Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘堯(Ming-Yau Chern)
dc.contributor.authorKeng-Shuo Wuen
dc.contributor.author吳耿碩zh_TW
dc.date.accessioned2021-06-12T18:04:06Z-
dc.date.available2008-01-30
dc.date.copyright2008-01-30
dc.date.issued2008
dc.date.submitted2008-01-19
dc.identifier.citationchapter 1
1 F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284, 1335 (1999).
2 K. I. Lee, M. H. Jeun, J. Y. Chang, S. H. Han, J. G. Ha, and W. Y. Lee, Phys. Stat. Sol. (b) 241, 1510 (2004).
3 Y. M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).
4 S. Agergaard, Ch. Sondergaard, H. Li, M. B. Nielsen, S. V. Hoffmann, Z. Li, and Ph. Hofmann, New J. Phys. 3, 15.1 (2001).
5 Ph. Hofmann, Prog. Surf. Sci. 81, 191 (2006).
6 M. H. Cohen, Phys. Rev. 121, 387 (1961).
7 Y. Liu, and R. E. Allen, Phys. Rev. B 52, 1566 (1995).
8 J. P. Issi, Aust. J. Phys. 32, 585 (1979).
9 M. P. Vecchi, and M. S. Dresselhaus, Phys. Rev. B 10, 771 (1974).
chapter 2
1 D. B. Chrisey, G. K. Hubler, Pulsed Laser Deposition of Thin Films, Wiley-Interscience, New York, 1994.
2 P. R. Willmott, J. R. Huber, Rev. Mod. Phys. 72, 315 (2000).
3 M. Z. Lin, C. T. Su, H. C. Yan, M. Y. Chern, Jpn. J. Appl. Phys. 44, L995 (2005).
4 B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, 1978.
5 G. Lim, W. Parrish, C. Ortiz, M. Bellotto, and M. Hart, J. Mater. Res. 2, 471 (1987).
6 P. N. Gibson, M. E. Özsan, D. Lincot, P. Cowache, and D. Summa, Thin Solid Films 361/362, 34 (2000).
7 L. G. Parratt, Phys. Rev. 95, 359 (1954).
8 D. K. Bowen, and B. K. Tanner, Nanotechnology 4, 175 (1993).
9 E. Chason, and T. M. Mayer, Crit. Rev. Solid State Mat. Sci. 22, 1 (1997).
10 P. M. Hemenger, Rev. Sci. Instrum. 44, 698 (1973).
chapter 3
1 T. Hamada, K. Yamakawa, and F. E. Fujita, J. Phys. F: Metal Phys. 11, 657 (1981).
2 W. Buckel, and R. Hilsch, Z. Phys. 138, 109 (1954).
3 N. Kürti, and F. Simon, Proc. R. Soc. A 151, 610 (1935).
4 D. R. Liu, K. S. Wu, M. F. Shin, and M. Y. Chern, Opt. Lett. 27, 1549 (2002).
5 J. H. Hsu, Y. S. Sun, H. X. Wang, P. C. Kuo, T. S. Hsieh, and C. T. Liang, J. Magn. Magn. Mater. 272/276, 1769 (2004).
6 S. Cho, A. DiVenere, G. K. Wong, J. B. Ketterson, J. R. Meyer, and J. I. Hong, Phys. Rev. B 58, 2324 (1998).
7 J. A. van Hulst, H. M. Jaeger, and S. Radelaar, Phys. Rev. B 52, 5953 (1995).
8 M. M. Rosario, Y. Liu, Phys. Rev. B 65, 094506 (2002).
9 S. Konczak, S. Kochowski, and Z. Ziolowski, Thin Solid Films 17, 199 (1973).
10 A. A. Ramadan, A. M. El-Shabiny, and N. Z. El-Sayed, Thin Solid Films 209, 32 (1992).
11 Y. Namba, and T. Mori, J. Appl. Phys. 46, 1159 (1975).
12 M. Nakada, N. Ohshima, and M. Okada, Jpn. J. Appl. Phys. 35, 714 (1996).
13 S. Ozawa, and S. Fujiwara, Thin Solid Films 37, 73 (1976).
14 M. K. Zayed, and H. E. Elsayed-Ali, Phys. Rev. B 72, 205426 (2005).

15 A. Dauscher, M. O. Boffoué, B. Lenoir, R. Martin-Lopez, and H. Scherrer, Appl. Surf. Sci. 138/139, 188 (1999).
16 M. O. Boffoué, B. Lenoir, H. Scherrer, and A. Dauscher, Thin Solid Films 322, 132 (1998).
17 J. C. G. de Sande, T. Missana, and C. N. Afonso, J. Appl. Phys. 80, 7023 (1996).
18 H. T. Chu, P. N. Henriksen, J. Jing, H. Wang, and X. Xu, Phys. Rev. B 19, 11233 (1992).
19 R. A. Hoffman, and D. R. Frankl, Phys. Rev. B 3, 1825 (1971).
20 M. Inoue, H. Yagi, and Y. Tamaki, Jpn. J. Appl. Phys. 12, 310 (1973).
21 M. Inoue, Y. Tamaki, and H. Yagi, J. Appl. Phys. 45, 1562 (1974).
22 M. Subotowicz, M. Jalochowski, B. Mikolajczak, and P. Mikolajczak, Phys. Stat. Sol. (a) 17, 79 (1973).
23 F. Völklein, E. Kessler, Phys. Stat. Sol. (b) 134, 351 (1986).
24 M. O. Boffoué, B. Lenoir, A. Jacquot, H. Scherrer, A. Dauscher, and M. Stölzer, J Phys. Chem. Solids 61, 1979 (2000).
chapter 4
1 Y. F. Ogrin, V. N. Lutskii, and M. I. Elinson, Sov. Phys. JETP Lett. 3, 71 (1966).
2 Y. F. Ogrin, V. N. Lutskii, M. U. Arifova, V. I. Kovalev, V. B. Sandomirskii, and M. I. Elinson, Sov. Phys. JETP 26, 714 (1968).
3 V. P. Duggal and R. Rup, J. Appl. Phys. 40, 492 (1969).
4 R. A. Hoffman, and D. R. Frankl, Phys. Rev. B 3, 1825 (1971).
5 N. Garcia, Y. H. Kao, and M. Strongin, Phys. Rev. B 5, 2029 (1972).
6 M. Inoue, Y. Tamaki, and H. Yagi, J. Appl. Phys. 45, 1562 (1974).
7 Y. F. Komnik and V. V. Andrievskii, Sov. J. Low Temp. Phys. 1, 51 (1975).
8 E. I. Rogacheva, S. N. Grigorov, O. N. Nashchekina, S. Lyubchenko, and M. S. Dresselhaus, Appl. Phys. Lett. 82, 2628 (2003).
9 S. Agergaard, Ch. Sondergaard, H. Li, M. B. Nielsen, S. V. Hoffmann, Z. Li, and Ph. Hofmann, New J. Phys. 3, 15.1 (2001).
10 Ph. Hofmann, Prog. Surf. Sci. 81, 191 (2006).
11 G. Jnawali, H. Hattab, B. Krenzer, and M. Horn von Hoegen, Phys. Rev. B 74, 195340 (2006).
12 C. Bobisch, A. Bannani, M. Matena, and R. Möller, Nanotecnology 18, 1 (2007).
13 T. P. Turnbull, and E. P. Warekois, Proc. AIME Metal Soc. Conf. 15, 61 (1963).

14 J. T. Sadowski, T. Nagao, M. Saito, A. Oreshkin, S. Yaginuma, S. Hasegawa, T. Ohno, and T. Sakurai, Acta Phys. Pol. A 104, 381 (2003).
15 T. Nagao, J. T. Sadowski, M. Saito, S. Yaginuma, Y, Fujikawa, T. Kogure, T. Ohno, Y. Hasegawa, S. Hasegawa, and T. Sakurai, Phys. Rev. Lett. 93, 105501 (2004).
16 S. A. Scott, M. V. Kral, and S. A. Brown, Surf. Sci. 587, 175 (2005).
17 M. Kammler, and M. Horn-von Hoegen, Surf. Sci. 576, 56 (2005).
18 M. O. Boffoué, B. Lenoir, A Jacquot, H. Scherrer, A Dauscher, and M. Stölzer, J. Phys. Chem. Solids 61, 1979 (2000).
chapter 5
1 V. B. Sandomirskii, Sov. Phys. JETP 25, 101 (1967).
2 Y. M. Lin, X. Sun and M. S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).
3 E. I. Rogacheva, S. N. Grigorov, O. N. Nashchekina, S. Lyubchenko, and M. S. Dresselhaus, Appl. Phys. Lett. 82, 2628 (2003).
4 T. Hirahara, T. Nagao, I. Matsuda, G. Bihlmayer, E. V. Chulkov, Yu. M. Koroteev, P. M. Echenique, M. Saito and S. Hasegawa, Phys. Rev. Lett. 97, 146803 (2006).
5 T. W. Cornelius, M. E. Toimil-Molares, R. Neumann. G. Fahsold, R. Lovrincic, A. Pucci and S. Karim, Appl. Phys. Lett. 88, 103114 (2006).
6 L. Li, Y. W. Yang, X. H. Huang, G. H. Li, R. Ang, and L. D. Zhang, Appl. Phys. Lett. 88, 103119 (2006).
7 Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, Appl. Phys. Lett. 88, 143106 (2006).
8 P. H. P. Chiu, and I. Shih, Appl. Phys. Lett. 88, 072110 (2006).
9 Y. F. Ogrin, V. N. Lutskii, and M. I. Elinson, Sov. Phys. JETP Lett. 3, 71 (1966).
10 Y. F. Ogrin, V. N. Lutskii, M. U. Arifova, V. I. Kovalev, V. B. Sandomirskii, and M. I. Elinson, Sov. Phys. JETP 26, 714 (1968).
11 N. Garcia, Y. H. Kao, and M. Strongin, Phys. Rev. B 5, 2029 (1972).
12 R. A. Hoffman, and D. R. Frankl, Phys. Rev. B 3, 1825 (1971).
13 M. Inoue, Y. Tamaki, and H. Yagi, J. Appl. Phys. 45, 1562 (1974).
14 V. P. Duggal and R. Rup, J. Appl. Phys. 40, 492 (1969).
15 Y. F. Komnik and V. V. Andrievskii, Sov. J. Low Temp. Phys. 1, 51 (1975).
16 S. Agergaard, Ch. Sondergaard, H. Li, M. B. Nielsen, S. V. Hoffmann, Z. Li, and Ph. Hofmann, New J. Phys. 3, 15.1 (2001).
17 Ph. Hofmann, Prog. Surf. Sci. 81, 191 (2006).
18 F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, C. L. Chien, Y. L. Wang, K. Y. Zhang, and K. Han, Phys. Rev. B 61, 6631 (2000).
19 H. T. Chu, and W. Zhang, J. Phys. Chem. Solids 53, 1059 (1992).
20 J. P. Issi, Aust. J. Phys. 32, 585 (1979).
21 K. S. Wu, and M. Y. Chern, Thin solid films (2007), doi:10.1016/j.tsf.2007.06.138.
22 L. M. Lifshitz, and A. M. Kosevich, Bull. Acad. Sci. USSR, Phys. Ser. 19, 353 (1955).
Appendix A
1 John Singleton, Theory and Electronic Properties of Solids, Oxford, 2001.
Appendix B
1 Ph. Hofmann, Prog. Surf. Sci. 81, 191 (2006).
2 Y. M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).
3 H. T. Chu, and W. Zhang, J. Phys. Chem. Solids 53, 1059 (1992).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27412-
dc.description.abstract我們採用脈衝雷射蒸鍍法在玻璃基板上成長鉍薄膜,並且觀察鉍薄膜在不同基板溫度(110 K 到 473 K)的生長狀況。實驗方法包括用X-ray繞射來分析薄膜的晶體結構,還有利用X-ray反射來測量薄膜厚度及表面粗糙度。另外,我們還使用原子力顯微鏡觀察薄膜的表面。在電性測量上,我們用Van der Pauw 4點量法來測量薄膜的電阻值和霍爾係數。我們發現薄膜的方向、晶粒的大小、表面粗糙度都會隨基板溫度而改變。結果顯示,在低溫下(110 K < T < 130 K)成長的鉍薄膜和高溫下成長的情況有很大的差異。例如:當生長溫度從298 K 降到110 K時,薄膜方向會從(111)轉變成(110)方向。而且在沒有任何額外退火(anneal)的處理下,表面粗糙度也從1.2 nm減少到0.5 nm。由於脈衝雷射蒸鍍法提供給粒子的動能很高,我們相信蒸鍍到基板表面的粒子有足夠的動能可以到達最低能量態。因此我們推論:在低於130 K時,鉍薄膜在熱力學上最穩定的狀態是(110)方向。
在電性方面的表現,低溫成長的鉍薄膜和高溫成長的鉍薄膜也呈現很不一樣的特性。例如:一般鉍薄膜都是p-type,但是低溫成長(110)方向的鉍薄膜卻是n-type。另外我們在10 K的低溫下也測量到低溫成長的鉍薄膜的電阻率會隨著厚度有震盪的變化。我們將這個現象歸因於量子侷限效應(quantum size effect)。更進一步地分析不同厚度下電性和溫度的關係可以發現:當厚度很薄的時候,由於表面的效應,鉍薄膜會有金屬性的傾向(metallic-like)而不是半導體。
zh_TW
dc.description.abstractBismuth thin films were grown by pulsed laser deposition on glass substrates with the substrate temperature from 110 K to 473 K. The structure of the films was characterized by X-ray diffraction. The surface morphology was studied by atomic force microscopy and X-&not;ray reflectivity. The electrical properties of the films were probed by Van der Pauw measurement. We observed the changes in the orientation, grain size and roughness of the bismuth films as a function of the substrate temperature. The results for the Bi films grown at low temperatures (110 K < T < 130 K) were very different from those for the (111)-oriented Bi films grown at higher temperatures. As the temperature was reduced from 298 K to below 130 K, the preferred orientation of the Bi films was changed from (111) into (110), and the surface roughness was reduced from 1.2 nm to 0.5 nm without any annealing. Considering the highly energetic adatoms generated by the short UV laser pulses and hence their capability to escape from the local energy minima, the orientation transformation below 130 K might be an indication that the (110)-oriented Bi thin film on glass is thermodynamically more stable than the (111)-oriented one at low temperatures.
The electronic properties of the Bi thin films, grown by pulsed laser deposition at 110 K on glass substrates in vacuum, were also very different from those grown at higher temperatures. The conduction type changed from p- to n-type, indicated by the negative Hall coefficients of the films measured from 10 to 300 K. Oscillating thickness dependence of the resistivity was observed at 10 K, which is attributed to the quantum size effect. Moreover, the temperature and thickness dependence of the electrical properties shows the trend that when the films are thinner, they become more metallic-like rather than semiconductive due to the surface effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:04:06Z (GMT). No. of bitstreams: 1
ntu-97-D90222013-1.pdf: 1806586 bytes, checksum: 801bb2f37f46689658347e2d53cca4a7 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
List of figures ix
List of tables xii
Chapter 1 Introduction 1
1.1 The crystalline structure of bismuth 3
1.2 The electronic structure of bismuth 7
References 10
Chapter 2 Experimental 11
2.1 Pulsed laser deposition 11
2.2 X-ray diffraction 14
2.2.1 Bragg-Brentano X-ray diffraction 14
2.2.2 Glancing angle X-ray diffraction 15
2.2.3 Omega rocking curve measurement 16
2.3 X-ray reflection 17
2.4 Atomic force microscopy 18
2.5 Van der Paul measurement 19
References 21
Chapter 3 High temperature growth 22
3.1 X-ray diffraction analysis 24
3.2 Atomic force microscopy 27
3.3 X-ray reflectivity 29
3.4 Electrical properties 31
3.5 Summary 33
References 35
Chapter 4 Low temperature growth 37
4.1 Bragg-Brentano X-ray diffraction analysis 39
4.2 The stability of (110)-oriented Bi thin films 42
4.3 Omega rocking curve analysis 47
4.4 Surface morphology 51
4.5 Summary 54
References 55
Chapter 5 Electrical transport properties 57
5.1 The effective mass of bismuth 57
5.2 The temperature dependence of the relative resistivity 59
5.3 The Hall coefficient 61
5.4 Metallic-like behavior 63
5.5 Quantum size effect 64
5.6 Summary 66
References 68
Chapter 6 Conclusions 70
Appendices 72
Appendix A Hall effect with two carrier types 72
References 76
Appendix B Effective mass of the conduction electrons 77
B.1 The unit normal vector of (110) crystal plane 77
B.2 The effective mass tensor 78
B.3 The effective mass 80
References 81
dc.language.isoen
dc.title低溫生長鉍薄膜之結構與電性的研究zh_TW
dc.titleStructures and electrical properties of bismuth thin films grown at low temperatureen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee郭光宇,林敏聰,許仁華,陳政維
dc.subject.keyword鉍薄膜,脈衝雷射蒸鍍,薄膜方向,粗糙度,電性,zh_TW
dc.subject.keywordBismuth thin films,pulsed laser deposition,preferred orientation,roughness,electrical properties,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2008-01-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved