請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27404完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 樓國隆 | |
| dc.contributor.author | Kuan-Tso Chen | en |
| dc.contributor.author | 陳冠佐 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:03:50Z | - |
| dc.date.available | 2013-02-19 | |
| dc.date.copyright | 2008-02-19 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-21 | |
| dc.identifier.citation | Abeyama K, Stern DM, Ito Y. (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J. Clin. Invest. 115: 1267-1274.
Bajzar L, Manuel R, Nesheim M. (1995) Purification and characterization of TAFI, a thrombin-activatable fibrinolysis inhibitor. J. Biol. Chem. 270: 14477–14484. Boffa MC, Burke B, Haudenschild CC. (1987) Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J.Histochem. Cytochem. 35: 1267-1276. Cereghino JL, Cregg JM. (2002) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiolo. Rev. 24: 45-66. Conway EM, Boffa MC, Nowakowski B, Steiner-Mosonyi M. (1992) An ultrastructural study of thrombomodulin endocytosis: internalization occurs via clathrin-coated and non-coated pits. J. Cell. Physiol. 151: 604-612. Conway EM, Van de Wouwer B, Pollefeyt S. (2002) The Lectin-like Domain of Thrombomodulin Confers Protection from Neutrophil-mediated Tissue Damage by Suppressing Adhesion Molecule Expression via Nuclear Factor kB and Mitogen-activated Protein Kinase Pathways. J. Exp. Med. 196: 565-557. David R. Light, Charles B. Glaser, Melissa Betts, Eric Blasko, Elizabeth Campbell, Jeffrey H. Clarke, Michael McCaman, Kirk McLean, Mariko Nagashima, John F. Parkinson, Galina Rumennik, Tish Young and John Morser. (1999) The interaction of thrombomodulin with Ca2+. Eur. J. Biochem. 262: 522-533. Dixon RA, Kobilka F, Strader BK. (1986) Cloning of the gene and cDNA for mammalian β--adrenergic receptor and homology with rhodopein. Nature. 321: 75-79. Dodd RB, Drickamer K. (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology. 11: 71R–79R. Drickamer K. (1999) C-type lectin-like domains. Curr. Opin. Structural Biology. 9: 585–590. Fuentes-Prior P, Iwanaga Y, Huber R. (2000) Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature. 404: 518-525. Gerlitz B, Hassell T, Vlahos CJ, Parkinson JF, Bang NU, Grinell BW. (1993) Identification of the predominant glycosaminoglycan-attachment site in soluble recombinant human thrombomodulin: potential regulation of functionality by glycosyltransferase competition for serine474. Biochem. J. 295: 131-140. Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. (1995) The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J. Biol. Chem. 118: 1030-1036. Huang HC, Shi GY, Jiang SJ. (2003) Thrombomodulin-mediated Cell Adhesion involvement of its lectin-like domain. J. Biol. Chem. 278: 46750-46759. Ikeda T, Ishii H, Higuchi T. (2000) Localization of thrombomodulin in the anterior segment of thehuman eye. Invest. Ophthalmol. Vis. Sci. 41: 3383-3390. Jackman RW, Beeler DL, Fritize L. (1987) Human thrombomodulin gene is intron depleted: Nucleic acid sequences of the cDNA and gene predict protein structure and suggest sites of regulatory control. Proc. Natl. Acad. Sci. U S A 84: 6425-6429. John W. Weisel, Chandrasekaran Nagaswami, Tish Ann Young§, and David R. Light. (1996) The Shape of Thrombomodulin and Interactions with Thrombin as Determined by Electron Microscopy. J. Biol. Chem. 271: 31485-31490. Kane. J. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494-500. Konarve PV, Petoukhov MV, Volkov VV, Svergun DI. (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J .Appl. Cryst. 39: 277-286. Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. (1991) Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br. J. Haematol. 78: 515-522. Lager DJ, Callaghan EJ, Worth SF, Raife TJ, Lentz SR. (1995) Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am. J. Pathol. 146: 933-943. Light DR, Glaser CB, Betts M, Blasko E, Campbell E, Clarke JH, McCaman M, McLean K, Nagashima M, Parkinson JF, Rumennik G, Young T, Morser J. (1999) The interaction of thrombomodulin with Ca2+. Eur. J. Biochem 262: 522-533. Llera A.S., Viedma F, Sánchez-Madrid F, Tormo J. (2002) Crystal Structure of the C-type Lectin-like Domain from the Human Hematopoietic Cell Receptor CD69. J. Biol. Chem. 27: 7312-7319. Marasco EK, Vay K, Schmidt-Dannert C. (2006) Identification of Carotenoid Cleavage Dioxygenases from Nostoc sp. PCC 7120 with Different Cleavage Activities. J. Biol. Chem.. 281: 31583-31593. Marshall W, Lovesey SW. (1971) Theory of Thermal Neutron Scattering (Clarendon Press, Oxford). Maruno M, Yoshimine T, Isaka T. (1994) Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J. Neurooncol.19: 155-160. McCachren SS, Diggs J, Weinberg JB, Dittman WA. (1991) Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood. 78: 3128-3132. Miroux B, Walker JE. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol. 260: 289-298. Mues GI,, Munn TZ, Raese JD. (1986) A human gene family with sequence homology to Drosophila melanogaster Hsp70 heat shock genes. J. Biol. Chem. 261: 874-877. Nagala S, Mantei M,Weissman C. (1980) The structure of one of the eight or more distinct chromosomal genes for human interferon-α Nature. 287: 401-408. Parkinson JF, Nagashima M, Kuhn I, Leonard J, Morser J. (1992) Structure-function studies of the epidermal growth factor domains of human thrombomodulin. Biochem. Biophys. Res. Commun. 185: 567–576. Parkinson JF, Garcia JG, Bang NU. (1990) Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochem Biophys Res Commun. 169: 177-183. Petr. V. Konarev, M. V. Petoukhov, V. V. Volkov and D. I. (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Cryst. 39: 277-286. Raife TJ, Lager DJ, Madison KC. (1994) Thrombomodulin expression by human keratinocytes. J.Clin. Invest. 93: 1846-1851. Schenk-Braat EA, Morser J, Rijken DC. (2001) Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur. J. Biochem. 268: 5562–5569. Stearns-Kurosawa DJ, Kurosawa S, Mollica JS, Ferrell GL, Esmon CT. ( 1996) The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc. Natl. Acad. Sci. U S A. 93: 10212–10216. Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S. (1995) Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55: 4196-4200. Van de Bernardez K,Clark E. (1998) Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9: 157-163. Weisel JW, Nagaswami C, Young TA, Light DR. (1996) The Shape of Thrombomodulin and Interactions with Thrombin as Determined by Electron Microscopy. J. Biol. Chem. 271: 31485–31490. Wouters MA, Rigoutsos I, Carmen K. (2005) Evolution of distinct EGF domains with specific functions. Protein Sci. 14: 1091-1103. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27404 | - |
| dc.description.abstract | 人類凝血酶調節素(Thrombomodulin, TM)是內皮細胞表面的穿膜醣蛋白。此蛋白質由N端至C端可分成五個不同的結構區域:Lectin like domain、EGF-like domain、serine/threonine-rich domain、transmembrane domain以及cytoplasmic domain。人類凝血酶調節素的每個結構區域參與了各種生化反應,如血液凝結、血纖維蛋白溶解、免疫反應、細胞附著及增生。
人類凝血酶調節素參與的各種生化功能和其結構有關,為了探討人類凝血酶調節素的結構區域如何參與各種生化反應,我們希望藉由蛋白質結晶繞射實驗來解出其結構,利用詳細的結構來探討TM的功能及生化反應機制。我們使用酵母菌表現系統表現了參與特殊功能的TM片段:TMD-1;包含了c-type Lectin like domain、TMD-23;包含了EGF-like domain以及serine/threonine-rich domain。 酵母菌表現的TMD-1以及TMD-23皆有醣化現象,由SDS-PAGE發現TMD-1有較嚴重不均勻的醣化,可能會影響蛋白結晶,因此我們另外使用大腸桿菌表現系統來表現TMD-1。酵母菌表現的TMD-23經由鎳離子螯合親合性色層分析法(Ni-chelating sepharose fast flow)純化,進行蛋白質養晶實驗。酵母菌表現的TMD-23(濃度為12 mg/mL,25 mg/mL,36 mg/mL)、利用水蒸汽擴散法(Vaper diffusion)進行蛋白質結晶實驗。在嘗試數種結晶試劑篩選之後,結果發現沒有好的蛋白質結晶生成。另外藉由大腸桿菌表現的TMD-1幾乎都是包函體,我們利用on-column refolding的方法進行蛋白質復性。我們將復性後的TMD-1(濃度為5 mg/mL)進行蛋白質養晶實驗,但TMD-1是在結晶過程中容易沉澱,不易形成結晶。 此外由於近年來超巨分子以及複合體的研究需求,CryoEM 以及 SAXS (small angle X-ray scattering; 小角度X光散射)等的低解析度結構資訊與高解析度結構資訊的整合,可以使我們的X光單晶晶體繞射及NMR結果可以更快的經由像拼圖的方式,得到超巨分子以及複合體的結構資訊。因此我們也將使用小角度X光散射的方法來觀察TM在水溶液裡的低解析度結構。我們進行TMD-23的小角度X光散射實驗(Small angle X-ray scattering),配合電腦軟體以dimer以及monomer模擬TMD-23在水溶液中和Ca2+結合前後的結構變化,而此結果仍須在未來做進一步的研究。 | zh_TW |
| dc.description.abstract | Thrombomodulin (TM) is a multifunction glycoprotein expressed on the epithelial cell surface. This glycoprotein is structurally organized into 5 distinct domains. From the N-terminus to C-terminus, TM has an N-terminus lectin domain, an EGF-like repeats, and a serine/threonine-rich region which were on the extra-membrane, a transmembrane domain and a short cytoplasmic tail on the intra-membrane. Each of the distinct domains has different biological functions that impact on coagulation, fibrinolysis, inflammation, cell Adhesion, and cell proliferation.
To elucidate how the single molecule can play diversely important role by each distinct domain, we expect to obtain the crystal structure of each TM domains. By TM structure, the functions and biochemical mechanisms will be clearly analysed and annotated. Here, we use the Pichia Pastoris expression system to express different functional domains of TM: the TMD-1 construction contains the C-type lectin domain, the TMD-23 construction contains the EGF-like repeats and the serine/threonine-rich region. Both Pichia Pastoris expressed TMD-1 and TMD-23 were glycosylated proteins. The unequal glycosylation of TMD-1 may influence protein crystallization, therefore we use E.coli to express TMD-1. The Pichia Pastoris expressed TMD-23 was purified through Nickel affinity column. By using vapor diffusion method, we test some crystallization conditions of TMD-23 (12 mg/mL,25 mg/mL,36 mg/mL). Unfortunately, there is no good protein crystal harvested. The expression of TMD-1 in E. coli results in the formation of inclusion bodies. We use the on-column refolding to obtain the soluble form of TMD-1 and test some crystallization conditions of soluble TMD-1 (5 mg/mL), but the TMD-1 is instable, it often aggregated itself. In addition, due to in recent years the large macromolecule and protein complex research rised, The structural information of CryoEM and SAXS (Small Angle X-ray Scattering) can combined with the structure of crystal diffraction or NMR. We will also use small angle x-ray scattering for observing the low resolution structure of TM in the aqueous solution. We use small angle X-ray Scattering to model the monomer and dimmer shape of TMD-23 with/with out the binding of Ca2+. The model results need to be investigated in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:03:50Z (GMT). No. of bitstreams: 1 ntu-97-R94450008-1.pdf: 2820250 bytes, checksum: 8d5ffdd8eb6a45f5207f163ee2268d14 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………1
中文摘要………………………………………………………………2 Abstract (英文摘要)………………………………………………4 目錄……………………………………………………………………6 縮寫檢索表……………………………………………………………10 第一章 緒論…………………………………………………………12 第二章 實驗材料……………………………………………………17 2.1 菌株………………………………………………………………17 2.2 質體………………………………………………………………17 2.3 儀器………………………………………………………………17 2.4 藥品………………………………………………………………18 第三章 實驗方法……………………………………………………22 3.1 酵母菌表現系統 3.1.1 酵母菌單一菌落之分離………………………………………22 3.1.2 PCR檢定重組基因……………………………………………23 3.1.3 重組基因的定序………………………………………………24 3.1.4 Pichia Pastoris表現蛋白…………………………………25 3.1.5酵母系統表現蛋白的純化……………………………………26 3.2 大腸桿菌表現系統 3.2.1構築表現質體…………………………………………………28 3.2.2轉形反應………………………………………………………29 3.2.3檢視大腸桿菌表現蛋白………………………………………31 3.2.4利用大腸桿菌大量表現蛋白…………………………………31 3.2.5大腸桿菌系統表現蛋白之純化及復性………………………32 3.3 SDS PAGE以及Western Blotting分析………………………35 3.4 MALDI-TOF實驗………………………………………………39 3.5蛋白質定量分析…………………………………………………39 3.6蛋白質結晶測試…………………………………………………40 3.7小角度X光散射實驗及數據分析………………………………41 第四章 實驗結果與討論………………………………………………42 第五章 參考文獻………………………………………………………49 第六章 實驗圖表………………………………………………………54 第七章 附錄……………………………………………………………92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 凝血酶 | zh_TW |
| dc.subject | 調節素 | zh_TW |
| dc.subject | 小角度X光散射 | zh_TW |
| dc.subject | 蛋白質結晶 | zh_TW |
| dc.subject | Protein Crystallization | en |
| dc.subject | Thrombomodulin | en |
| dc.subject | SAXS | en |
| dc.title | 人類凝血酶調節素的表現、純化、結晶與小角度X光散射實驗分析 | zh_TW |
| dc.title | Expression, Purification, Crystallization and SAXS Analysis of Human Thrombomodulin Domains | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳華林,廖彥銓,詹迺立,馬徹 | |
| dc.subject.keyword | 凝血酶,調節素,小角度X光散射,蛋白質結晶, | zh_TW |
| dc.subject.keyword | Thrombomodulin,SAXS,Protein Crystallization, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
