請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27383完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王一雄,顏瑞泓 | |
| dc.contributor.author | Chien-Ju Lin | en |
| dc.contributor.author | 林倩如 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:03:09Z | - |
| dc.date.available | 2009-01-30 | |
| dc.date.copyright | 2008-01-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-22 | |
| dc.identifier.citation | 行政院環保署公報,NIEA R811.21C。1992。鄰苯二甲酸酯類檢測方法-氣相層析 儀/電子捕捉偵測器法。
行政院環保署公報,NIEA S201.60T。1994。土壤中陽離子交換容量-酸醋銨法。王正雄。2000。台灣地區擬似環境荷爾蒙物質管理及環境流布調查。微生物與環境荷爾蒙研討會論文集。pp. 1-29。 廖健森,2002。環境荷爾蒙鄰苯二甲酸酯類化合物於台灣水體中含量調查與微生物分解之研究。東吳大學微生物學系研究所碩士論文。 廖建森,2006。環境荷爾蒙鄰苯二甲酸二丁酯對小白菜與青江菜對生理之影響。台灣大學農業化學系研究所博士論文。 黃玉如,2006。施用貝芬替、賓克龍和益達胺對土壤細菌族群結構的影響。國立台灣大學農業化學系研究所碩士論文。 邱子權,2004。有機氯化烴殺蟲劑厭氧微生物降解作用與其菌群結構之研究。國立台灣大學農業化學系研究所博士論文。 Adams, W. J., G. R. Biddinger, K. A. Robillard, and J. W. Gorsuch. 1995. A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ. Toxicol. Chem. 14:1569-1574. Atkinson, R. 1988. Estimation of gas-phase hydroxyl radical rate constants for organic chemicals. Environ. Toxicol. Chem. 7(6):435-442. Aftring, R. P., B. E. Chalker, and B. F. Taylor. 1981. Degradation of phthalic acids by denitrifying, mixed cultures of bacteria. Appl. Environ. Microbiol. 41:1177-1183. Ball, D. F. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 15:84-92. Battersby, N. S., and V. Wilson. 1989. Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl. Environ. Microbiol. 55:433-439. Call, D. J., T. P. Markett, D. L. Geiger, L. T. Brooke, F. A. Vandeventer, D. A. Cox, K. I. Genisot, K. A. Robillard, J. W. Gorsuch, T. F. Parkerton, M. C. Reiley, G. T. Ankley, and D. R. Mount. 2001. An assessment of the toxicity of phthalate esters to freshwater benthos. 1. Aqueous exposures. Environ. Toxicol. Chem. 20(8):1798-1804. Chang, B. V., C. M. Yang, C. H. Cheng, and S. Y. Yuan. 2004. Biodegradation of phthalate esters by two bacteria strains. Chemosphere. 55:533-538. Chang, B. V., G. S. Liao, and S. Y. Yuan. 2005. Anaerobic degradation of di-n-butyl phthalate and di-(2-ethylhexyl) phthalate in sludge. Bull. Environ. Contam. Toxicol. 75:775-782. Chao, W. L., C. M. Lin, I. I. Shiung, and Y. L. Kuo. 2006. Degradation of di-butyl-phthalate by soil bacteria. Chemosphere. 63:1377-1383. Colborn, T., D. Dumanoski, and J. P. Myers. 1996. Our stolen future. The hard back edition. Chao, W. L., and C. Y. Cheng. 2007. Effect of introduced phthalate-degrading bacteria on the diversity indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm. Chemosphere 67:482-488. Davies, B.E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. Proc. 38:150-151. Eaton, R. W., and D. W. Ribbons. 1982. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. Strain 12B. J. Bacteriol. 151:48-57. Ejlerstsson, J., and B. Svensson. 1995. A Review of the Possible Degradation of Polyvinyl Chloride (PVC) Plastics and its Components Phthalic Acid Esters and Vinyl Chloride Under Anaerobic Conditions Prevailing in Landfills. Dept. of Water and Environmental Studies, Linkoping University, Sweden. pp. 20 Engelhardt, G., and P. R. Wallnöfer. 1978. Metabolism of di- and mono-n-butyl phthalate by soil bacteria. Appl. Environ. Microbiol. 35:243-246. Feng, Z., C. Kunyan, F. Jiamo, S. Guoying, and Y. Huifang. 2002. Biodegradability of di(2-ethylhexyl) phthalate by Pseudomonas Fluorescens FS1. Water Air Soil Pollut. 140:297-305. Gavala, H. N., F. Alatriste-Mondragon, R. Iranpour, and B. K. Ahring. 2003. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge. Chemosphere. 52:673-682. Geyer, H., G. Politzki, and D. Freitag. 1984. Prediction of ecotoxicological behavior of chemicals: relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella. Chemosphere. 13:269-284. Gibson, R., M. Wang, E. Padgett, and A. J. Beck. 2005. Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids. Chemosphere. 61:1336-1344. Gledhill, W. E., R. G. Kaley, W.J. Adams, O. Hicks, P. R. Michael, V. W. Saeger, and G.A. LeBlac. 1980. An environmental safety assessment of butyl benzyl phthalate. Environ. Sci. Technol. 14:301-305. Gomez-Hens, A., and M. P. Aguilar-Caballons. 2003. Social and economic interest in the control of phthalic acid esters. Graham, P. R. 1997. Phthalate ester plasticizers-why and how they are used. Environmental Health Perspectives. pp. 3-12. Gu, J. D., J. Li, and Y. Wang. 2005. Biochemical pathway and degradation of phthalate ester isomers by bacteria. Water Sci. Technol. 52:241-248. Harris, C. A., and J. P. Sumpter. 2001. The endocrine disruptiong potential of phthalate. The handbook of environmental chemistry Vol. 3, Part L Endocrine Disruptors, Part I. pp. 169-198. Head, I. M., J. R. Saunders, and R. W. Pickup. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorgranisms. Microb. Ecol. 35: 1-21. Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. H. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes ecoding 16S rRNA and gel-electrophoretic separation in denaturing gradient. Appl. Environ. Microbiol. 63:3233-3241. Heuer, H., K. Hartung, G. Wieland, I. Kramer and K. Smalla. 1999. Polynucleotide probes that target a hypervariable region of 16S rRNA genes toidentify bacterial isolates corresponding to bands of community fingerprints. Appl. Environ. Microbiol. 65:1045-1049. Jianlong, W., L. Ping, and Q. Yi. 1996. Biodegradation of phthalic acid esters by acclimated activated sludge. Environment International. 22:737-741. Jianlong, W., Z. Xuan, W. Weizhong. 2004. Biodegradation of phthalic acid esters (PAEs) in soil bioaugmented with acclimated activated sludge. Process biochem. 39:1837-1841. Kapanen, A., J. R. Stephen, J. Brüggemann, A. Kiviranta, D. C White, and M. Itävaara. 2007. Diethyl phthalate in compost: ecotoxicological effects and response of the microbial community. Chemosphere 67:2201-2209. Kim, Y. H., J. Lee, and S. H. Moon. 2003. Degradation of an endocrine disrupting chemical, DEHP [di-(2-ethylhexyl)-phthalate], by Fusarium oxysporum f. sp. pisi cutinase. Appl. Microbiol. Biotechnol. 63:75-80. Kleerebezem, R., L. W. HulshoffPol, and G. Lettinga. 1999. Anaerobic biodegradability of phthalic acid isomers and related compounds. Biodegradation. 10:63-73. Latini, G. 2005. Monitoring phthalate exposure in humans. Clin. Chim. Acta. 361:20-29. Latini, G., A. D. Vecchio, M. Massaro, A. Verrotti, and C. D. Felice. 2006. Phthalate exposure and male infertility. Toxicology. 226:90-98. Liang, D. W., T. Zhang, and H. H. P. Fang. 2007. Anaerobic degradation of dimethyl phthalate in wastewater in UASB reactor. Water res. 41:2879-2884. Li, J., J. Chen, Q. Zhao, X. Li, and W. Shu. 2006. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus rubber. Chemosphere. 65:1627-1633. Mabey, W. R., J. H. Smith, R. T. Podoll, H. L. Jonson, T. Moll, T. W. Chou, J. Gates, I. Waight Patridge and D. Vandenberg. 1982. Aquatic fate process data for organic priority pollutants. U.S. Environmental Protection Agency Report, EPA 440/4-81-014. Mackintosh, C. E., J. Maldonado, J. Hongwu, N. Hoover, A. Chong, M. G. Ikonomou, and F. A. P. C. Gobas. 2004. Distribution of phthalate esters in a marine aquatic food web: Comparison to polychlorinated biphenyls. Environ. Sci. Technol. 38:2011-2020. Macrae, A. 2000. The use of 16S rDNA methods in soil microbial ecology. Braz. J. Microbiol. 31:77-82. Mohan, S. V., S. Shailaja, M. R. Krishna, K. B. Reddy, P. N. Sarma. 2006. Bioslurry phase degradation of di-ethyl phthalate (DEP) contaminated soil in periodic discontinuous mode operation: Influence of bioaugmentation and substrate partition. Process Biochem. 41:644–652. Moore, N. P. 2000. The oestrogenic potential of the phthtalate esters. Reproductive Toxicology. 14:183-192. Muyzer, G., E. C. DeWall and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophresis analysos of polymerase chain reaction-amplified genes codeing for 16S rRNA. Appl. Environ. Microbiol. 59:695-700. Muyzer G., and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73:127-141. Myers, R. M., S. G. Fischer, T. Maniatis, and L. S. Lerman. 1985a. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13:3111-3129. Myers, R. M., S. G. Fischer, L. S. Lerman, and T. Maniatis. 1985b. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. 13:3131-3145. Nalli, S., D. G. Cooper, and J. A. Nicell. 2006. Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous. Sci. Total Environ. 366:286- 294. Nübel, U., B. Engelen, A. Felske, J. Sanaidr, A. Wieshuber and R. I. Amann. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature-gradient gel electrophoresis. J. Bacteriol. 178:5636-5643. Patil, N. K., R. Kundapur, Y. S. Shouche, and T. B. Karegoudar. 2006. Degradation of a plasticizer, di-n-butylphthalate by Delftia sp. TBKNP-05. Curr. Microbiol. 52:225-230. Rabenhorst, M. C. 1988. Determination of organic carbon in calcareous soils using dry combustion. Soil Sci. Soc. Am. J. 52:965-969. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higughi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239: 487-491. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. Sheffield, V. C., D. R. Cox, L. S. Lerman, and R. M. Myers. 1989. Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA. 86:232-236. Stahl, W. H., and H. Pessen. 1953. The microbiological degradation of plasticizers. Appl. Microbiol. 1:30-35. Staples, C. A., D. R. Peterson, T. F. Parkerton, and W. J. Adams. 1997. The environmental fate of phthalate esters:a literature review. Chemosphere. 35:667-749. Stokes, J. D., G. I. Paton, and K. T. Semple. 2006. Behaviour and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manage. 21:475-486. Fischer S. G., and L. S. Lerman. 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell. 16:191-200. Sugatt, R. H., D. P. O’Grady, S. Banerjee, P. H. Howard, and W. E. Gledhill. 1984. Shake flask biodegradation of 14 commercial phthalate esters. Appl. Environ. Micobiol. 47:601-606. Sheffield, V. C., D. R. Cox, L. S. Lerman, and R. M. Myers. 1989. Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA. 86:232-236. Xu, X. R., H. B. Li, J. D. Gu. 2005. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1. International. Biodeterioration & Biodegradation. 55:9-15. Xu, X. R., H. B. Li, J. D. Gu, X. and Y. Li. 2007. Kinetics of n-butyl benzyl phthalate degradation by a pure bacterial culture from the mangrove sediment. J. Hazard. Mater. 140:194-199. Yuan, S. Y., C. Liu, C. S. Liao, and B. V. Chang, 2002. Occurrence and microbial degradation of phthtalate esters in Taiwan river sediments. Chemosphere 49:1295-1299. Wang, Y., Y. Fan, and J. D. Gu. 2003. Microbial degradation of the endocrine -disrupting chemicals phthalic acid and dimethyl phthalate ester under aerobic conditions. Bull. Environ. Contam. Toxicol. 71:810-818. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. bacteriol. 173:697-703. Wolf, C., C. Lambright, P. Mann, M. Prince, R. L. Cooper, J. Ostby, and L. E. Gary JR. 1999. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p’-DDE, and ketoconazole) and toxicsubstances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol. ind. health. 15:94-118. Wolfe, N. L., W. C. Steen, and L. A. Burns. 1980. Phthalate ester hydrolysis: linear free energy relationships. Chemosphere 9:403-408. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27383 | - |
| dc.description.abstract | 本研究針對三種常存在台灣環境中的鄰苯二甲酸酯類化合物 (phthalate esters,PAEs) :鄰苯二甲酸丁酯苯甲酯 (BBP) 、鄰苯二甲酸二乙酯 (DEP) 、鄰苯二甲酸二丁酯 (DBP) ,並探其對土壤細菌族群結構的影響。本研究結合微生物核酸萃取、聚合酶鏈鎖反應 (PCR) 、變性梯度凝膠電泳 (DGGE) 等分子生物技術來了解微生物與鄰苯二甲酸酯類化合物在降解過程中的關聯性。試驗用土壤分別採自於桃園區農業改良場 (簡稱Pu土) 和花蓮區農業改良場 (簡稱Wl土) 。於兩種土壤中添加PAEs,並於暗室25℃下進行培養,在各取樣時間點取土壤以正己烷萃取土壤中PAEs殘量,並以氣相層析儀-電子捕獲偵測器 (GC-ECD) 分析之。同時間以市售土壤核酸物質萃取試劑萃取土壤中的DNA,再藉由聚合酶鏈鎖反應放大細菌族群的16S rDNA片段,最後以變性梯度凝膠分析PCR產物並進而觀察添加PAEs對土壤細菌的影響。
以一次動力學方程式計算添加10 mg kg-1 PAEs於滅菌和未滅菌土壤中之消散情形。PAEs於滅菌土壤中的消散情形比在未滅菌土中慢,甚至有些經過11天之後仍未有消散的現象發生,這顯示生物性降解是PAEs消散很重要的一個步驟。在兩種試驗土壤中,BBP半衰期皆最長而DBP及DEP兩者的半衰期接近並皆小於兩天,烷基鏈越長 (或分子量越大) 者降解速率越慢。BBP和DEP在Wl土中消散較為快速,而DBP則在Pu土中消散的較快。比較5 mg kg-1 和10 mg kg-1 PAEs於未滅菌土壤中之消散情形,可知降解速率會受PAEs起始濃度影響。 在5 mg kg-1 PAEs於未滅菌土壤中之消散試驗中,三種PAEs皆在Pu土中消散的較快。混合添加三種PAEs的試驗驗中三種PAEs的消散速率皆變慢,這可能是太多的PAEs使得土壤微生物族群會抑制的結果。 由PCR-DGGE指紋圖譜發現,有添加PAEs的土壤亮帶數少於未添加PAEs之土壤,這顯示污染物PAEs會減少微生物之多樣性。有些細菌族群不會受到PAEs的影響,皆存在於各天數的圖譜中。而有些細菌族群則會受到PAEs的抑制或毒害而消失,另外則有些細菌族群會被PAEs誘導而出現。 | zh_TW |
| dc.description.abstract | The text of this study aimed at three phthalate esters (PAEs) usually found in Taiwan:Butyl benzyl phthalate (BBP) , Di-n-butyl phthalate (DBP) , Diethyl phthalate (DEP) and it has been studied on the effect of these three PAEs to soil bacterial community structure. Extraction of total genomic DNA, polymerase chain reaction (PCR) , and denaturing gradient gel electrophoresis (DGGE) are composed of this study in order to analyze the relationship between bacterial community during PAEs degradation periods. The soil in the study came from Taoyuan District Agricultural Research and Extension Station (Pu) and Hualien District Agricultural Research and Extension Station (Wl) respectively. Add PAEs into soil and make them incubated under 25℃ in the dark. N-hexane was used to extract the remaining PAEs from soil sample and the analysis was done by GC-ECD at each sampling date. In the mean time genomic DNA in soil was isolated by using DNA isolation kit. Then use PCR to amplify the DNA of specific bacterial community. Finally, analyze the impact of PAEs on diversity of bacterial by DGGE fingerprints.
Degradation rate constant, half-life values, and determination coefficients fitting in the soil treated with PAEs in the study fit well with first-order dynamic equation. To compare dissipation rates between sterile and non-sterile soil treated with PAEs (10 mg kg-1) revealed that biodegradation is a critical process in dissipation of PAEs because PAEs in sterile soil degraded far more slower than in non-sterile soil. The half-life values of non-sterile soil trated with BBP are longer than with DBP and DEP. This implicated that the longer length of alkyl chain (or the more molecular weight) it is the time to degrade it needs. The result from non-sterile soil treated with PAEs (10 mg kg-1) shows that BBP and DEP in Wl degrade faster. However, DBP did in Pu. In the circumstances of 5 mg kg-1, all three PAEs in the study degrade faster in Pu. Degradation rate in soil trated with mixed of three PAEs is slower than with individual PAEs. It’s probably because too much pollutant to endure for bacterial communities in soils. The result of PCR-DGGE indicated that soils treated with PAEs have the ability to decrease bands in fingerprints. This imply that pollutant such as PAEs may reduce diversity of bacterial communities. Some bacterial communities are found in all lanes in PCR-DGGE fingerprint, this means they are not so influenced by PAEs. Nevertheless, some are inhibited or toxic by PAEs. Still some induced by PAEs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:03:09Z (GMT). No. of bitstreams: 1 ntu-97-R94623017-1.pdf: 5437692 bytes, checksum: 0dffe3bbe52b94ab82145eec239fd49b (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要................................................................................................................... Ⅰ
英文摘要................................................................................................................... Ⅱ 目錄........................................................................................................................... Ⅳ 圖目錄....................................................................................................................... Ⅴ 表目錄....................................................................................................................... Ⅷ 附錄目錄................................................................................................................... Ⅸ 一、前言................................................................................................................... 1 二、文獻回顧............................................................................................................ 3 (一)、鄰苯二甲酸酯類化合物........................................................... 3 (二)、與本研究相關之生物技術.................................................... 14 三、研究目的及內容................................................................................................ 19 四、材料與方法........................................................................................................ 20 (一)、三種鄰苯二甲酸酯類化合物降解測試.............................................. 20 (二)、三種鄰苯二甲酸酯類化合物於不同土壤降解過程中微生物之菌群分 析......................................................................................................... 29 五、結果與討論....................................................................................................... 34 (一)、三種PAEs之消散試驗....................................................................... 34 (二)、三種PAEs 對細菌族群結構的影響............................................... 40 六、結論................................................................................................................... 76 參考文獻................................................................................................................... 77 附錄......................................................................................................................... 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | denaturing gradient gel | en |
| dc.subject | phthalate esters (PAEs) | en |
| dc.subject | biodegradation | en |
| dc.title | 三種環境荷爾蒙-鄰苯二甲酸酯類化合物對土壤
細菌族群結構的影響 | zh_TW |
| dc.title | Effect of three phthalate esters (BBP, DBP, and DEP)
on soil bacterial community | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾仁賜,李國欽,袁邵英 | |
| dc.subject.keyword | 鄰苯二甲酸酯類化合物,生物降解:變性梯度凝膠電泳,親源關係二元樹, | zh_TW |
| dc.subject.keyword | phthalate esters (PAEs),biodegradation,denaturing gradient gel, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 5.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
