Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27376
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道
dc.contributor.authorKai-Ming Chengen
dc.contributor.author鄭開明zh_TW
dc.date.accessioned2021-06-12T18:02:55Z-
dc.date.available2008-01-30
dc.date.copyright2008-01-30
dc.date.issued2008
dc.date.submitted2008-01-23
dc.identifier.citation[1] Baum, E., D. Haussler. “What Size Net Gives Valid Generalization?” Neural Computation, 1, 1990, pp. 151–160.
[2] Blumer, A., A. Ehrenfeucht, D. Haussler, M. Warmuth. “Learnability and the Vapnik-Chervonenkis Dimension.” Journal of the ACM, 36, 1989, pp. 929–965.
[3] Chernoff Bounds – Wikipedia, the Free Encyclopedia. 30 May 2007 <http://www.en.wikipedia.org/wiki/Chernoff_bounds>
[4] Haussler, D. “Quantifying Inductive Bias: AI Learning Algorithms and Valiant’s Model.” Artificial Intelligence, 36, 1988, pp. 177–221.
[5] Haussler, D., N. Littlestone, M. Warmuth. “Predicting {0,1}-Functions on Randomly Drawn Points.” Proceedings of the 1st annual workshop on computational learning theory, Cambridge, MA, 1988, pp. 280–296.
[6] Kearns, M., M. Li. “Learning in the Presence of Malicious Errors.” Proceedings of the 20th ACM Symposium on the Theory of Computing, Chicago, IL, 1988, pp. 267–280.
[7] Natarajan, B.K. “On learning Boolean Functions.” Proceedings of the 19th ACM Symposium on the Theory of Computing, New York, NY, 1987, pp. 296–304.
[8] Pitt, L., L.G. Valiant. “Computational Limitations on Learning from Examples.” Journal of the ACM, 35, 1988, pp. 965–984.
[9] Rivest, R. “Learning Decision Lists.” Machine Learning, 2, 1987, pp. 229–246.
[10] Valiant, L.G. “A Theory of the Learnable.” Communications of the ACM, Vol. 27, 1984, pp. 1134–1142.
[11] Vapnik, V.N., A.Y. Chervonenkis. “On the Uniform Convergence of Relative Frequencies of Events to their Probabilities.” Theory of Probability and Its Applications, Vol. 16, 1971, pp. 264–280.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27376-
dc.description.abstract1984年時,Valiant提出了PAC學習的理論。這個理論中提到一種建造學習的模型的方法。在一個學習演算法同時得到正面和負面的例子之後,必須要建構出一個和它所想要學會的實際的概念不會相差太多的假設。之前的研究主要都是對於各式各樣的問題提出多項式時間之內的學習演算法,而沒有特別去探索到底需要多少個例子才能夠把一個問題「學會」。在這份論文裡,我們會發展出一個學習演算法所需要的例子的數目的下限,而這樣的下限比起之前的演算法所提出的又進步了 。我們也一併探討其他和學習相關的問題,像是是否能夠只透過正面的例子就能夠學習,還有對於學習演算法是否存在精確的所需的例子的數目的這個待解的問題。zh_TW
dc.description.abstractIn 1984, Valiant proposed a theory for learning called PAC (Probably Approximately Correct) learning theory, which involved the building of a model for learning algorithms that given positive and negative inputs (called examples), must construct a hypothesis that should come within a reasonable range (say, ) of the actual concept to be learned with high probability (say, ). Most of the previous research, however, has focused on providing polynomial time learning algorithms for the various types of problems while passing on the subject of the number of examples needed to 'learn' the problem. In this thesis, we will establish a lower bound for the number of examples needed, which improves the previously known bound by a factor of . We also look at other related issues in the context of learning, such as whether it is plausible to learn from positive examples only and the open problem of establishing an exact bound for the number of examples needed.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:02:55Z (GMT). No. of bitstreams: 1
ntu-97-R93922121-1.pdf: 242103 bytes, checksum: 3f8bf014a56fdf8eee1a345d1095f848 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 …………………………………………………i
序言 …………………………………………………………………ii
中文摘要 ……………………………………………………………iii
英文摘要Abstract …………………………………………………iv
Chapter1 Introduction……………………………………………1
Chapter2 Definitions and Notations …………………………3
Chapter3 Theorem and Proofs……………………………………7
Chapter4 Discussion and Extension……………………………16
Chapter5 Conclusion………………………………………………18
References …………………………………………………………19
dc.language.isoen
dc.title學習理論在語言學習上的應用zh_TW
dc.titleApplication of Learning Theory to Language Learningen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee戴天時,金國興
dc.subject.keywordPAC學習理論,機器學習,Vapnik-Chervonenkis維度,Shattering(震碎),Chernoff限制式,zh_TW
dc.subject.keyword(PAC)Learning Theory,Machine Learning,Vapnik-Chervonenkis Dimension,Shattering,Chernoff Bound,en
dc.relation.page19
dc.rights.note有償授權
dc.date.accepted2008-01-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
236.43 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved