 1-3 弱非線性內波與強非線性內波 8 1-3.1 非線性內波之波形及波包特性 11 1-4 研究方法 13 第二章 實測與數值模式介紹 14 2-1 實測現象 14 2-2 數值模式的文獻回顧 20 2-3 模式基本設計 21 2-3.1 控制方程式 21 2-3.2 初始與邊界條件 23 2-3.3 網格化 23 第三章 數值模擬與理論驗證 26 3-1 模式流體結構的配置 26 3-2 模式執行結果 27 3-3 動能與位能分析 35 3-4 波形特徵的比較 36 3-4.1 波形的比較 37 3-4.2 振幅、半寬與半高寬 38 3-4.3 非線性波相速度與線性波相速度 41 第四章 南海北部內波實驗與數值模擬 43 4-1 實驗方法與步驟 43 4-1.1 現場資料處理 43 4-1.2 衛星影像比對 46 4-1.3 數值模擬 46 4-2 資料分析 46 4-3 南海北部內波的模擬 55 4-4 模擬結果 58 第五章 結論與未來展望 63 5-1 討論與結論 63 5-1.1 數值模式與KdV理論 63 5-1.2 現場觀測實驗 63 5-1.3 南海內波模擬 64 5-2 未來展望 65 參考文獻 66 | |
dc.language.iso | zh-TW | |
dc.title | 南海北部強非線性內波之數值模擬 | zh_TW |
dc.title | Numerical Simulation of Strongly Non-linear Internal Wave in Northern South Cnina Sea | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 范光龍,許明光,陳先文 | |
dc.subject.keyword | 強非線性內波,數值模式,半高寬,Navier-Stokes方程式, | zh_TW |
dc.subject.keyword | Strongly nonlinear internal wave,numerical model,half amplitude,Navier-Stokes equation, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-01-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 6.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。